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Abstract

Background: The advent of third-generation sequencing (TGS) technologies opens the door to improve genome
assembly. Long reads are promising for enhancing the quality of fragmented draft assemblies constructed from
next-generation sequencing (NGS) technologies. To date, a few algorithms that are capable of improving draft
assemblies have released. There are SSPACE-LongRead, OPERA-LG, SMIS, npScarf, DBG20OLC, Unicycler, and LINKS.
Hybrid assembly on large genomes remains challenging, however.

Results: We develop a scalable and computationally efficient scaffolder, Long Reads Scaffolder (LRScaf, https://
github.com/shingocat/Irscaf), that is capable of significantly boosting assembly contiguity using long reads. In this
study, we summarise a comprehensive performance assessment for state-of-the-art scaffolders and LRScaf on seven
organismis, i.e, E. coli, S. cerevisiae, A. thaliana, O. sativa, S. pennellii, Z. mays, and H. sapiens. LRScaf significantly
improves the contiguity of draft assemblies, e.g., increasing the NGA50 value of CHM1 from 127.1 kbp to 94 Mbp
using 20-fold coverage PacBio dataset and the NGA50 value of NA12878 from 115.3 kbp to 12.9 Mbp using 35-fold

coverage Nanopore dataset. Besides, LRScaf generates the best contiguous NGA50 on A. thaliana, S. pennellii, Z.
mays, and H. sapiens. Moreover, LRScaf has the shortest run time compared with other scaffolders, and the peak
RAM of LRScaf remains practical for large genomes (e.g., 20.3 and 62.6 GB on CHM1 and NA12878, respectively).

Conclusions: The new algorithm, LRScaf, yields the best or, at least, moderate scaffold contiguity and accuracy in
the shortest run time compared with other scaffolding algorithms. Furthermore, LRScaf provides a cost-effective
way to improve contiguity of draft assemblies on large genomes.
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Background

With the advent of next-generation sequencing (NGS)
technologies, the genomics community has made signifi-
cant contributions to de novo genome assembly. Despite
that many studies and tools are aimed at reconstructing
NGS data into complete de novo genomes, this goal is
challenging to achieve because of an intrinsic limitation
of NGS data, i.e., read lengths are shorter than most of
the repetitive sequences [1]. The existence of repeats
makes it challenging to reconstruct a complete genome
instead of generating lots of contiguous sequences (con-
tigs) even when the sequencing coverage is high [2]. Thus,
attention has focused on the so-called genomic scaffolding
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procedure, which aims at reducing the number of contigs
by using fragments of moderate lengths whose ends are
sequenced (double-barreled data) 3, 4]. Nevertheless, long
repetitive sequences still limit genomic assembly.

As the development of third-generation sequencing
(TGS) technologies, it sheds light on different alterna-
tives to solve genome assembly problems by offering
very long reads. For example, the single-molecule, real-
time (SMRT) sequencing technology of Pacific Biosci-
ences® (PacBio) delivers read lengths of up to 50 kbp [5],
and the nanopore sequencing technology of Oxford
Nanopore Technologies® (Nanopore) yields read lengths
that are greater than 800 kbp [6]. Also, the Hi-C data
provides much longer-range linking information than
other technologies (such as mate pairs, optical maps,
linked reads) [7]. With the TGS long reads and the Hi-C
data on de novo assembly, it is possible to reconstruct
genome into complete chromosome arms [8, 9].
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However, these long reads suffer from high sequencing
error rates, which necessitate high coverage during the
de novo assembly [10]. Also, TGS technologies have a
higher cost per base than NGS methods, and the Hi-C
data would produce small inversions within the scaffolds
when the draft assemblies are not with good quality and
contiguity [11]. On a large-scale assembly project (such
as the ruminant project [12]), a more reasonable and
cost-effective way is to improve the contiguity of draft
assemblies constructed by NGS data with low coverage
long reads [7, 13].

The process of genome assembly typically divides into
two major steps. The first step is to piece-by-piece over-
lap reads into contigs. This step commonly performs
using de Bruijn or overlap graphs [1]. The second step is
to assemble scaffolds that consist of ordered the oriented
contigs with estimated distances between them. Scaffold-
ing, which was first introduced by Huson [3], is a critical
part of the genome assembly process, especially for NGS
data. Scaffolding is an active research area because of
NP-hard complexity [14]. By using paired-end and/or
mate-pair reads, a number of standalone scaffolders, e.g.,
Bambus [4], MIP [15], Opera [16], SCARPA [17],
SOPRA [18], SSPACE [19], BESST [20], and BOSS [21]
have been developed. A recent comprehensive evaluation
showed that scaffolding remains computationally intract-
able and requires larger insert-size and higher quality
pair read libraries than what is presently available [22].
As TGS technologies are likely to offer longer reads than
the lengths of the most common repeats, these technolo-
gies are capable of drastically reducing and overcoming
the complexity caused by repeats. Considering the pros
and cons of NGS and TGS data, a hybrid assembly ap-
proach that assembles draft genomes using TGS data
was proposed [23]. The core strategy of this approach is:
1) long reads are mapped onto the contigs using a long-
read mapper (e.g., BLASR [24] or minimap [25]); 2)
alignment information is examined, and long reads that
span more than one contig are identified and their link-
ing relationship is stored in a data structure; 3) the last
step is to clean up the structure by removing redundant
and error-prone links, calculate distances between con-
tigs, and build scaffolds using linking information.

