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Abstract

Background: Parasitic insects are well-known biological control agents for arthropod pests worldwide. They are
capable of regulating their host's physiology, development and behaviour. However, many of the molecular
mechanisms involved in host-parasitoid interaction remain unknown.

Results: We sequenced the genomes of two parasitic wasps (Cotesia vestalis, and Diadromus collaris) that parasitize
the diamondback moth Plutella xylostella using lllumina and Pacbio sequencing platforms. Genome assembly using
SOAPdenovo produced a 178 Mb draft genome for C. vestalis and a 399 Mb draft genome for D. collaris. A total set
that contained 11,278 and 15,328 protein-coding genes for C. vestalis and D. collaris, respectively, were predicted
using evidence (homology-based and transcriptome-based) and de novo prediction methodology. Phylogenetic
analysis showed that the braconid C. vestalis and the ichneumonid D. collaris diverged approximately 124 million
years ago. These two wasps exhibit gene gains and losses that in some cases reflect their shared life history as
parasitic wasps and in other cases are unique to particular species. Gene families with functions in development,
nutrient acquisition from hosts, and metabolism have expanded in each wasp species, while genes required for
biosynthesis of some amino acids and steroids have been lost, since these nutrients can be directly obtained from
the host. Both wasp species encode a relative higher number of neprilysins (NEPs) thus far reported in arthropod
genomes while several genes encoding immune-related proteins and detoxification enzymes were lost in both
wasp genomes.

Conclusions: We present the annotated genome sequence of two parasitic wasps C. vestalis and D. collaris, which
parasitize a common host, the diamondback moth, P. xylostella. These data will provide a fundamental source for

studying the mechanism of host control and will be used in parasitoid comparative genomics to study the origin

and diversification of the parasitic lifestyle.
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Background

Parasitic insects, particularly the parasitic wasps, are a
large group of animals [1-4]. As adults, most species
feed on nectar, while larvae feed as parasites on other
arthropods. Adult females of parasitic wasps usually lay
their eggs on or inside the body of a host, which usually
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dies when offspring complete their development [2, 3].
Parasitic wasps are major natural enemies of a vast num-
ber of arthropod species in many orders [4]. Many spe-
cies are also widely used as biological control agents of
pests in agricultural and forest ecosystems [5, 6]. Most
wasps have narrow host ranges, successfully develop in
only one or a few species, and also parasitize only one
life stage of their host (egg, larva, pupa, or adult) while
many wasps share a common host species. Parasitic
wasps that lay their eggs on hosts usually produce
progeny that feed as ectoparasites, while species that lay
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their eggs in hosts produce progeny that feed as endo-
parasites [7]. Parasitic wasps are also either solitary, pro-
ducing a single offspring per host, or gregarious and
produce multiple offspring per host [7]. Parasitic wasps
usually produce a number of virulence factors following
oviposition that benefit offspring by altering the growth,
development and immune defenses of hosts. The sources
of these virulence factors include venom [8], symbiotic
polydnaviruses (PDVs) [9-12], and teratocytes [13].

The genomes of more than 15 parasitic wasp species
that parasitize different hosts have been sequenced (www.
ncbi.nlm.nih.gov). These include Nasonia vitripennis (Hy-
menoptera: Pteromalidae), which is an ectoparasitoid that
parasitizes the pupal stage of selected Diptera [14], Micro-
plitis demolitor (Hymenoptera: Braconidae), which is an
endoparasitoid that parasitizes the larval stage of selected
species of Lepidoptera [15], and Fopius arisanus, which is
an endoparasitoid that parasitizes larval stage Diptera in
the family Tephritidae [16]. Collectively, these data pro-
vide several insights into parasitoid wasp biology. In con-
trast, no studies have examined the genomes of different
species that parasitize the same host. Here, we sequenced
two endoparasitoids in the superfamily Ichneumonoidea

Page 2 of 13

that parasitize the diamondback moth, Plutella xylostella
L. (Lepidoptera: Yponomeutidae), which is a major world-
wide pest of cruciferous crops (Fig. 1) [17, 18]. Cotesia ves-
talis (Haliday) is a solitary, larval endoparasitoid in the
family Braconidae (Braconidae: Microgastrinae) that pro-
duces venom, a PDV named C. vestalis bracovirus (CvBV)
and teratocytes. Larvae of P. xylostella parasitized by C.
vestalis exhibit greatly reduced weight gain, delayed larval
development and disabled cellular and humoral immune
defences [19-21]. Diadromus collaris (Gravenhorst), is in
the family Ichneumonidae (Ichneumonidae: Ichneumoni-
nae) and is a solitary pupal endoparasitoid. D. collaris pro-
duces only venom. P. xylostella pupae parasitized by D.
collaris fail to develop into adults and exhibit suppressed
humoral and cellular immune defences [21].

