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Abstract

Background: Pinus koraiensis is an evergreen tree species with strong cold resistance. However, the transcriptomic
patterns in response to cold stress are poorly understood for P. koraiensis. In this study, global transcriptome profiles
were generated for P. koraiensis under cold stress (— 20 °C) over time by high-throughput sequencing.

Results: More than 763 million clean reads were produced, which assembled into a nonredundant data set of 123,
445 unigenes. Among them, 38,905 unigenes had homology with known genes, 18,239 were assigned to 54 gene

provide the basis for the molecular breeding of conifers.

ontology (GO) categories and 18,909 were assigned to 25 clusters of orthologous groups (COG) categories.
Comparison of transcriptomes of P. koraiensis seedlings grown at room temperature (20 °C) and low temperature
(—20°C) revealed 9842 differential expressed genes (DEGs) in the 6 h sample, 9250 in the 24 h sample, and 9697 in
the 48 h sample. The number of DEGs in the pairwise comparisons of 6 h, 24 h and 48 h was relatively small. The
accuracy of the RNA-seq was validated by analyzing the expression patterns of 12 DEGs by quantitative real-time
PCR (gRT-PCR). In this study, 34 DEGs (22 upregulated and 12 downregulated) were involved in the perception and
transmission of cold signals, 96 DEGs (41 upregulated and 55 downregulated) encoding 8 transcription factors that
regulated cold-related genes expression, and 27 DEGs (17 upregulated and 10 downregulated) were involved in
antioxidant mechanisms in response to cold stress. Among them, the expression levels of c63631_g1 (annexin D1),
€65620_g1 (alpha-amylase isozyme 3C), c61970_g1 (calcium-binding protein KIC), c51736_g1 (ABA), c58408_g1
(DREB3), c66599_g1 (DREB3), c67548_g2 (SOD), c55044_g1 (CAT), c71938_g2 (CAT) and c11358_g1 (GPX) first
increased significantly and then decreased significantly with the extension of stress time.

Conclusions: A large number of DEGs were identified in P. koraiensis under cold stress, especially the DEGs
involved in the perception and transmission of cold signals, the DEGs encoding TFs related to cold regulation and
the DEGs removing ROS in antioxidation mechanisms. The transcriptome and digital expression profiling of P.
koraiensis could facilitate the understanding of the molecular control mechanism related to cold responses and
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Background

Cold stress is one of the most important abiotic stresses
that adversely affects plant growth and development, crop
yield and quality, and geographic distribution [1]. Plants
have frequently suffered sudden cold stress, such as early
or late frost in nature; subsequently, they would enable a
diverse set of response mechanisms to protect against
damage [2]. The duration of stress is also a test of plant
cold tolerance, which involves various cellular response
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mechanisms [3]. Studies of the mechanisms that improve
cold resistance have suggested the importance of a wide
range of physiological, biochemical, cellular and molecular
processes, and these processes have been associated with
the regulation of gene transcription [4].

At present, low-temperature signal transduction has
been widely studied, and the clearest pathway was the
C-repeat (CRT)-binding factors (CBF) signal pathway,
which is also known as the dehydration-responsive
element-binding factors 1 (DREB1) signal pathway and
is ABA (abscisic acid)-independent [5]. Many transcrip-
tion factors are involved in this signal pathway, in-
cluding CBF1 / DREBI1B, CBF2 / DREBIC, CBF3 /
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DREBI1A, CBF4 / DREBID, DREBIE, DREBIF. ICEI
(Inducer of CBF Expression 1), is located upstream of
CBF, and together, they jointly regulate the expression
of a spectrum of cold-regulated (COR) genes, through
CBF binding to the cis-acting element (CRT/DRE)
that contains a core conserved sequence of CCGAC
[6, 7]. The CBF-COR pathway constitutes the pre-
dominant cold signaling pathway in plants, and the
CBF gene is regulated positively by ICE1 (Inducer of
CBF Expression 1). However, HOS1 (High Expression
of Osmotically Responsive Gene 1) and MYB15 (mye-
loblastosis 15) negatively regulate the CBF genes,
which provides a more complete understanding of the
complexity of CBF-mediated cold signaling [8—10].
The expression patterns of cold-responsive genes were
different for different plant species during exposure to
cold [11-13]. Through the research on Arabidopsis tran-
scriptome profiling, a total of 306 genes were identified
as cold-responsive genes, with 218 genes increasing and
88 genes decreasing, while the studies on Cassava re-
ported that 508 transcripts were identified as early cold-
responsive genes, in which 319 sequences had functional
descriptions [14, 15]. There have been many similar re-
ports [16, 17]. The number of identified genes involved
in cold stress response has been increasing, but the func-
tion of most genes have not been revealed. Only 12% of
the cold-responsive genes were likely regulated by the
CBF transcription factor; therefore, it was predicted that
there was a CBF-independent pathway to respond to
cold stress in plants [14]. However, to date, there have
been few studies on the CBF-independent pathway.
Genome-wide transcriptome analysis is a useful strat-
egy for revealing the molecular mechanism of gene ex-
pression, and it can improve the efficiency of identifying
the genes of interest. RNA-Seq is a high-throughput
DNA sequencing approach, which generates a large
amount of transcriptome data for both model and non-
model species [18]. This approach has been widely used
to analyze the cold stress response of many plants. For
example, the gene expression patterns were identified in
Arabidopsis under drought, cold, high-salinity and ABA-
treatment conditions [16]. Comparative transcriptome
analysis on two tobacco cultivars (cold-tolerant NC567
and cold-sensitive Taiyuan8) showed that the important
COR genes were specifically induced during cold stress
in NC567 [19]. The transcriptome analysis of sunflower
identified the candidate genes involved in response to
chilling and salt stresses [20]. P. koraiensis is a famous
mixed fruit and wood forest with strong cold tolerance
[21, 22]. It is the main tree species in the cold temperate
zone and contains abundant cold resistance genes. It is
an important material for the study of cold hardiness
and acquiring cold resistance genes of coniferous tree
species. Thus, it is appropriate and valuable to explore
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the responsive genes under sudden cold stress in Pinus
koraiensis through transcriptome sequencing.