AHA was the first standalone scaffolder basing on the
hybrid-assembly strategy, and this algorithm was part of
the SMRT analysis software suite [23]. As AHA is
designed for small genomes and has limitations on the
input data, it is not suitable for large genomes. To en-
sure that scaffolds are as contiguous as possible, AHA
performs six iterations by default, thus increasing the
run time. For comparison, SSPACE-LongRead [26]
produces final scaffolds in a single iteration and, there-
fore, has a significantly shorter run time than AHA.
Nevertheless, SSPACE-LongRead has somewhat lower
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assembly accuracy than AHA. Despite being designed
for eukaryotic genomes, the run time of SSPACE-
LongRead is unpractical on large genomes. LINKS [27]
opens a new door to building linking information be-
tween contigs. The algorithm uses the long interval nucleo-
tide K-mer without computational alignment and a reads-
correction step. The memory usage of LINKS is
noteworthy. OPERA-LG [28] provides an exact algorithm
for large and repeat-rich genomes. It requires significant
mate-pair information to constrain the scaffold graph and
yield an optimised result. OPERA-LG is not directly
designed for TGS data. To construct scaffold edges and link
contigs into scaffolds, OPERA-LG needs to simulate and
group mate-pair relationship information from long reads.
Recently, scaffolding algorithms, such as SMIS (http://www.
sanger.ac.uk/science/tools/smis), npScarf [29], DBG20OLC
[30], and Unicycler [31], incorporate the hybrid-assembly
strategy. However, these tools have not been thoroughly
assessed for different genome sizes, especially large
genomes.

Here we present a Long Reads Scaffolder (LRScaf) that
improves draft genomes using TGS data. The input to
LRScaf is given by a set of contigs and their alignments
over PacBio or Nanopore long reads. We compare our
algorithm with state-of-the-art tools on datasets for
seven species (i.e., Escherichia coli, Saccharomyces cerevi-
siae, Arabidopsis thaliana, Oryza sativa, Solanum pen-
nellii, Zea mays, and Homo sapiens). All the tested
methods improve the contiguity of pre-assembled ge-
nomes. LRScaf yields the best assembly metrics and
contiguity for the pre-assembled genomes on E. coli, S.
cerevisiae, A. thaliana, S. pennellii, Z. mays, and H. sapi-
ens. More importantly, our method consistently returns
high-quality scaffolds and has the shortest run time.
LRScaf significantly improves the contiguity of human
draft assemblies, increasing the NGA50 value of CHM1
from 127.1 kbp to 9.4 Mbp with 20-fold coverage PacBio
dataset and the NGA50 value of NA12878 from 115.3
kbp to 12.9 Mbp with 35-fold coverage Nanopore data-
set. Thus, we show that LRScaf is a promising tool for
improving draft assemblies in a computationally cost-
effective way.

Implementation

Experimental data

The present study performs on two small genomes (E.
coli and S. cerevisiae), three medium genomes (A. thali-
ana, O. sativa, and S. pennellii), and two large genomes
(Z. mays and H. sapiens). All the tested data of the seven
species are collected from published datasets except the
[lumina dataset of O. sativa, which is sequenced in this
study (Table 1). For the PacBio long reads datasets, we
select the first 20-fold coverage of each PacBio dataset
to assess all the scaffolders comprehensively. To test all
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Table 1 Descriptive statistics of datasets for the experiment
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Species Type Total bases (bp)  Coverage  Median (bp) Longest (bp)  Source
E. coli llumina 350,000,031 700 X 100 100 ERA000206
llumina @ 256,927,500 549 X 300 300 SRR826442; SRR826444;
SRR826446; SRR826450
PacBio 93,994,356 20.1 X 8712 41331 SRX669475; SRX533603
Nanopore @0 2 136,895,083 29.2 X 6153 43,600 http://gigadb.org/dataset/100102
Nanopore Ful ® 21,972,483 47 X 5743 47,422 ERX708228
Nanopore 4 ° 158,867,566 340 X 6086 47422 ERX708228
Nanopore few b 311,558,723 66.5 X 3557 94,116 ERX708228
S. cerevisiae lllumina 1,268,786,706 105.1 X 202 202 SRR527545; SRR527546
PacBio 249,319,042 20.7 X 4554 27,575 SRX533604
Nanopore MNanocem b 556 538 737 436 X 5512 72,879 SRP055987
Nanopore faw b 2,392,848,698 1982 X 5059 191,145 SRP055987
A. thaliana “®M<79llumina 8420,975,500 703 X 250 250 ERR2173372
Nanopore 3,421,779,258 286 X 7543 269,087 ERR2173373
A. thaliana (€9 lllumina @ 6,919,422,000 590 X 300 300 http://schatzlab.cshl.edu/data/ectools/
PacBio ? 2,400,246,920 205 X 15,357 41,753 http://schatzlab.cshl.edu/data/ectools/
O. sativa lllumina 43,519,132,800 1115 X 150 150 PRINA515358 ©
PacBio 7,999,992,602 205 X 4117 50,493 PRINA318714
S. pennellii llumina 39,007,839296 426 X 311 311 PRIEB19787
Nanopore 27,483,806911 300 X 13,061 15,387 PRJEB19787
7 mays PacBio 49999992839 237 X 1347 17,784 PRINA10769
H. sapiens MY PacBio 59,999,995767 200 X 1569 208,628 SAMN02744161
H. sapiens (NA12578) Nanopore 114,380,310980 350 X 4569 1,537,349 PRJEB23027

Note: 2 refers to DBG20LC dataset; © refers to LINKS dataset; < the dataset was sequenced in this study

the scaffolders’ performances on the lower depths, we
use three different coverages, i.e., 1, 5, and 10 -fold for
the two small genomes and 1, 5, and 15 -fold for H. sa-
piens (NA12878). To assess scaffolder performances for
different median read lengths, we use three different me-
dians (8, 18, and 26 kbp) of 10-fold coverage on the E.
coli PacBio datasets. The coverage of the Nanopore long
reads datasets is not too high, and, therefore, we use all
of the long reads data from these datasets to assess scaf-
folder performances.