In this study, we present the annotated genome se-
quence of two parasitic wasps C. vestalis and D. collaris,
which parasitize a common host, the diamondback moth,
P. xylostella. The gathered genomic data and transcrip-
tome datasets collected from varying developmental stage
and tissues will significantly expand our comprehension of
the evolutionary history of parasitic wasps and their inter-
actions with the common host, P. xyostella.

Venom
PDV
Teratocyte
Host DNA

early pupa o

W D. collaris

collaris parasitizes pupal stage hosts

Fig. 1 The life history of C. vestalis and D. collaris. C. vestalis preferentially parasitizes second and third instar P. xylostella larvae (L2 and L3); and D.

Il P. xylostella

M C. vestalis
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Results

Genome assembly and gene information

The whole genome sequencing was performed by com-
bining Illumina Solexa sequencing based on HiSeq 2000
platform (Illumina, San Diego, CA, USA) and the Long-
Read Single Molecule Real-Time (SMRT) sequencing
based on PacBio Sequel platform (Pacific Biosciences,
Menlo Park, CA, USA) in consideration of cost and the
low heterozygosity of wasp genome [22, 23]. In total, we
obtained 36.10 Gb of raw data (32.05 Gb from Illumina
platform and 4.05 Gb from PacBio platform) for C. ves-
talis, and 65.91 Gb of raw data (61.05 Gb from Illumina
platform and 4.86 Gb from PacBio platform) for D. col-
laris (Additional file 1: Table S1). After filtering steps,
25.55 Gb (127.78x) from C. vestalis and 49.19 Gb
(120.86x) from D. collaris were assembled using SOAP-
denovo V2.04 [24] (Additional file 1: Table S2). These
data were further assembled into a 178 Mb draft genome
for C. vestalis and a 399 Mb draft genome for D. collaris,
which were consistent with genome size estimates gen-
erated by k-mer analysis (Table 1; Additional file 1:
Figure S1). Genome assemblies for C. vestalis and D.
collaris yielded scaffold N50s that were 2.60 Mb and
1.03 Mb, respectively (Additional file 1: Table S3). We
then checked the distribution of sequencing depth
against GC content to infer the abundance of potential
contamination of bacteria. As for GC content, compared
with C. vestalis (29.96%), D. collaris has a higher GC
content, around 37% (Table 1, Additional file 1: Figure
S2). The bacterial contaminant reads in genome data of
C. vestalis (Additional file 1: Figure S2) were filtered out
after the assembling procedure. All transcripts were
mapped to genome assemblies by BLAT with default
parameters, resulting 91.7% transcripts of C. vestalis and
98.1% of D. collaris were found in the assembled
genome, respectively (Additional file 1: Table S4). The

Table 1 Assembled Genomes and Gene Sets for C. vestalis and

D. collaris
C. vestalis D. collaris
Contig N50 (bp) 51,333 25,941
Scaffold N50 (Kb) 2609.601 103036
Quality control (covered by assembly)
Genome size (Mb) 178.55 399.17
Number of scaffolds 1437 2731

BUSCO (n=1658) (%) C*: 96.7%, F: 2.4% C:99.2%, F: 0.3%
Genomic features

Repeat (%) 24 37

G+C (%) 29.96 37.37
Gene annotation
11,278

2C: complete BUSCOs; F: fragmented BUSCOs

Number of genes 15,328

Page 3 of 13

quality of the assembly was further checked by Bench-
marking Universal Single-Copy Orthologs BUSCO v3.0.2
[25] with insectdbV9 as referenced dataset. The recov-
ered genes are classified as ‘complete’ when their lengths
are within two standard deviations of the BUSCO group
mean length. BUSCO analysis indicated the complete re-
covered genes for each species was greater than 96.7%
(Table 1). These metrics strongly supported the overall
quality of genome assemblies.

A total of 11,278 protein-coding genes for C. vestalis
and 15,328 for D. collaris were identified by de novo and
evidence-based (homology-based and transcriptome-
based) prediction methods (Table 1, Additional file 1:
Table S5 and S6). About 85% of the inferred proteins for
C. vestalis and 76.31% for D. collaris were annotated
using the databases of KEGG, GO, TrEMBL, SWISS-
PROT and InterPro (Additional file 1: Table S7). Gene
numbers were higher than for Apis mellifera (10,660),
but lower than for N. vitripennis (17,084). As estimated
by homology-based and de novo prediction methods,
repetitive DNA accounted in D. collaris genome assem-
bly (37%) was higher than that in C. vestalis (24%)
(Additional file 1: Table S8), indicating the partial rea-
son for the larger genome size of D. collaris. The total
size of transposable elements (TEs) approached 31.1
Mb (17.4% of genome) for C. vestalis and 119.5 Mb
(29.93% of genome) for D. collaris (Additional file 1:
Table S8). TE diversity in D. collaris is 17% higher than
that in N. vitripennis (66 Mb, 22% of genome) and is
10-fold higher than that in A. mellifera (6.2 Mb, 2.8% of
genome). We sequenced small RNA of these two wasps
by constructing small RNA libraries and used predic-
tion software to identify a final set of 176 miRNAs in C.
vestalis and 117 miRNAs in D. collaris. Both numbers
are relatively higher than those in N. vitripennis (98
miRNAs) and A. mellifera (94 miRNAs), but much
lower than those in D. melanogaster (165 miRNAs)
(Fig. 2 and Additional file 2: Table S9). Beside 55
known miRNAs that conserved across these two wasp
genomes, we also identified total 47 novel, previously
uncharacterized miRNA, 14 of them were specific to C.
vestalis and the rest were specific to D. collaris. The
small number of conserved miRNAs and relatively large
number of novel miRNAs was somewhat surprising in
light of each species developing in the same host and
living in the same habitats where P. xylostella occurs.