P. koraiensis is an evergreen tree belonging to Pina-
ceae, Pinus, which is mainly distributed in the northeast-
ern part of China, the Korean peninsula, south of the
Russian Far East and Honshu, Japan (124°38" ~ 140°20°
E, 33°50" ~52°40" N) [23]. P. koraiensis has a strong
cold resistance, and it can surmount the extreme low
temperature of — 40 °C in its natural growth state. Stud-
ies have shown that cold stress resulted in an increase or
decrease in the abundance of transcripts associated with
several metabolic pathways, and the expression data fur-
ther suggested the involvement of both the CBF-
dependent and independent pathways in the cold re-
sponses [5, 14]. In this study, seedlings of P. koraiensis
that show healthy growth at room temperature suddenly
underwent low temperature stress at — 20 °C with stress
times of 6, 24 and 48 h, which did not experience cold
acclimation. Exploring the expression pattern of genes
under sudden cold stress and obtaining the differential
expressed genes using RNA-seq and digital expression
profiling would provide a valuable genetic resource for
cold resistance genes of interest in future conifer breed-
ing process.

Results

RNA sequencing and de novo assembly

RNA sequencing was used to investigate the transcrip-
tional changes of P. koraiensis under cold stress. In total,
twelve ¢cDNA libraries were constructed using RNA ex-
tracted from P. koraiensis needles, which were exposed
to low temperature (- 20°C) for Oh, 6 h, 24 h and 48 h,
respectively. The cDNA libraries were subjected to
paired-end (PE) sequencing by the Illumina HiSeq2000
platform. After filtering out low-quality reads, a total of
763,995,954 clean reads were obtained. The clean reads
were de novo assembled into contigs using the Trinity
program [24]. A total of 150,528 contigs consisting of 182,
705,782 bp, with N50 length of 1951 bp, were obtained.
Based on the paired-end sequence information, 123,445
unigenes consisting of 137,320,368 bp with N50 length of
1778 bp were obtained. The expressional levels of the uni-
genes were obtained by mapping the sequencing reads to
the unigenes and normalized using RPKM (reads per kilo-
base per million mapped reads) method [25].

Functional annotation of unigenes

The unigene sequences were mapped to public databases
using BLASTn or BLASTx with a cut-off of E-value of
10™°. The databases used included NCBI Nucleotide se-
quence database (Nt), NCBI nonredundant database
(Nr), the Universal protein (UniProt) database, the Clus-
ters of Orthologous Groups of proteins (COG) database,
the Protein families (Pfam) database, the evolutionary
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genealogy of genes: Nonsupervised Orthologous Groups
(eggNOG) database, the Gene Ontology (GO) database,
and Kyoto Encyclopedia of Genes and Genomes (KEGQG)
database. In total, 38,905 unigenes (31.52%) could be
matched to a sequence in at least one of the databases
mentioned above. The number of unigenes hits (E-value
<le™®) was 31,997 (25.92%) and 28,163 (22.81%) in the
Nr and UniProt database, respectively, followed by 22,
644 (18.34%) in the Pfam database, 18,909 (15.32%) in
the COG database, 18,239 (14.78%) in the GO database,
17,684 (14.33%) in the Nt database, 16,963 (13.74%) in
the eggNOG database and 14,201 (11.50%) in the KEGG
database (Table 1). The E-value distribution of annota-
tion based on the Nr database is shown in Fig. 1a, which
indicated that the E-values of unigenes (46%) ranged
from le”* to le””, and a greater number of unigenes
(54%) showed an E-value <le™ *°, which revealed strong
homology. According to a search on the Nr database,
the unigene sequences had the strongest BLASTx
matches with the gene sequences from Picea sitchensis
(27%), Beauveria bassiana (10%), Amborella trichopoda
(6%), Ricinus communis (4%), Nelumbo nucifera (4%),
Sordaria macrospora (3%), Pinus taeda (2%), Physcomi-
trella patens (2%), Vitis vinifera (1%) and Elaeis guineen-
sis (1%) (Fig. 1b).