Producing draft assemblies

For the two small genomes, the draft assemblies are con-
structed by SOAPdenovo2 [32] and SPAdes [33]. To as-
sess the performances between LINKS and the other
scaffolders on the Nanopore datasets, the draft assem-
blies which are published on LINKS are also included
(Table 2). The NGS assemblers, i.e., DISCOVAR [34],
MaSuRCA [35], Platanus [36], SOAPdenovo2, and Spar-
seAssembler [37] are used to generate the draft assem-
blies for A. thaliana (KBS-Mac-74), O. sativa, and S.
pennellii. To compare with DBG20LC, we generate the
draft assemblies for E. coli and A. thaliana (ler-0) using

SparseAssembler. The best parameters for these NGS as-
semblers are determined by taking assembly size and
contiguity into account. For the Z. mays, H. sapiens
(CHM1), and H. sapiens (NA12878), the released assem-
blies are used because the computational resources re-
quired to determine optimised assembly parameters for
these species exceed our platform capacity.

Alignment validation and repeat identification

LRScaf is designed to separate the mapping and scaffold-
ing procedures and supports BLASR and minimap
(Version 1 and 2). The high error rate is a severe disad-
vantage of TGS long reads. Thus, a significant fraction
of the alignments is incorrect and needs to be filtered
out. We develop a validation model to validate each
alignment (Fig. 1). The model partitions each long read
into three regions (R1, R2, and R3) that are separated by
two points (P1 and P2). There are six different combin-
ation sets in R if the alignment start (S) and end (E) loci
of the contig are considered, i.e., R {(S in R1, E in R1),
(SinR1,Ein R2), (SinR1,EinR3), (SinR2,E inR2),
(S in R2,E in R3), (S in R3,E in R3)}. We also define
the distal length of a contig to the start or end alignment
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Table 2 The summary of draft assemblies of £ coli, S. cerevisiae, A. thaliana, O. sativa, S. pennellii, Z. mays and H. sapiens

Species Method/Source Sum NG50 NGA50 Longest Misassemblies (#) BUSCO (Complete)
E. coli SOAPdenovo2 4.6 Mbp 252 kbp  252kbp 91.7kbp 0O 97.3%
SPAdes 46 Mbp 1124 kbp 1056 kbp 2652 kbp 2 98.6%
ABYSS ® 5.2 Mbp 179.7 kbp 1469 kbp 3587 kbp 5 98.6%
SparseAssembler ° 44 Mbp 30kbp 3.0 kbp 149kbp 2 64.9%
S. cerevisiae SOAPdenovo?2 121 Mbp 187 kbp 186 kbp 1467 kbp 3 96.2%
SPAdes 11.8 Mbp  104.1 kbp 85.7 kbp 4514 kbp 22 97.2%
Celera Assembly ° 149 Mbp 588 kbp 547 kbp 2573 kbp 19 98.7%
A. thaliana “BSMe<79 DISCOVAR 1179 Mbp 3230 kbp 3146 kbp 25Mbp 67 98.5%
MaSuRCA 119.5 Mbp 4132 kbp 3565 kbp 1.7 Mbp 145 98.3%
Platanus 1130 Mbp 1455 kbp 143.7 kbp 800.8 kbp 31 98.3%
SOAPdenovo?2 1151 Mbp  236.7 kbp 2270kbp 15Mbp 39 98.3%
SparseAssembler 930 Mbp 128 kbp 127 kbp 1145kbp 1 94.7%
A. thaliana "¢ SparseAssembler ° 747 Mbp 44 kbp  42kbp  358kbp 90 74.6%
0. sativa DISCOVAR 3138 Mbp 27.1kbp 236 kbp 2625 kbp 1343 96.9%
MaSuRCA 3392 Mbp 306 kbp 291 kbp 2194 kbp 1288 96.7%
Platanus 3079 Mbp 168 kbp 166 kbp 1543 kbp 367 95.6%
SOAPdenovo? 3012 Mbp 185kbp 183 kbp 2077 kop 91 97.1%
SparseAssembler 1553 Mbp - - 430 kbp 2 85.8%
S. pennellii DISCOVAR 8519 Mbp 664 kbp 596 kbp 1.3 Mbp 4235 94.2%
MaSuRCA 8842 Mbp 613 kbp 549kbp 6172 Mbp 6621 94.9%
Platanus 641.3 Mbp 154 kbp 152 kbp 270.1 kbp 115 91.7%
SOAPdenovo2 7685Mbp 282 kbp 268 kbp 3233 kbp 632 92.6%
SparseAssembler 3052 Mbp - - 511 kbp 11 76.5%
Z mays PhredPhrap+ABySS (GCA_000005005.5) 2.0 Gbp 400 kbp 362 kbp 8495 kbp 15,133 91.9%
H. sapiens HMD SRPRISM+ARGO (GCF_000306695.2) 2.8 Gbp 1275 kbp 1271 kbp 10Mbp 106 80.3%
H. sapiens NA12878) DISCOVAR (GCA_001517065.1) 2.8 Gbp 1157 kbp 1153 kbp 9612 kbp 336 83.7%