Genome phylogeny and comparisons

We compared orthologous gene pairs identified in C.
vestalis and D. collaris to 8 other hymenopteran species,
8 other insect species in diverse orders, and 1 mite spe-
cies (Tetranychus urticae) in the order Trombidiformes
(Fig. 3a). Over 85% of the genes in each of the wasp spe-
cies we sequenced were orthologous to genes in one or
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Fig. 2 Venn diagram of the distribution of unique and shared
miRNAs across C. vestalis and D. collaris. A final set of 176 miRNAs in
C. vestalis and 117 miRNAs in D. collaris. Strikingly, 55 miRNAs were
conserved in these two wasp genomes

more other species. The number of single-copy genes in
C. vestalis and D. collaris was 659 (4.9%) and 665 (3.8%),
respectively. These two wasps contained more than 6000
many-to-many universal genes, which accounted for 37—
47% of the total gene sets (Fig. 3a). The wasp gene sets
showed a significantly higher proportion of many-to-
many orthologues than single-copy genes, suggesting
that duplication occurs more frequently in the universal
orthologues than in insect-specific genes.

We constructed a phylogenetic tree with 262 universal
single-copy orthologues using maximum likelihood
methods. Consistent with prior analyses [26], our results
supported that these two parasitoid wasps in the super-
family Ichneumonoidea diverged from the Aculeata
(bees and ants) approximately 140 million years ago, and
the braconid C. vestalis and the ichneumonid D. collaris
diverged approximately 124 million years ago (Fig. 3a).
In total, we identified 83ll gene families in C. vestalis
and 9063 in D. collaris. The number of unique gene/
gene families in C. vestalis and D. collaris was 474 and
1060, respectively (Fig. 3b). C. vestalis shared 258 gene
families with D. collaris (Fig. 3b). The occurrence of the
same gene families in different parasitoid species could
be a consequence of a common adaptive pathway to
parasitic lifestyle. C. vestalis, D. collaris and A. mellifera
encoded a similar proportion (about 60%) of single-copy
orthologous that shared amino acid identities (Fig. 3c).
Based on ratio of syntenying genes, very high degrees of
microsynteny were observed between C. vestalis and D.
collaris orthologs (Fig. 3d, Additional file 1: Table S10
and S11), much more than that between C. vestalis and A.
mellifera, D. collaris and A. mellifera (Additional file 1:
Table S10 and S11), which indicated numerous chromo-
somal rearrangements have occurred in hymenopteran
species since diverged from their last shared ancestor. The
synteny shared between C. vestalis and D. collaris reflect
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more conserved genes maintained across these two
species.

Gene family expansions and gene losses

We used CAFE [27] to examine gene family expansions
and contractions in this study. When compared to other
arthropods, 30 gene families in C. vestalis and 65 in D. col-
laris exhibited significant expansions, while 23 gene families
in C. vestalis and 3 in D. collaris were contracted (P < 0.05)
(Additional file 3: Table S12). During further analysis of se-
lected expanding gene families (P =0) for analysis (Fig. 4),
we found neprilysins (NEPs) was expanded in these two
species and also other two hymenopteran species, Dia-
degma semiclausum and M. demolitor (Figs. 4 and 5a). We
investigated the expression pattern of NEP genes from C.
vestalis at different developmental stages via RNA-seq-
based differential expression analysis (Fig. 5b). Among the
28 NEP genes in C. vestalis, more than half were highly
expressed in eggs and larvae. Several gene families, such as
CDK1, SKPI, PLA2, RNASET2 and CA?7, associated with
developmental regulation showed expansions in C. vestalis.
In D. collaris, we observed the expansion of histone genes
and other genes encoding enzymes with functions in trehal-
ose transport (TRET) and fatty acid metabolism, such as
fatty acid synthase (FAS), stearoyl-CoA desaturase (SCD),
and elongation of very long chain fatty acids protein
(ELOVL) (Fig. 4).