Go analysis was widely used to predict the uncharac-
terized unigene sequences, and 18,239 unigenes were
classified as 54 functional groups. The functional groups
were further divided into three categories (‘biological
process’, ‘molecular function’, and ‘cellular component’)
(Fig. 2) using BLAST2GO [26]. For biological process,
most of the unigenes were again classified as ‘biosyn-
thetic process’ (6769), ‘transport’ (4853) and ‘transcrip-
tion’ (4468); the percentages of total unigenes were
37.11, 26.61 and 24.50%, respectively, followed by ‘meta-
bolic process’ (3705; 20.31%), ‘catabolic process’ (3610;
19.79%). The percentage of others were less than 10%.

Table 1 List of P. koraiensis transcriptome annotations
Public database

No. of unigene hits Percentage (%)

Nt 17,684 1433%
Nr 31,997 25.92%
UniProt 28,163 2281%
COG 18909 1532%
Pfam 22,644 1834%
eggNOG 16,963 13.74%
GO 18239 14.78%
KEGG 14,201 11.50%
ALL 38,905 31.52%

Nt Nucleotide database, Nr Nonredundant protein sequence database, UniProt
Universal protein database, COG Cluster of Orthologous Groups of proteins,
Pfam Protein families database, eggNOG evolutionary genealogy of genes:
Nonsupervised Orthologous Groups database, GO Gene Ontology database,
KEGG Kyoto Encyclopedia of Genes and Genomes
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In the ‘molecular function’ category, the major subcat-
egories were ATP binding (7260; 39.80%), DNA binding
(5779; 31.68%) and metal-ion binding (5081; 27.86%),
while ‘integral to membrane’ (7942; 43.54%), ‘plasma
membrane’ (6593; 36.15%) and ‘cytoplasm’ (5427;
29.75%) were the most representative subcategories in
the ‘cellular component’ category (Additional file 1).

COG database is a protein database. The protein se-
quences came from the genomes of bacteria, plants and
animals. According to the sequence similarity, the 18,
909 unigene sequences in P. koraiensis were matched to
the COG database, which could be grouped into 25 cat-
egories (Additional file 2). The top 10 classes were: (R)
‘General function prediction only’ (3025; 16.00%), (E)
‘Amino acid transport and metabolism’ (2117; 11.20%),
(C) ‘Energy production and conversion’ (1795; 9.49%),
(S) ‘Function unknown’ (1778; 9.40%), (L) ‘Replication,
recombination and repair’ (1739; 9.20%), (J) ‘Translation,
ribosomal structure and biogenesis’ (1698; 8.98%), (O)
‘Posttranslational modification, protein turnover, chaper-
ones’ (1558; 8.24%), (G) ‘Carbohydrate transport and
metabolism’ (1488; 7.66%), (P) ‘Inorganic ion transport
and metabolism’ (1439; 7.61%) and (K) ‘Transcription’
(1429; 7.56%). However, the smallest classes were (W)
‘Extracellular structures’ (4; 0.02%) and (Y) ‘Nuclear
structure’ (1; 0.01%) (Fig. 3; Additional file 2).

Differential expressed genes (DEGs)

DEGseq [27] was used to identify differential expressed
genes (DEGs) in cold treatment groups in comparison to
control group with specified thresholds. In total, 9842,
9250 and 9697 genes were differentially expressed when
exposed to cold for 6h, 24 h and 48 h, respectively. Of
the DEGs, 5444, 5241 and 5286 genes were upregulated,
while 4398, 4009 and 4411 genes were downregulated at
each time point. In addition to identification of DEGs
under cold stress, we also identified genes differentially
expressed between different time points of cold stress.
The numbers of DEGs in the pairwise comparisons of
the 6h, 24h and 48 h samples was relatively small. A
total of 1516 genes were upregulated and 1286 genes
were downregulated in the comparison between the 24 h
and 6 h samples, 1784 genes were upregulated and 1589
genes were downregulated in the comparison between
the 48 h and 6 h samples, and 1364 genes were upregu-
lated and 1226 genes were downregulated in the com-
parison between the 48 h and 24 h samples, respectively
(Table 2).