Note: @ refers to LINKS dataset; ° refers to DBG20LC dataset; “-": Not available

loci as the over-hang length of the contig. Taking both
the alignment region and the over-hang length into ac-
count, the valid alignment satisfies: 1) (S in R1, E in R1)
with the right over-hang length not exceeding the con-
straints; 2) (S in R1, E in R2) with the right over-hang
length not exceeding the constraints; 3) (S in R2, E in
R2) with the over-hang length of two ends not exceeding
the constraints; 4) (S in R2, E in R3) with the left over-
hang length not exceeding the constraints; 5) (S in R3, E
in R3) with the left over-hang length not exceeding the
constraints. An alignment is filtered out if a long read is
entirely covered by a contig (S in R1, E in R3), ie., the
contig contains the long read. After this procedure, the
remaining alignments are considered to be valid for the
scaffolding procedure.

Repetitive sequences complicate genome assembly.
Thus, such sequences are masked in our approach. First,
we identify and remove repeats by the coverage of reads
based on the uniform coverage of TGS data. In the cal-
culation of reads coverage, long reads that covered the

entire contig are counted. Then we compute the mean
coverage and the standard deviation among the set of
contigs. Any contig coverage is higher than the threshold
coverage which is po, + 3 xs. d..,, by default. It is con-
sidered to be a repeat, and the corresponding contig is
removed from the next step of the analysis.

Construction of links and edges

A long read may have multiple mappings because of re-
peats and high sequencing error rates. Figure 2 shows
how links are built between contigs from the validated
alignments. This process has constraints on orientation
and distance. Four strand combination sets, S, are used
between contigs to constrain orientation, i.e, Se{s;:
(+,4), S2:(+,-),83:(=+), s4:(-,-)}. We define the
orientation between contigs as O(c; ¢;) = max (s). The
probability that the internal distance, e, between two
contigs lies outside the range [y — 3 x gj5, fis + 3 x 0] is
less than 5% because e approximately follows a normal
distribution N(u;, 0;). When e is out of the range [u;; -



Qin et al. BMC Genomics (2019) 20:955

Page 5 of 12

Long Read A

R2

P1

Contig B

Start Loc.

Fig. 1 A validating model of alignment. The P1 and P2 are the two points for breaking a long read into three regions (R1, R2, and R3).

P2

End Loc.

3 X 035 is + 3 X 05), it is considered to be abnormal, and
the linking information is removed. Any long reads link-
ing a contig to itself at different loci are also removed.
After validating that the two constraints on links be-
tween contigs are fulfilled, we introduce an edge to rep-
resent a bundle of links that join two contigs using
quadruple parameters E(c;,¢;) = (n,ll; ,05,0). Here, n
is the number of remaining links considering as the
weight of the edge, 77;; is the mean internal distance for
the remaining links, o is the standard deviation of the
internal distances for the remaining links, and o is the
orientation strand between contigs.

Graph generation and simplification

In this step, LRScaf constructs a scaffold graph G(V; E)
similar to the string graph formulation. The vertex set, V,
represents the end of the contigs, and the edge set, E, rep-
resents the linkage implied by the long reads between
ends of two contigs with weight and orientation functions
assigned to each edge. Their ID annotates the ends of each

contig with a forward strand (+). Using this node concept,
there are 4 types of edges in the graph, i.e, (+, +) joining
the forward strands of both contigs, (+, —) joining the for-
ward strand of the first contig with the reverse strand of
the second contig, (-, +) joining the reverse strand of the
first contig with the forward strand of the second contig,
and (-, -) joining the reverse strands of both contigs.
After the edges-construction step, we account for the ma-
jority of the sequencing errors by removing all the edges
that have a lower number of long reads than the threshold
value. Once the edges have been cleaned and filtered, we
construct an assembly graph G. We only add an edge to G
if neither of the two nodes comprising the edge is present
in G. In some cases, G contains some edges of transitive
reduction, error-prone and tips. After deleting these edges,
we obtain the final scaffold graph, which we use for fur-
ther analysis.

Scaffolding contigs into scaffolds
After the repeat identification and the graph simplifica-
tion steps, most of the contigs are connected in linear

A. Ir;
s(Ir) t(Ir;)
G
O 30
s(c) t(g)
B.
G e G
O 30y 30
s(ci) t(g) s(ci) t(q)
Fig. 2 The construction of a link using a long read /ri and two contigs ¢i and ¢. a A basic schematic for a long read building link between
contigs. b The distance distribution of links.
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stretches on the assembly graph. There are, however,
some complex regions that required addition manipula-
tion. We refer to a contig as a divergent node if it links
more than two nodes in the graph (Fig. 3). LRScaf
searches for unique nodes at the end of this complex re-
gion and steps through this region for as long as there
are long reads that join two unique nodes. If a divergent
node is reached, LRScaf stops travelling the graph in the
forward direction and switches to the reverse direction.
Similarly, the search along the reverse direction of the
graph stops at the end of a linear stretch or a divergent
node. The process is then repeated using an unvisited
node as the starting node. The procedure ends after tra-
versing all the unvisited and unique nodes in the graph,
thus exposing all linear paths. Finally, the gap-size
between contigs is calculated. If the gap-size value is
negative, the contigs are merged into a combined contig,
and if the value is positive, a gap is inserted between the
contigs (a gap is represented by one or more undefined
‘N’ nucleotides, depending on gap-size).