We also observed that certain contracted gene families
in C. vestalis were expanded in D. collaris, such as carbox-
ylesterase, SCD, histone and ribonucleoside-diphosphate
reductase beta chain. The expansion and contraction of
the same gene family maybe, to some extent, reflect the
different lifestyle of these two wasps. Wasps are carnivor-
ous animals that evolved from a branch of herbivorous
insects. It is reasonable that these two wasps lacked a
number of enzymes required to synthesize nine essential
amino acids (glutamate, histidine, isoleucine, leucine, ly-
sine, methionine, phenylalanine, tryptophan, and valine),
and two non-essential amino acids (arginine and tyrosine)
(Additional file 1: Figure S3).

Gene families associated with immunity

The C. vestalis and D. collaris genomes contained all
components of the major insect immune pathways
(Additional file 1: Table S13). However, comparisons to
the other Hymenoptera (Nasonia vitripennis, Apis melli-
fera), Diptera (Drosophila melanogaster, Anopheles gam-
biae), and the host P. xylostella, we noticed the variation
in the composition of certain immune gene families. For
example, C. vestalis, D. collaris, and A. mellifera encoded
smaller numbers of pattern recognition genes (peptidogly-
can-recognition proteins (PGRPs), gram-negative bacteria
binding proteins (GNBPs), galectins, fibrinogen-related
proteins (FREPs) and C-type lectins than N. vitripennis, D.
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although they do not cluster into a gene family; “Unblast” = species-specific genes that are not observed in other species with e-values less than
1e-7 as determined by BLAST; and “Others” = orthologs that do not fit into the other categories. b Shared and unique gene families in C. vestalis,
D. collaris, N. vitripennis and A. mellifera are shown in the Venn diagram. ¢ Comparison of the distributions for identity values of orthologous
genes in C. vestalis, D. collaris and A. mellifera. d Microsynteny in C. vestalis and D. collaris determined by tracking the gene positions. In addition
to C vestalis and D. collaris, species names and ordinal affiliations for the arthropods in the data set are: Anopheles gambiae (Diptera), Apis mellifera

(Hymenoptera), Bombyx mori (Lepidoptera), Copidosoma floridanum (Hymenoptera), Cimex lectularius (Hemiptera), Camponotus floridanus
(Hymenoptera), Ceratosolen solmsi (Hymenoptera), Danaus plexippus (Lepidoptera), D. melanogaster (Diptera), Diadegma semiclausum
(Hymenoptera), Lasioglossum albipes (Hymenoptera), Microplitis demolitor (Hymenoptera), Plutella xylostella (Lepidoptera), Nasonia vitripennis
(Hymenoptera), Pediculus humanus (Phthiraptera), Tribolium castaneum (Coleoptera), and Tetranychs urticae (Trombidiformes)

melanogaster, A. gambiae, and P. xylostella. The overall
lower number of antimicrobial peptide genes (AMPs)
were also found in C. vestalis, D. collaris, and A. mellifera
larvae. However, these trends are not fully uniform given
the greater number of defensin genes in C. vestalis (11)
and D. collaris (7) relative to N. vitiripennis (5). In
addition, 27 putative inhibitors of apoptosis (IAP) genes
were identified in D. collaris, while other species contained
only 3 to 7 (Additional file 1: Table S13).

Transcriptome analyses in C. vestalis showed the changes
in the expression profiles of many immune-related genes
during development (Additional file 4: Table S14); in
particular, the expression levels of immune genes such as

defensin, serpin and C-type lectins were significantly abun-
dant in larvae and teratocytes of C. vestalis. We also deter-
mined that 8 of 27 iap genes in D. collaris were expressed
in venom glands.

Gene families associated with xenobiotic detoxification

C. vestalis and D. collaris together with other hymenop-
terans (C. solmsi, N. vitripinnis and A. mellifera) encoded
less glutathione-S-transferases (GSTs) when compared
with other arthropods (Additional file 1: Table S13). C.
vestalis and A. mellifera also encoded less cytochrome
P450s (CYPs) (Additional file 1: Table S15). In contrast, D.
collaris encoded a very close number of P450s and
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carboxylesterases as N. vitripinnis, which were to-
gether broadly comparable to several other arthropods
(Additional file 1: Table S13). Transcriptome analyses
revealed that most of these detoxification enzyme
genes were expressed in different life stages of C. vestalis
(Additional file 4: Table S14). While no transcriptome
data could be generated for different life stages of D.
collaris, we speculate the detoxification enzyme genes
identified in this species are likely expressed in similar
stage-specific patterns to other hymenopterans.