Gene ontology analysis of DEGs

GO enrichment was performed to investigate the func-
tion of DEGs. GO terms with corrected P-values < 0.05
were identified as significantly enriched. In total, 484,
371 and 543 GO terms were significantly enriched after
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cold treatment of 6h, 24 h and 48h, respectively. The
top 30 enriched GO terms were shown in Add-
itional file 3. We investigated the enriched GO terms at
each time point and found that the enriched biological
events of 6 h were similar to 24 h. However, the enriched
biological events of 48 h were different from 6 h and 24
h. At time points 6 h and 24 h, the enriched biological
processes include ‘response to acid chemical’, ‘response
to biotic stimulus’, ‘response to stress’, ‘defense re-
sponse’, and ‘single-organism developmental process’.
The result indicated that plenty of DEGs were involved
in the perception and transmission of cold signals.
Meanwhile, the enriched molecular functions include
‘kinase activity’, ‘protein kinase activity’, ‘ADP binding’,
‘phosphotransferase activity, alcohol group as acceptor’

and ‘protein serine/threonine kinase activity’, which sug-
gested that the relevant enzyme activities and products
might change under cold stress. These results showed a
complex regulatory cold stress response and indicated
that the changes in the biological process might be very
important in response to cold stress in P. koraiensis.

Pathway enrichment analysis of DEGs

KEGG analysis of the DEGs was showed in Additional file 4.
The result showed that a total of 46 pathways were signifi-
cantly affected under cold stress (Q-value < 0.05) in the 6 h
sample, among which the top four abundant pathways were
‘plant-pathogen interaction’, ‘plant hormone signal trans-
duction’, ‘starch and sucrose metabolism’ and ‘phenylpropa-
noid biosynthesis’, followed by ‘protein processing in
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endoplasmic reticulum’, ‘hippo signaling pathway and ‘spli-
ceosome’. For either the 24 h sample or 48 h sample, the
top four pathways were the same as those described above.
The DEGs in the same pathways in all three stress periods
should be of great concern. However, in the pairwise com-
parison among the 24 h, 6 h and 48 h samples, ‘plant-patho-
gen interaction’ and ‘phenylpropanoid biosynthesis’ were
both included in the top four abundant pathways. Interest-
ingly, ‘metabolism of xenobiotics by cytochrome P450°
could also be noted, because it was enriched in each com-
parison group.

Quantitative real-time PCR (qRT-PCR) analysis

To verify the accuracy of the RNA-Seq data under cold
stress in P. koraiensis, 12 randomly selected DEGs (6 up-
regulated and 6 downregulated) were used for qRT-PCR
analysis of transcript abundance with specific primers
(Table 3). The result showed that the expression patterns
of 11 of 12 unigenes detected via qRT-PCR were highly
consistent with the RNA-Seq result; only c51762_g2 was
specific (Fig. 4), which suggested that the high-throughput
RNA-Seq data was reliable and demonstrated that the

DEGs identified based on transcriptome sequencing were
available.

Gene expression associated with perception and
transmission of cold signals in P. koraiensis

The perception and transmission of cold signals is cru-
cial for plants during cold stress. A total of 34 unigenes
involved in the perception and transmission of cold sig-
nals were significantly differentially expressed (22 up-
and 12 downregulated) under cold stress (Fig. 5). Of
the 34 cold signal related genes, 31 (21 upregulated and
10 downregulated) acted as calcium ion receptors, 3 (1
upregulated and 2 downregulated) were involved in
ABA synthesis and binding. The calcium ion receptor
genes mainly encoded annexin, alpha-amylase, calcium-
binding protein, calmodulin, calcium-dependent protein kin-
ase, calcineurin B-like protein (CBL), CBL-interacting serine/
threonine-protein kinase, CBL-interacting protein kinase and
mitogen-activated protein kinase (Additional file 5).

The expression levels of four genes, including annexin
D1 (c63631_gl), alpha-amylase isozyme 3C (c65620_gl),
calcium-binding protein KIC (c61970_gl) and abscisic
acid 8" -hydroxylase 1 (c51736_gl), first increased

Table 2 The number of DEGs in different comparison groups for P. koraiensis

Name —20°C6hvsCK —20°C24hvsCK —20°C48hvsCK —20°C24hvs—-20°C6h —20°C48hvs—20°C6h —20°C48hvs—20°C24h
Up 5444 5241 5286 1516 1784 1364
Down 4398 4009 4411 1286 1589 1226
Total 9842 9250 9697 2802 3373 2590
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Unigenes Forward primer Reverse primer