The parameters of LRScaf

LRScaf has three sections of parameters, ie., 1) a file-
related section, 2) an alignment-validation section, and
3) a performance-related section. The parameter settings
can be provided via the program’s command line or
through an XML configuration input file. In the file-
related section, input parameters are required for the
alignment file, draft assemblies, and output path. In the
alignment-validation section, there are six mandatory
parameters for the alignment-validation model. These
are min_overlap_length, min_overlap_ratio, max_over-
hang_length, max_overhang_ratio, max_end_length, and
max_end_ratio. Whereas loosening these parameters im-
proves assembly contiguity, the number of misassemblies
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increases. In the performance-related section, there are 7
parameters, i.e., min_contig length, identity, min_sup-
ported_links, repeat_mask and tip_length, iqr_time, and
process. It will sometimes be necessary to change the
values of these parameters based on data. If, for example,
long-read coverage is low and assembly contiguity is the
main priority, reducing the values of identity and min_
supported_links could significantly improve the assembly
contiguity. Besides, masking repeats could decrease the
number of divergent nodes in the scaffolding graph and
generate more contiguous scaffolds.

Results and discussion

We perform in-depth analysis on seven species (Table 1),
i.e., E. coli, S. cerevisiae, A. thaliana, O. sativa, S. pennellii,
Z. mays, and H. sapiens, to test and compare the perfor-
mances of LRScaf with that of SMIS, npScarf, DBG20OLC,
Unicycler, SSPACE-LongRead, LINKS, and OPERA-LG.
For the two small genomes (E. coli and S. cerevisiae), we
assess the performances of all the scaffolders on four
different depths and three different medians of long
reads (Additional file 1 Supplementary Note). For the
three medium genomes (A. thaliana, O. sativa, and S.
pennellii) and two large genomes (Z. mays and H.
sapiens), because Unicycler and npScarf are for small
genomes and the memory requirement of LINKS ex-
ceeds our system’s capacity, we do not perform the
benchmarks of these three scaffolders. Platanus and
SparseAssembler are the recommended NGS de novo
assemblers for DBG2OLC [30, 38]. We do not perform
the comparisons for DBG2OLC on the draft assemblies
generated by other NGS assemblers. The run time for
SSPACE-LongRead exceeds the one-month time limit
on the large genomes (H. sapiens). We exclude the
benchmarks of SSPACE-LongRead on H. sapiens. Using

Complex Region

Long Read A

Fig. 3 The schematic illustration for travelling the complex region

Unique
Node D
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DBG2OLC datasets on E. coli and A. thaliana, we per-
form the comparisons between DBG20OLC and LRScaf
(Additional file 1 Supplementary Note). QUAST 5.0 is
used to evaluate the assembly metrics.

Benchmarks for scaffolders over different NGS assemblers

on A. thaliana and O. sativa

The NGAS50 of draft assemblies for DISCOVAR,

MaSuRCA, Platanus, SOAPdenovo2, and SparseAssem-
bler on A. thaliana are 314.6 kbp, 356.5 kbp, 143.7 kbp,
227.0 kbp, and 12.7 kbp, respectively (Table 2). As
shown in Fig. 4, SMIS and LRScaf perform better on
the draft assemblies generated by DISCOVAR, Plata-
nus, and SOAPdenovo2 than the draft assemblies
constructed by MaSuRCA and SparseAssembler.
OPERA-LG and DBG2OLC vyield their best NG50
values on the draft assemblies constructed by SparseAs-
sembler (Additional file 2: Table S6). The benchmarks
of SSPACE-LongRead on SOAPdenovo2 and SparseAs-
sembler are excluded in the comparisons because the
run time exceeds the one-month time limit. On the O.
sativa (Fig. 5; Additional file 2: Table S6), the run times
of SMIS and SSPACE-LongRead on SOAPdenovo2 and
SparseAssembler exceed the one-month time limit.
Both of them are excluded from the comparisons. For
the draft assemblies generated by Platanus and SOAP-
denovo2, OPERA-LG and LRScaf perform better than
the other scaffolders. The top-performing scaffolder is
SMIS on the draft assemblies generated by MaSuRCA.
All of the tested scaffolders perform well on the draft
assemblies of DISCOVAR. DBG2OLC vyields better per-
formances on SparseAssembler than on Platanus. In
summary, these results show that the draft assemblies
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constructed by DISCOVAR, Platanus, and SOAPde-
novo2 are suitable for most scaffolders. Considering on
assembly contiguity and structure accuracy, DISCO-
VAR and SOAPdenovo2 are the recommended NGS de
novo assemblers for LRScaf.