Discussion
More than 100 insect genomes have been sequenced dur-
ing the last two decades [28], which provided valuable

information to expand our understanding for the biodiver-
sity of insect habits, behaviors and long-term evolutionary
relationship. Yet, there are still many species with import-
ant roles in agriculture, which certainly are worth made
thorough research. In this study, we report two phylogen-
etically related wasp genomes, C. vestalis and D. collaris,
which are responsible for regulating the populations of a
worldwide pest, P. xylostella. In spite of their strong
genetic divergence, a small number of common fea-
tures indicate that the genome of the wasps is, in cer-
tain ways, shaped by endoparasitism. This knowledge
can be useful in revealing genomic convergence of
parasitic wasps associated with the same host and the
convergence to endoparasitic lifestyle.
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The whole genome sequencing generated the draft gen-
ome of C. vestalis (178 Mb) and D. collaris (399 Mb). A
total set that contained 11,278 and 15,328 protein-coding
genes for C. vestalis and D. collaris, respectively, was pre-
dicted using evidence and de novo prediction method-
ology. Over 85% of the genes in C. vestalis and D. collaris
were orthologous to genes in one or more other species.
The number of unique gene/gene families in C. vestalis
and D. collaris was 474 and 1060, respectively, and C. ves-
talis shared 258 gene families with D. collaris. Based on
ratio of syntenying genes, very high degrees of microsyn-
teny were observed between C. vestalis and D. collaris
orthologs. When compared to other arthropods, 30 gene
families in C. vestalis and 65 in D. collaris exhibited sig-
nificant expansions, while 23 gene families in C. vestalis
and 3 in D. collaris were contracted.

The gene gains and losses of C. vestalis and D. collaris,
in some cases, reflected their shared life history as endo-
parasites and in other cases are unique to particular spe-
cies. Certain gene families with predicted functions in
development, nutrient acquisition from hosts, and metab-
olism have expanded, while genes required for biosyn-
thesis of some amino acids and steroids have been lost as
a potential consequence of these resources being available
from their shared host, P. xylostella. Both species encode
the highest number of NEPs thus far reported in arthro-
pod genomes. NEPs are metalloproteases in the M13

peptidase family, which in vertebrates degrade several pep-
tide hormones [29, 30] and amyloid beta [31, 32]. Recent
studies also implicate NEPs in inhibiting coagulation of
vertebrate blood through inactivation of fibrinogen and
suppressing melanisation, a response regulated by the
phenoloxidase (PO) cascade [33, 34]. Interesting, NEP is a
major component of the parasitoid Venturia canescens
virus like particles inducing protection of parasitoid eggs
against encapsulation [35, 36]. Given its diversity function
in immunity, we speculate that NEP expansion in C. vesta-
lis and D. collaris could probably reflect a conserved role
in the Ichneumonidae but not exclude the possibility that
the expansion of this gene family is involved in evasion of
host immune defenses. The expanding gene families in C.
vestalis, CDKI and SKPI may involve in cell cycle pro-
gression, signal transduction and transcription, while
PLA2, RNASET2 and CA7 are enzymes that catalyze a
number of different biochemical reactions [37, 38]. How-
ever, the biological significance of expanding gene families
associated with developmental regulation in C. vestalis is
unclear, because they could contribute to either wasp
physiology or the altered physiology of hosts. In D. col-
laris, the expansion of histone genes potentially reflects
the rapid development of this species [39] and the need to
quickly produce sufficient amount of protein to coat the
genome when replicated during the S phase of every cell
cycle, and it is also consistent with the increase in rRNA
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copy number we found. Meanwhile, the expansion of en-
coding enzymes with functions in trehalose transport
(TRET) and fatty acid metabolism properly suggests their
roles in exploring and using of host nutrients by D.
collaris [40].

The C. vestalis and D. collaris genomes contained all com-
ponents of the major insect immune pathways, but the gene
numbers are varied in the composition of certain immune
gene families. The overall lower number of immune related
genes probably reflects the reduced risks of pathogen expos-
ure in the environments where larval-stage endoparasitoids
(hosts) and A. mellifera (colonies) reside [41] relative to the
microbial-rich environments where ectoparasitic N. vitripen-
nis larvae (carrion), D. melanogaster larvae (decaying fruit),
and P. xylostella larvae (cruciferous plants) develop. The sig-
nificantly abundant expression profiles of many immune-
related genes, such as defensin, serpin and C-type lectins in
larvae and teratocytes of C. vestalis revealed by transcrip-
tome analyses indicated the need to protect immunosup-
pressed hosts from secondary bacterial infections [42]. Same
abundant expression profiles of given iap genes in D. collaris
venom glands indicated these IAPs could be involved in the
functions of venom, maybe inhibit the apoptosis of venom
gland cell to continuously produce venom proteins in a lon-
ger time, or they could be delivered into host cells to inter-
fere pupal development of hosts [43, 44].