TUBA CCAGTTTGTTGATTGGTGTCC ACGGCTCTCTGAACCTTGG
€67548_g2 GCCTTCGTTCTGCAAGATTTGTCG CTCACAGCCTTCACAGTCCATT
c45624_g1 TTACAGCACCACCGATTGGAAAGC GCTGCGATAATCCGCACACTCTT
€53894_g1 AAACTCTGTGTGAGAAGCCGTG GCATCCCATTCTGGCGACAAA
c51648_g1 TGTGATATACAGTCAGCGGCTGC CACAGATCCAATCGCAGTTCCA
€55399_g2 AATTTCAAGTTCACTCCGCGCCTC GTCTGAGCAATATCCAACGGCT
c51762_g2 CTGTATTTGATGCACTTGCCCTGTC CAATGTGACCAAGAGCCAAGGCAA
c71292_g4 ACCAATCCATCGCCAACAGCAAAG CACAACCGAAGGATACAACACCCA
€72543_g]1 AACACCTGTCACTCCAGAATGCTC CTATCGACCATGCTGATTTCACCCG
€68652_g2 TAATTTGGTTGCCGAAGCCTGG CAAAGCTCTGCCCTGTTTCCACAT
€69240_g2 AAGATGTAGTGGTCAGCGAGTGC GCAAGAGATCGAAACGCTCAAGACA
€69290_g1 ACCTCCGTCTCCGATAATTGAACC GGAGGCTTAAAGACCAGGAGAGGA
€70248_g1 GATCGAGTTGTGTGTCTGCTTGTG CCTCTCATGGCTATCTGTTCTCCG

significantly and then decreased significantly with the
extension of stress time (Fig. 5, Additional file 5).

Transcription factors (TFs) in response to cold stress in P.

koraiensis

To explore the TFs in response to cold stress in P. kor-
aiensis, 8 TFs were identified, including 96 DEGs (41

upregulated and 55 downregulated) (Fig. 6). Among
them, the number of genes for ethylene responsive factor

(AP2) was the highest, with 30 genes (5 upregulated and

25 downregulated), followed by MYB with 24 genes (15

upregulated and 9 downregulated), NAM, ATAFI,

ATAF2 and CUC2 (NAC) with 16 genes (4 upregulated
and 12 downregulated) and zinc finger protein (ZFP)
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with 11 genes (6 upregulated and 5 downregulated).
The number of other transcription factors was small,
with 9 basic Helix-loop-helix (bHLH) genes (6 upregu-
lated and 3 downregulated), 4 WRKY genes (3 upregu-
lated and 1 downregulated), 1 upregulated ethylene-
insensitive 3 (EIN3) gene and 1 upregulated vascular
plant one any zinc-finger protein (VOZ) gene
(Additional file 5).

The expression level of the same gene was different for
different cold-stress periods. The expression of c58408_g1
and c66599_gl, two DREB genes first increased signifi-
cantly and then decreased significantly with the extension
of stress time (Fig. 6, Additional file 5).

Antioxidant enzymes and antioxidants in response to

cold stress in P. koraiensis

In this study, 27 DEGs (17 upregulated and 10 downregu-
lated) are shown in Fig.7, which were associated with the
reactive oxygen species (ROS) family. These components
of the ROS family were antioxidant enzymes and antioxi-
dants including ascorbate peroxidase (APX), superoxide
dismutase (SOD), catalase (CAT), glutathione peroxidase
(GPX), blue copper protein, glutaredoxin and heat shock
protein. The expression level of the same gene was differ-
ent under different cold stress time. It was noteworthy
that the expression level of some genes first increased
significantly and then decreased significantly with the
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extension of stress time. These genes included c67548_g2
(SOD), ¢55044_g1 (CAT), c71938_g2 (CAT) and c11358_
gl (GPX) (Fig. 7, Additional file 5).

Discussion

The general molecular regulation in response to cold
stress for plants

The molecular regulation of plants against cold stress
was showed in Fig. 8. When plants are subjected to cold
stress, the cell membrane first sensed the cold signal
with membrane rigidification and other changes, indu-
cing second messengers (Ca>*, ABA, etc.) accumulation
to transmit cold signals downstream [28]. Calcium re-
ceptor is the most important cold signal sensor, and the

calcium signaling pathway is the most important signal
transduction pathway [28, 29]. Some of the downstream
cold signals directly activate the expression of target
genes and the others induce the transcriptional regula-
tory network to activate the expression of a series of
cold-related genes, and thus synthesize antioxidant en-
zymes, condensate protective substances and osmotic
regulatory substances, etc. [28]. These substances work
together to regulate the metabolic balance of substances
and energy, and ultimately resist or adampt cold stress.

Perception and transmission of cold signals
Woody plants also first show cold signal recognition and
transmission in response to cold stress [29]. In addition
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to the very important calcium ion signal conduction
pathway, there are some other conduction pathways,
which are mainly related to ABA [30].