PacBio long read benchmarks

In this study, we use long reads from PacBio datasets for
E. coli, S. cerevisiae, O. sativa, Z. mays, and H. sapiens to
assess the performances of seven state-of-the-art
scaffolders (i.e., SSPACE-LongRead, LINKS, OPERA-LG,
SMIS, npScarf, Unicycler, and DBG20OLC) and LRScaf.
For the two small genomes, assembly contiguity obtained
from SSPACE-LongRead, SMIS, Unicycler, and LRScaf
are generally better than those obtained from LINKS,
OPERA-LG, npScarf, and DBG20OLC (Additional file 1
Supplementary Note; Additional file 2: Table S1). Whereas
MaSuRCA-Hy generates the best NGA50 value and the
longest sequence (187.8 kbp and 2.7 Mbp, respectively)
for O. sativa, OPERA-LG, and LRScaf yield very similar
results (Table 3). The BUSCO results show that OPERA-
LG, SMIS, SSPACE-LongRead, and LRScaf have similar
quantitative measures. DBG20LC has 39.9%. OPERA-LG
and SMIS fail to run on the draft assemblies of Z. mays.
LRScaf yields the best NGA50 value and the longest se-
quence (1359 kbp and 1.2 Mbp, respectively). The
BUSCO assessments for SSPACE-LongRead and LRScaf
are 92.7 and 93.4%, respectively. For H. sapiens (CHM1),
SMIS and SSPACE-LongRead are excluded in the com-
parisons because they exceed the one-month time limit,
and OPERA-LG is excluded because of the lack of NGS
data. LRScaf generates the NGA50 value and the longest
sequence (9.4 Mbp and 45.0 Mbp, respectively). The

-
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assembly contiguity (NG50 and NGA50) is about two
times contiguous than that of DBG2OLC. The BUSCO
measurement for LRScaf is 94.0%. To summarise, LRScaf
yields comparable or superior metrics when compared
with other scaffolders on PacBio long reads.

Nanopore long read benchmarks
We use the Nanopore long reads datasets for E. coli, S.
cerevisiae, A. thaliana, S. pennellii, and H. sapiens to as-
sess the performances of the tested scaffolders (Table 4).
For the two small genomes, OPERA-LG and Unicycler
are excluded from this assessment because of the lack of
NGS data. The assembly contiguity obtained from SMIS,
npScarf, and LRScaf are generally better than those ob-
tained from LINKS, SSPACE-LongRead, and DBG20OLC
(Additional file 1 Supplementary Note; Additional file 2:
Table S2). For A. thaliana, LRScaf generates the best
NGAS50 value (4.9 Mbp), and SMIS yields the longest se-
quence (15.0 Mbp). The BUSCO assessments are similar
and over 97.0% for all the scaffolders except for
DBG2OLC (25.9%). LRScaf yields the best NGA50 value
and the longest sequence for S. pennellii (441.3 kbp and
5.4 Mbp, respectively). The BUSCO assessments range
from 92.1 to 95.8% except for DBG20OLC (18.9%). SMIS
is excluded in the comparison because the run time
exceeds the one-month time limit. For H. sapiens
(NA12878), the run times of SMIS and SSPACE-
LongRead exceed the one-month time limit. We do not
perform the benchmark for OPERA-LG because of the
lack of NGS data. LRScaf generates the NGA50 value
and the longest sequence (12.9 Mbp and 64.2 Mbp,
respectively), and the BUSCO measurement is 94.9%.

Although all scaffolders show some improvements in
our experiments, the application of the Nanopore data
remains challenging. A recent study showed that the
NA12878 genome was assembled with an NG50 value
of about 6.5Mbp using pure 35-fold Nanopore data
[6]. Our experiments show that it is possible to im-
prove the assembly contiguity further. Using LRScaf,
we obtained an NG50 value of 17.4 Mbp, which is simi-
lar to the PacBio human (CHM1) benchmark. To sum-
marise, LRScaf vyields either the best or similar
assembly metrics using long reads of Nanopore com-
pared with other scaffolders.

Computational performance and accuracy analysis

Assembly metrics are undoubtedly the most concerning
matters to biologists and bioinformaticians. Neverthe-
less, from a practical point of view, the run time limits
software applications. As evident from our experiments,
the run time and the memory usage for scaffolding pro-
cedures become significant concerns for large and com-
plex genomes. LRScaf is the fastest scaffolder on the
benchmarks. For the PacBio dataset of O. sativa, LRScaf
reduces the CPU time more than 6700 times compared
with SMIS. MaSuRCA-Hy produces the best assembly
contiguity. However, its run time is 1600 times longer
than LRScaf. For Z. mays, LRScaf is 20 times faster
than SSPACE-LongRead. On the Nanopore dataset,
LRScaf reduces the CPU time more than 4700 times
compared with SMIS for A. thaliana and 380 times
compared with MaSuRCA-Hy for S. pennellii. Our ex-
periments show that the memory usage of LRScaf is
practical even for large and complex genomes because
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Table 3 The performances of tested scaffolders for O. sativa, Z. mays, and H. sapiens using PacBio long reads

Species Method Sum NG50 NGA50 Longest  Mis (#) BUSCO CPU Time Peak Memory
(Complete) (Hours) (GB)
O. sativa DBG20OLC (SA) 561.6 935kbp - 4880 kbp - 39.9% 8.1 50.6
Mbp
MaSuRCA-Hy 390.5 248.2 187.8 2.7 Mbp 1469  97.8% 1315.8 (495.1) 3539
(MSR) Mbp kbp kbp
OPERA-LG (SOAP)  346.1 1436 kbp 985kbp 1.1 Mbp 1346  96.7% 149.1 66.4
Mbp
SMIS (MSR) 3529 204.1 kbp 1175kbp 12 Mbp 1971 97.2% 31182 15.7
Mbp
SSPACE-LR (DIS) 3241 9.5 kbp  61.1kbp  10Mbp 3247  97.7% 56.1 13.6
Mbp
LRScaf (SOAP) 3546 1377 kbp 1021 kbp 1.1 Mbp 1123  97.9% 0.5 284
Mbp
Z. mays SSPACE-LR 20Gbp  480kbp 406 kbp 8495 kbp 18, 92.7% 479.6 20.1
407
LRScaf 24 Gbp 1919 135.9 1.2 Mbp 21,689 93.4% 219 1038
kbp kbp
?E/.Hiﬁa/))iens DBG20LC? 28Gbp  55Mbp  45Mbp 273 Mbp 767 93.9% - -
1
LRScaf 28 Gbp 104 Mbp 9.4 Mbp 45.0 292 94.0% 08 203
Mbp