Xenobiotic detoxification involves the conversion of
lipid-soluble substances to water-soluble, extractable me-
tabolites [45]. The process of xenobiotic detoxification is
primarily affected by CYPs, carboxylesterases and GST's in
insect, which are known to vary between species as a func-
tion of taxon and life history [46]. Parasitoids of herbivores
have also been suggested to exhibit relatively poor capabil-
ities in metabolizing xenobiotics [47]. The overall greater
number of detoxification genes in D. collaris relative to C.
vestalis also suggests a higher capacity to detoxify xenobi-
otics. This could reflect a lower capacity by P. xylostella
pupae to detoxify xenobiotics than larvae, which has been
selected for greater investment in xenobiotics metabolism
in D. collaris. It is also possible the larger number of
P450s and carboxylesterases encoded by D. collaris have
functions outside of xenobiotic detoxification given the
roles of these enzymes in other physiological processes.
Differences in the total inventory of gene families likely re-
flect a combination of ancestry, since each wasp species
resides in different families or subfamilies of the Ichneu-
monoidea, and life history associated with each species
exhibiting differences in the life stage of P. xylostella they
preferentially parasitize.

Conclusion

We presented the annotated genomes of the two endopar-
asitoid wasps C. vestalis and D. collaris that parasitized
the same host P. xylostella using Illumina and Pacbio
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sequencing platforms. These data will be a fundamental
resource for developing new methods of biological control
for the diamondback moth and provide more insights into
the evolutionary interactions between parasitic wasps and
their host, i.e., the sequencing of the C. vestalis genomes
provide the references needed for identifying C. vestalis-
produced miRNAs and assessing their roles in parasitism
of P. xylostella [48]. These genomes could also be used in
comparative genomics analysis with the recently released
genomes of other hymenopterans including closely related
parasitic wasp species to study the origin and diversifica-
tion of the parasitic lifestyle.

Methods

Insect rearing

Laboratory cultures of C. vestalis and D. collaris were
maintained by parasitizing a laboratory culture of P.
xylostella. Each wasp species was originally collected
from the cabbage field (30.3009N 120.0870 E) in
Hangzhou, China. The culture of P. xylostella was also
established from field-collected material, and was subse-
quently maintained by feeding larvae on cabbage grown
at 25°C, 65% relative humidity and a 14 h light:10 h dark
photoperiod. Adult wasps were fed a 20% (w/v) honey
solution. Each wasp species had been reared continu-
ously for 5years, spanning more than 100 generations,
as inbred lines before the onset of this study.

Genome sequencing

A whole genome shotgun strategy was used to sequence
the genomes of C. vestalis and D. collaris using the Illu-
mina HiSeq 2000 platform (Illumina, San Diego, CA,
USA). Long-Read Single Molecule Real-Time (SMRT)
sequencing was also used for sequencing C. vestalis and
D. collaris genomes performed on PacBio Sequel plat-
form (Pacific Biosciences, Menlo Park, CA, USA) with
P6 polymerase binding and C4 chemistry kits. DNA
from a single wasp was insufficient for all sequencing
runs. We thus extracted DNA from 2000 C. vestalis
pupae, and 1000 adults from D. collaris using Qiagen
DNA extraction kit. However, the use of inbred labora-
tory cultures ensured low levels of intraspecific sequence
variation. To avoid sequence context bias, we con-
structed libraries with different insert sizes for HiSeq
sequencing, including 2 paired-end sequencing libraries
(170 bp, 500 bp) and 4 mate-pair libraries (2 kbp, 5 kbp,
10 kbp, and 20 kbp) for C. vestalis, and 3 paired-end
sequencing libraries (170bp, 500bp, 800bp) and 4
mate-pair libraries (2 kbp, 5 kbp, 10 kbp, and 20 kbp)
for D. collaris. While for PacBio sequencing, we con-
structed library of 20 kbp using the standard protocol.
In total, we obtained 36.10 Gb of raw data for C. vestalis,
and 65.91 Gb of raw data for D. collaris.
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Transcriptome sequencing

Samples were collected from four developmental stages
(eggs, 2nd instar larvae, pupae, and adult females), tera-
tocytes and venom glands of C. vestalis and venom
glands of D. collaris for transcriptome sequencing. To
avoid sample contamination by host material, wasp eggs
and larvae were dissected from hosts and washed exten-
sively in Petri dishes using TNH-FH medium (HyClone,
Logan, UT, USA) before total RNA extraction. Terato-
cytes and venom glands were collected as previously de-
scribed [21, 42]. Total RNA was isolated from the whole
body using TRIzol reagent (Ambion, Foster City, CA,
USA). RNA sequencing libraries were constructed using
the Illumina mRNA-Seq Prep Kit (Illumina, San Diego,
CA, USA). Oligo (dT) magnetic beads were used to pur-
ify mRNA molecules with poly (A). The mRNA was
fragmented and was used as template, and random hex-
amers were used as anchor primers in the first-strand
c¢DNA synthesis. The second-strand DNA was synthe-
sized with DNA polymerase I to create double-stranded
c¢DNA fragments. Double stranded c¢cDNA was end
repaired using T4 DNA polymerases and A-tailed using
Klenow fragment lacking exonuclease activity. Illumina
sequencing adapters were then added to the ends of
double-stranded ¢cDNAs and size selected by gel electro-
phoresis. Purified DNAs were then amplified by PCR
followed by generation of 200 bp paired-end libraries that
were sequenced using Illumina HiSeq 2000 platform.