In this study, 31 DEGs were found to be related to cal-
cium ion binding and were calcium ion receptors,
among which 21 were up-regulated under cryogenic
treatment, while only 3 DEGs were related to ABA. It
was preliminarily speculated that calcium ion signaling
pathway was also the main pathway of intracellular cryo-
genic signal transduction in P. koraiensis. There exist
calcium ion receptors in plants, mainly including cal-
modulins (CaMs), calc-dependent protein kinases
(DPKs), calcineurin B-like proteins (CBLs) and CBL-
interacting protein kinases (CIPKs) [31, 32], which bind
to calcium ions, thus changing the conformation of the
proteins and regulating cold-related gene expression or
directly transmitting cold signals to the downstream tar-
get gene [33, 34]. The expression of the above-
mentioned calcium ion receptor genes in P. koraiensis
was significantly changed under low temperature stress.

Annexin is a calcium-dependent phospholipid binding
protein found in plants and animals. It is involved in
many life activities regulated by calcium ions, such as
signal transduction and calcium ion channel formation,
and participates in cold-resistance reactions [35]. Four
kinds of annexin were found in cold-resistant wheat,
among which, annexin P39 and P225 might be signal
transducers in the cold signal transduction or regulators
of cytoplasmic calcium ion concentration [36]. 2 upregu-
lated annexin genes (c56125_gl, c63631_gl) were in-
volved in calcium-ion binding to alleviate cold stress in
P. koraiensis, and similar results were also observed in
studies on rice at low temperature [37]. Alpha-amylase
can participate in the binding of calcium ions to regulate

the recognition and transmission of cold signals to alle-
viate cold stress. It can also catalyze starch into various
soluble sugars, including dextrin, oligosaccharides, a
small amount of maltose and glucose, etc. to regulate
cell osmotic pressure to alleviate cold stress [38]. Low
temperature induced the expression of 3 alpha-amylase
genes in P. koraiensis, and the expression first increased
significantly and then decreased significantly with the
extension of low temperature stress time. These results
support the previous experiment by the team, in which
the content of soluble sugar increased significantly at -
20°C and a long stress time induced the soluble sugar
content to increase first and then decrease [39].

Transcription factors in response to cold stress

In order to survive, plants form complex and efficient
regulatory networks to resist and adapt to cold stress, in
which transcriptional regulation plays a key role. Tran-
scription factors regulate the expression of a series of
genes and play a key role in plant abiotic adversity re-
sponse networks by binding to cis-acting elements in the
promoter region.

AP2/ERF is a large gene family, which is divided into
four subfamilies, namely, AP2, RAV, DREB and ERF
[40]. Among them, DREB and ERF are closely related to
cold stress, and DREB1/CBF (C-repeat binding factor)
plays a role of molecular switch in transcriptional regu-
lation [40, 41]. There were 4 DREB DEGs (c51648_gl
named DREB3A, ¢58408_gl named DREB3B, c66599_g1
named DREB3C, c64188_g3 named DREB3D) and 12
ERF DEGS all belong to the AP2 family in this study,
which could serve as candidate genes for studying the
cold response of conifer species. The expression of
DREB3A-C significantly increased with the decrease of
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the temperature, and their expression were up-regulated
by 9.1, 8.1 and 5.6 times at — 20 °C for 6 h, respectively.
The expression of DREB3D was down-regulated at -
20°C. CBF gene family of Arabidopsis also included 4
genes, which were CBF1-4, respectively. When CBF
overexpression in response to cold, most genes were
positively regulated, but a few genes were inhibited by
CBF overexpression [42]. Whether DREB3A-D in P. kor-
aiensis had similar function need further study.

Studies have shown that MYB15 in Arabidopsis was an
R2R3 transcription factor and that overexpression of
MYBI15 resulted in decreased expression of the CBF
gene and negative regulation of plant cold resistance
[43]. Both ¢45624 gl and ¢65145_gl in P. koraiensis
were R2R3 MYB transcription factors, but their expres-
sion was up-regulated under cold stress, so further stud-
ies were needed. MYB96 has been reported to positively
regulate plant cold resistance [44]. Therefore, the regula-
tion of MYB is a complex process under cold stress.
NAC and bHLH TFs can be induced by low
temperature, and they play important roles in plant
cryogenic regulation network; the overexpression of Pbe-
NACI and PtrbHLH could improve the cold resistance
of Pyrus betulaefolia and Nicotiana tabacum, respect-
ively [45, 46]. Four NAC and six bHLH DEGs were in-
duced in P. koraiensis under cold stress .