Note: The best genomic assembly metrics are highlighted in Bold; Mis: the number of misassemblies; SA SparseAssembler, MSR MaSuRCA de novo, SOAP
SOAPdenovo2, DIS DISCOVAR de novo, PLA Platanus, SSPACE-LR SSPACE-LongRead, MaSuRCA-Hy MaSuRCA hybrid pipeline; *-": not available; We report two CPU
times for MaSURCA-Hy (the first value is the time for hybrid pipeline and the second value enclosed in the parenthesis is the time for de novo pipeline); OPERA-
LG and SMIS are excluded on Z. mays because both of them fail to run. SIMS and SSPACE-LongRead are excluded on H. sapiens (CHM1) since the run time
exceeds the one-month time limit. OPERA-LG is excluded from H. sapiens (CHM1) because of the lack of NGS data. ? the assembly is offered by Dr. Chengxi Ye

(The developer for DBG20OLC)

the peak RAM usage remains below 30.0 GB on the
CHM1 PacBio dataset and 70.0 GB on the NA12878
Nanopore dataset respectively.

Reducing the number of misassemblies is important
because misassemblies are likely to be misinterpreted as
real genetic variations [39, 40]. For the PacBio dataset,
LRScaf and SSPACE-LongRead vyield the fewest number
of misassemblies on O. sativa and Z. mays, respectively.
For the Nanopore dataset, OPERA-LG has the best as-
sembly accuracy on A. thaliana, and LRScaf yields the
fewest number of misassemblies on S. pennellii. LRScaf
yields a relatively low number of misassemblies in most
of the studied cases. We have no record on the number
of misassemblies on H. sapiens for the other scaffolders
because all of them fail to scaffold the draft assemblies.
In summary, LRScaf introduces a new strategy for keep-
ing valid alignments and produces only a moderate
number of misassemblies.

Conclusions

In this work, we present a novel algorithm (LRScaf, see
Additional file 3) for scaffolding draft assemblies using
noisy TGS long reads and compare our algorithm with
published methods. The majority of the draft assemblies
constructed using NGS data are fragmented and influ-
enced by repeats. To improve the contiguity of draft

assemblies using TGS long reads, there are two strat-
egies on the scaffolding step: 1) simulating mate-pair in-
formation (e.g., OPERA-LG and Fast-SG [41]), and 2)
using the full-length long reads information (e.g.,
SSPACE-LongRead and LRScaf). Both strategies could
improve the contiguity of draft assemblies. The first
strategy could build the scaffolding graph from either
short or long reads and have sufficient and convenient
linking information from a range of synthetic insert-size
mate-pair libraries as well as for the NGS standalone
scaffolder reuse. The run time for processing the syn-
thetic linking information and the impact of base accur-
acy are significant concerns. For the second strategy, it
could do the scaffolding step in a speedy and memory-
efficient way. Considering only the linking information
from long reads would neglect the linking information
of paired reads library, whereas integrating paired reads
information could improve assembly accuracy. We suc-
cessfully use long reads to improve draft assemblies over
different NGS de novo assemblers. Basing on assembly
contiguity and accuracy, DISCOVAR and SOAPdenovo2
are the recommended NGS de novo assemblers for
LRScaf.

We propose a new strategy to filter out inaccurate align-
ments so that these false alignments do not propagate
through the scaffolding process. For the assessments on
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Table 4 The performances of tested scaffolders for A. thaliana, S. pennellii, and H. sapiens using Nanopore long reads

Species Method Sum NG50 NGA50 Longest  Mis. BUSCO CPU Time Peak Memory
# (Complete) (Hours) (GB)
A. thaliana DBG20OLC (SA) 1504 26 Mbp - 122 Mbp - 25.9% 29 189
(KBS-Mac-74) Mb
p
MaSuRCA-Hy 1232 25Mb 23Mbp 92 Mbp 211 98.3% 1456 (17.9) 60.3
(MSR) Mbp
OPERA-LG (SA) 1164 73Mbp 28 Mbp 143 Mbp 102 97.2% 188.9 459
Mbp
SMIS (SOAP) 116.2 10.3 24 Mbp  15.0 180 98.2% 23917 26.8
Mbp Mbp Mbp
SSPACE-LR (PLA) 1206 32Mbp 22Mbp 68Mbp 178 98.4% 104.6 9.0
Mbp
LRScaf (DIS) 123.1 90 Mbp 49 Mbp 124 Mbp 115 98.3% 0.5 214
Mbp
S. pennellii DBG20OLC (SA) 1.5Gbp 2437 kbp - 1.7 Mbp - 18.9% 27.0 216
MaSuRCA-Hy 9504 331.1 kbp 1596 kbp 3.1 Mbp 17,957 95.6% 1389.1 (202.8) 239.7
(MSR) Mbp
OPERA-LG (DIS)  952.0 7300 kbp 280.1 kbp 35Mbp 11,404 92.1% 286.6 254
Mbp
SSPACE-LR (DIS) 8711 829kbp 695kbp 13Mbp 6796 947% 650.0 13.1
Mbp
LRScaf (DIS) 952.8 794.4 441.3 54 Mbp 5150 958% 3.1 36.8
Mbp kbp kbp
H. sapiens NA12878 | RScaf 29Gbp 17.4 12,9 64.2 785  94.9% 2.1 62.6
Mbp Mbp Mbp