Small RNA libraries sequencing

We isolated 20 2nd instar larvae and of C. vestalis, tera-
tocytes from 200 parasitized P. xylostella larvae and 20
3rd instar larvae of D. collaris from the parasitized P.
xylostella pupae followed by washing each sample in
TNM-FH medium three times. Total RNA was isolated
using TRIzol reagent (Ambion, Foster City, CA, USA)
followed by enrichment of 18-30 nt small RNAs using
the PAGE method [49]. Small RNA sequencing libraries
were constructed using TruSeq Small RNA Library
Preparation Kits (Illumina, San Diego, CA, USA). Library
sequencing was performed by Illumina HiSeq 2000.
MicroRNA genes were inferred by miRdeep2 software
against the Rfam database of release 11.0 [50].

Estimation of genome size

K-mer refers to an artificial sequence division of K nu-
cleotides iteratively from sequencing reads. A raw se-
quence read with L bp contains (L-K+ 1) k-mers if the
length of each k-mer is K bp. The frequency of each k-
mer can be calculated from the genome sequence reads.
K-mer frequencies along the sequence depth gradient
follow a Poisson distribution in a given dataset. The gen-
ome size, G, is defined as G =K_num/K_depth, where
the K_num is the total number of k-mers and K_depth
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is the frequency occurring more frequently than others.
Short insert size libraries (170 bp and 500 bp for C. ves-
talis and 500 bp for D. collaris) were used to estimate
the genome sizes with k-mer set as 17.

Genome assemblies

To ensure the reliability of genome assembly, several
types of reads were filtered. The filtering criteria was as
following: (1) Reads from short insert-size libraries hav-
ing an ‘N’ over 2% of its length and the reads from large
insert-size libraries having an ‘N’ over 5% of its length of
C. vestalis. (2) Reads from both insert-size libraries hav-
ing an ‘N’ over 2% of its length of D. collaris. (3) Reads
from short insert-size libraries having more than 30%
bases with quality <7 and reads from large insert-size li-
braries having more than 40% bases with quality <7 of
C. vestalis. Reads from short insert-size libraries having
more than 40% bases with quality <7 and reads from
large insert-size libraries having more than 60% bases
with quality <7 of D. collaris. (4) Reads with more than
10 bp from the adapter sequence (allowing no more than
two mismatches). (5) Small insert size paired-end reads
that overlapped >10bp between the two ends. (6) Two
paired-end reads that were identical (and thus consid-
ered to be the products of PCR duplication). (7) Reads
having k-mer frequency < 4 after correction (to minimize
the influence of sequencing errors) of D. collaris.

The long read SMRT sequencing data was corrected
using CANU (http://canu.readthedocs.org/) with default
parameters [51]. After that, the corrected reads were
used to extend the scaffolds assembled by SOAPdenovo
V2.04, and the result was polished using Quiver (http://
www.pacbiodevnet.com/Quiver/).

After these filtering steps 25.55 Gb (127.78x) from C.
vestalis and 49.19 Gb (120.86x) from D. collaris were as-
sembled using to SOAPdenovo V2.04 [24]. Reads from
short insert size libraries (ranging from 170 to 800 bp)
were split into different optimized sizes of k-mers to
construct de Bruijn graphs and then merged into contigs
by k-1 non-mismatching overlap for two k-mers. We
tested different k-mer for each species to define the opti-
mal K-mer for assembly. Based on the N50 and N90, the
best assembly was achieved when K was set as 29-mer
for C. vestalis and D. collaris. The paired-end informa-
tion was subsequently used to link contigs into scaffolds
from short insert sizes to long insert sizes. Gap close
software KGF V1.19 and GapCloser V1.10 were used to
fill gaps of C. vestalis and D. collaris. To assess assembly
quality, high quality reads satisfying filtering criteria
were aligned using SOAP2 with less than 3 mismatches.
This yielded 95.9% (89.2x data) and 91.8% (63.7x data)
coverage for the C. vestalis and D. collaris assemblies,
respectively. Reads from the transcriptome data sets
were assembled by SOAPdenovo2 with a k-mer size of
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25. The quality of the assembly was checked using
Benchmarking Universal Single-Copy Orthologs BUSCO
v3.0.2 [25], using insectdbV9 as lineage dataset and
reference.