In addition to the AP2/ERF, MYB, NAC and bHLH
TFs, the DEGs encoding the remaining 4 TFs (WRKY,
EIN3, ZFP and VOZ) were also identified in P. koraiensis
in response to cold stress, which suggested that these
TFs also might be important regulators that triggered a
cascade of downstream gene expression. However, little
research had been conducted on the function of these
TFs, and further study of function characterization in-
volved in cold tolerance in plants is still be needed.

Antioxidation mechanisms in response to cold stress
Hypothermia injury is mainly caused by oxidative stress
caused by ROS accumulation. The antioxidant defense
mechanism can remove excess ROS to protect plants
from the harm for cold-tolerant plants [47]. The antioxi-
dant defense mechanism consists of antioxidant enzymes
and antioxidants.

SOD is the first enzyme in antioxidant action. Its main
function is to remove O  and produce H,O, at the
same time. CAT can degrade excess H,O, and other
ROS by enzymatic action [48]. APX is one of the key en-
zymes for H,O, clearance, mainly existing in chloro-
plasts, where CAT enzyme does not exist. Therefore,
APX is the key enzyme for H,O, clearance in chloro-
plasts [49]. GPX is a kind of peroxidase containing sulf-
hydryl, which can remove peroxides such as H,O, in
plants, so as to avoid ROS damage to plants [50]. There-
fore, SOD, CAT, APX and GPX are important
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antioxidant enzymes in plants. Their high expression
can improve the antioxidant capacity of plants and en-
hance their low temperature tolerance. The lower the
temperature, the higher the expression [51, 52]. There
were some significantly differentially expressed SOD,
CAT, APX and GPX genes in P. koraiensis under cold
stress, among which the up-regulated genes played an
important role. Blue copper protein, glutaredoxin and
heat shock protein are all antioxidant substances with
antioxidant functions [53, 54]. The expressions of
c67548_g2 (SOD), c55044_gl (CAT), c71938_g2 (CAT)
and c11358_gl (GPX) first increased significantly and
then decreased significantly with the extension of cold
stress time, which indicated that the longer the low-
temperature stress time was, the more seriously the
plant was hurt, and the higher the expression of antioxi-
dant enzymes was. However, when the stress time reached
a certain level, the plant might adapt to this stress state
and the expression level decreased [55]. In the previous re-
port on the physiological indices of P. koraiensis seedlings,
low temperature (- 20°C) enhanced the activity of SOD
and CAT, and SOD activity increased first and then de-
creased with the extension of stress time [39], which fur-
ther demonstrated that low temperature stress could be
resisted by increasing the expression of antioxidant en-
zymes genes, thereby increasing the activity of antioxidant
enzymes in P. koraiensis.

Conclusions

In this study, a Pinus koraiensis dataset comprising 123,
445 unigenes was generated by high-throughput sequen-
cing, and the dynamic changes in gene expression were
observed under cold stress for different stress times. A
large number of DEGs were identified, especially the
DEGs involved in the perception and transmission of
cold signals, DEGs encoding TFs related to cold regula-
tion and the DEGs removing ROS in antioxidation
mechanisms. The transcriptome and digital expression
profiling of P. koraiensis could facilitate the understand-
ing of the molecular control mechanism related to cold
responses and provide the basis for the molecular breed-
ing of conifers. The DEGs of P. koraiensis without anno-
tation in the Nr database were what we would study in
the future, which might be specific to P. koraiensis.

Methods

Plant materials and cold treatments

Seeds of P. koraiensis were obtained from Kaishan village
seeds orchard (129°45" E, 42°40" N) located on the east
side of Changbai Mountain in Longjing city, northeast
China. The average annual temperature, temperature in
January and temperature in July are 5.3°C, — 13.4°C and
21.2°C, respectively [56]. The lowest temperature in
Longjing was — 34.8°C [2]. The seeds were obtained in
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2010 and germinated in 2011 in a greenhouse. After 4
years, 300 healthy seedlings were taken back to the la-
boratory growing in the greenhouse (20 °C, air humidity
from 50% to 65%, 16h/d light cycle, light intensity
150 pumol-m™2%s™ ') for 1 month until they fully adapted
to the environment. For cold treatment, 120 well-
performed and similar seedlings were immediately
placed at — 20 °C extreme low temperature from the am-
bient temperature (20 °C, control (CK)), and the needles
were harvested after 0 (CK), 6, 24 or 48 h, which was
achieved by the freezer Haier BC/BD-318HD (10°C ~ -
26°C). For each time point, the obtained needles in-
cluded three biological replicates, and each replicate was
a mixture from 10 independent seedlings.