Note: The best genomic assembly metrics are highlighted in Bold; Mis. the number of misassemblies, SA SparseAssembler, MSR MaSuRCA de novo, SOAP
SOAPdenovo2, DIS DISCOVAR de novo, PLA Platanus, SSPACE-LR SSPACE-LongRead, MaSuRCA-Hy MaSuRCA hybrid pipeline; *-": not available; We report two CPU
times for MaSuRCA-Hy (the first value is the time for hybrid pipeline and the second value enclosed in the parenthesis is the time for de novo pipeline); SMIS is
excluded on S. pennellii because the run time exceeds the one-month time limit. SIMS and SSPACE-LongRead are excluded on H. sapiens (NA12878) because the
run time exceeds the one-month time limit. OPERA-LG is excluded from H. sapiens (NA12878) because of the lack of NGS data

PacBio and Nanopore long-read datasets covering seven
organisms, our method shows significant improvements
over state-of-the-art scaffolders. The primary benefits of
LRScaf are significant reductions in run time and memory
usage. These benefits are especially crucial for large and
complex genomes. As studied genomes keep getting big-
ger and more complex, the run time and memory usage of
scaffolding software become increasingly essential to biol-
ogists and bioinformaticians. Our method is designed to
reduce run time and memory usage. Thus, LRScaf is com-
putationally more efficient than other scaffolders. Identifi-
cation of misassembled contigs is also essential because
any misassembled sequences are propagated into the next
step during biological analysis. Most state-of-the-art scaf-
folders lack functions for the identification of misas-
sembled contigs. Besides, misassemblies might be
introduced during the scaffolding procedure. Conse-
quently, to limit the number of misassembled scaffolds,
our method incorporates an effective validation algorithm
to reduce the influence of false alignment.

In the past decade, worldwide collaboration has led to
several projects aiming at improving the understanding of
species biology and evolution. Examples of such projects
are the i5k [42], which provides the genomes of 5000

species of insects, and the Bird 10,000 Genomes (B10K)
[43]. A substantial fraction of genomes with short contigu-
ity prevent downstream analysis. Our result shows that
TGS data is capable of effectively improving draft assem-
blies, and LRScaf is a valuable tool for cost-effectively im-
proving these draft assemblies.

Availability and requirements
Project name: LRScaf.
Project home page: https://github.com/shingocat/Irscaf
Operating system(s): Platform independent.
Programming language: Java.
Other requirements: Java 1.8 or higher.
License: GNU GPL.
Any restrictions to use by non-academics: license
needed.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/512864-019-6337-2.

Additional file 1. Supplementary Note. The additional comparisons and
information are included in the Supplementary Note: 1) the assessment
for two small genomes on PacBio and Nanopore long reads; 2) the
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performances of the tested scaffolders over the different depths and
medians of long reads on E. coli and H. sapiens; 3) The comparison of
CANU and LRScaf (minimap2) on the different coverages of long reads; 4)
The benchmarks for DBG20LC and LRScaf on E. coli and A. thaliana using
DBG20LC dataset; 5) The computational system and source code of
LRScaf; and 6) The details of parameter settings for LRScaf in the study.

Additional file 2: Tables S1-S9. Tables S1-S9 for this study: 1) Table S1.
The performances for E. coli and S. cerevisiae based on draft assemblies
generated by SOAPdenovo2 and SPAdes using 1, 5, 10, and 20 -fold
coverages of PacBio long reads; 2) Table S2. The performances for E. coli
and S. cerevisiae based on draft assemblies referred to LINKS on Nanopore
long reads; 3) Table S3. The performances of scaffolders tested for H.
sapiens using 1, 5, 15, and 35 -fold coverages of Nanopore long reads; 4)
Table S4. The performances of all scaffolders tested on different median
read lengths (9, 18, and 26 kbp) of 10-fold coverage using PacBio long
reads for E. coli; 5) Table S5. The performances of CANU and LRScaf
(minimap?2) for E. coli on 5, 10, 20, and 30 -fold coverages using
Nanopore long reads; 6) Table S6. The performances for scaffolder tested
on DISCOVAR, MaSuRCA, Platanus, SOAPDenovo2, and SparseAssembler
on A. thaliana, O. sativa, S. pennellii, Z. mays, and H. sapiens; 7) Table S7.
The BUSCO measurements for scaffolder tested on DISCOVAR, MaSuRCA,
Platanus, SOAPDenovo2, and SparseAssembler on A. thaliana, O. sativa, S.
pennellii, Z. mays, and H. sapiens; 8) Table S8. The parameter settings of
LRScaf on E. coli, S. cerevisiae, A. thaliana, O. sativa, S. pennellii, Z. mays,
and H. sapiens; and 9) Table S9. The performances for DBG20LC and
LRScaf on E. coli and A. thaliana.

Additional file 3. LRScaf (1.1.7). The latest version for LRScaf includes
source codes and executable files.

Abbreviations

BLASR: Basic Local Alignment with Successive Refinement; LRScaf: Long
Reads Scaffolder; NGS: Next Generation Sequencing; SMRT: Single-Molecule,
Real-Time; TGS: Third Generation Sequencing
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