Repeat annotations

Tandem Repeats Finder (TRF) was used to search tandem
repeats in each assembled genome [52]. Transposable ele-
ments (TEs) were predicted in the assemblies by homology
searching against RepBase, using RepeatProteinMask and
RepeatMasker [53] with default parameters.

Gene prediction and functional annotation

We predicted gene sets in the assembled genomes using
evidence (homology-based and transcriptome-based) and
de novo prediction methodology. For homology-based
prediction, A. mellifera, D. melanogaster, N. vitripennis,
and Tribolium castaneum proteins were mapped onto the
C. vestalis and D. collaris genomes using tblastn software
[54]. Then, gene models were identified by mapping the
homologous protein sequences against the tblastn hits de-
tected in these two genomes using Genewise [55]. RNA-
Seq data were mapped to the genome using TopHat [56],
and transcriptome-based gene structures were obtained
by cufflinks [56] (http://cufflinks.cbcb.umd.edu/). For de
novo prediction, Augustus [57] and Genscan [58] were
used to predict coding genes using appropriate parame-
ters. GLEAN (http://sourceforge.net/projects/glean-gene/)
was used to merge the gene sets, removing all genes with
sequences less than 50 amino acids as well as those that
only had de novo support. Finally, homology-based, de
novo derived, and transcript gene sets were merged to
form a comprehensive and non-redundant reference gene
set. Gene functions were assigned based on the best match
derived from each annotation by Blastp against the Swis-
sProt and TrEMBL [59] databases. We annotated motifs
and domains using InterPro [60] by searching against
publicly available databases, including Pfam, PRINTS,
PROSITE, ProDom, and SMART. Gene Ontology [61] in-
formation was retrieved from InterPro. We also mapped
the reference genes to KEGG [62] pathway maps by
searching KEGG databases and found the best hit for each
gene.

Identification of orthologues and synteny

Similarities and differences among C. vestalis and D.
collaris genes were assessed by best reciprocal hit of pro-
tein sequences using BLASTP with e-values <0.01 be-
tween any two pairs of species defined as orthologous
counterparts. The similarity of genes was indicated as a
density plot of aligned ratio and identity derived directly
from Blastp. The amino acid identity of single-copy
orthologous between C. vestalis and D. collaris was
about 60% (Fig. 3a). Syntenic blocks between C. vestalis
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and D. collaris were identified based on the orthologous
gene order as described above. Specifically, syntenic
blocks were defined as at least 3 orthologous counter-
parts that are both clustered (not interrupted by more
than 5 genes) and located in continuous loci in a single
scaffold for each species in a given pair of species.

Phylogenetic tree and divergence time

Coding sequences and protein data of C. vestalis, D. col-
laris, 8 other hymenopteran species including the pub-
licly available genomes from four species of parasitic
Hymenoptera (N. vitripennis (family Pteromalidae), Cer-
atosolen solmsi (Agaonidae), M. demolitor (family Braco-
nidae), and Camponotus floridanus (family Encyrtidae)
and one genome for Diadegma semiclausum (Hellen)
(family Ichneumonidae), which is also a larval-pupal
parasitoid of the diamondback moth P. xylostella, gener-
ated by Illumina technology in our laboratory, 8 other
insect species in diverse orders (Anopheles gambiae
(Diptera), Bombyx mori (Lepidoptera), Cimex lectularius
(Hemiptera), Danaus plexippus (Lepidoptera), D. mela-
nogaster (Diptera), P. xylostella (Lepidoptera), Pediculus
humanus (Phthiraptera), and Tribolium castaneum
(Coleoptera), and 1 mite species (Tetranychus urticae) in
the order Trombidiformes were downloaded from
Ensembl. For genes with alternative splice variants, the
longest transcripts were selected. We used Treefam [63]
to define a gene family as a group of genes that des-
cended from a single gene in the last common ancestor
[64]. Phylogenetic trees were constructed from universal
single-copy orthologues using maximum likelihood
methods. The BRMC approach was used to estimate the
species divergence time using the programme MULTI-
DIVTIME [65], which was implemented using the Thor-
nian Time Traveller (T3) package (ftp://abacus.gene.ucl.
ac.uk/pub/T3/).

Gene family analysis

Coding sequences and protein data of the above 18 in-
sects and one mite (7. urticae) were used as database.
For genes with alternative splice variants, the longest
transcripts were selected. We used Treefam [63] to de-
fine a gene family as a group of genes that descended
from a single gene in the last common ancestor [64].
We used CAFE [27] to identify gene family expansions
and contractions in this study.

Statistical analyses

No statistical methods were used to predetermine sample
sizes. Experiments were not randomized. The investiga-
tors were not blinded to allocation during experiments or
outcome assessment.
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