RNA extraction

Total RNA was extracted using the plant total RNA ex-
traction kit (TaKaRa, Beijing, China) by following the de-
tailed instructions from the manual. The total RNA
extracted was detected by a biological analyzer (2100,
Agilent, USA). Next, 20 pug of high-quality RNA was se-
lected from each of the twelve RNA samples (each treat-
ment including three biological replicates) for the
construction of cDNA libraries, and the remaining high-
quality RNA was used for qRT-PCR analysis.

cDNA library construction and RNA-sequencing

mRNA was enriched using magnetic beads with Oligo
(dT), and fragmentation buffer was added to break the
mRNA into short fragments (200-700 bp). The short
mRNA fragments were used to synthesize double-chain
c¢DNAs using random hexamer primers, buffer, dNTPs,
RNase H and polymerase I. The ¢cDNAs were purified
using a PCR purification kit (QiaQuick, USA) and were
washed with EB buffer for terminal repairing and
poly(A) addition. Different cDNA fragments with various
sizes were separated via agarose gel electrophoresis and
were enriched via PCR amplification to construct cDNA
libraries. The obtained 12 cDNA libraries were se-
quenced by DNA sequencer (HiSeq™ 2000, Illumina,
USA), and the sequencing strategy was PE150.

Data filtering and de novo assembly

Data filtering was performed through the following steps
for the obtained reads by sequencing: first, adaptor-
containing reads were removed; second, the reads con-
taining more than 5% ambiguous nucleotides were re-
moved; and finally, the low-quality reads that contained
more than 15% bases with Q-value <19 were removed,
and the clean reads were obtained for de novo assembly.
Trinity was the assembly software used, which linked
the reads with overlapping sequences into much longer
contiguous sequences; these longer sequences are
termed as ‘contigs (contiguous sequences). Next, the
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reads were compared back to the contigs. The distance
between different contigs from the same transcript was
determined according to paired-end reads. The contigs
were assembled by Trinity to obtain the unigene se-
quences that could not be extended at both ends.

All the nonredundant unigenes were subjected to
BLASTn or BLASTx alignment (E-value < 10~ %) against
nucleic acid database Nt or various public protein data-
bases that included Nr, UniProt, KEGG and COG. The
proteins with the best comparison result were selected
to determine the sequence direction of the unigenes. If
the comparison results were inconsistent, the sequence
direction of the unigenes was determined based on the
priority of Nr, UniProt, KEGG and COG. The ESTScan
software was used to determine the sequence direction
of the unigenes when the above databases were not suit-
able for alignment [57].

Sequence annotation and analysis of DEGs

The Blast2GO software was used to generate the GO
terms based on the Nr annotation for the nonredundant
unigenes [26], and the KEGG database was used to de-
termine metabolic pathways of the unigenes [58]. Twelve
c¢DNA libraries of P. koraiensis that was treated for 0, 6,
24, and 48 h at - 20 °C were sequenced, and the raw data
were analyzed via the above methods. The expression of
unigenes was calculated by RPKM, which can eliminate
the influence on the expression of calculated genes [25].
The calculated gene expression level was directly used to
compare the differences in gene expression between dif-
ferent cDNA libraries. To determine significant differ-
ences, a false discovery rate<0.001 and an absolute
value of log,FoldChange > 1 were set as thresholds. Uni-
genes with different RPKM values and conforming to
thresholds were identified as DEGs [27] . The DEGs
mentioned in this paper are all significant. Next, GO
function analysis and KEGG Pathway analysis were per-
formed on DEGs [58, 59].

RT-PCR test

The twelve remaining total RNA samples were reverse-
transcribed with the ReverTre Ace’qPCR RT Kit
(Toyobo, Osaka, Japan). The reverse transcription reac-
tion contained 1 pg of RNA, 2 ul of 5 x RT Buffer, 0.5 pl
of Primer Mix, 0.5ul of Enzyme Mix and deionized
water in a final volume of 10 pl; the reaction was con-
ducted at 37 °C for 15 min and 98 °C for 5 min. Each of
the generated cDNAs was diluted 10 times as the qRT-
PCR template. qRT-PCR was performed with a DNA
Engine Opticon™ 2 Real-Time System (Bio-Rad, USA),
and the reaction was composed of 10ul of 2 x SYBR
Green Realtime PCR Master mix (Toyobo, Osaka,
Japan), 2.5 ul of cDNA, 0.5 ul of upstream primer, 0.5 pl
of downstream primer and deionized water in a final
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volume of 20 pl. Meanwhile, the PCR was conducted at
94.°C for 30s, followed by 45 cycles of 94°C for 12s,
54°C for 30s and 72 °C for 30s. The expression level of
the selected genes was determined by the 244" algo-
rithm, and the P. koraiensis Tubulin alpha (TUBA) gene
was used as an internal control [60]. Each sample had
three biological replicates, and the data were presented
as the means + standard errors (SE) (n =3). The primer
sequences of the selected genes are listed in Table 3.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/512864-019-6401-y.
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