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Abstract

Background: Although high-throughput marker gene studies provide valuable insight into the diversity and relative
abundance of taxa in microbial communities, they do not provide direct measures of their functional capacity. Recently,
scientists have shown a general desire to predict functional profiles of microbial communities based on phylogenetic
identification inferred from marker genes, and recent tools have been developed to link the two. However, to date, no
large-scale examination has quantified the correlation between the marker gene based taxonomic identity and protein

functional potential of a bacterial community.

genomics

coding gene conservation. Here we utilize 4872 representative prokaryotic genomes from NCBI to investigate the
relationship between marker gene identity and shared protein coding gene content.

Results: Even at 99-100% marker gene identity, genomes share on average less than 75% of their protein coding gene
content. This occurs regardless of the marker gene(s) used: V4 region of the 16S rRNA, complete 165 rRNA, or single
copy orthologs through a multi-locus sequence analysis. An important aspect related to this observation is the intra-
organism variation of 16S copies from a single genome. Although the majority of 16S copies were found to have high
sequence similarity (> 99%), several genomes contained copies that were highly diverged (< 97% identity).
Conclusions: This is the largest comparison between marker gene similarity and shared protein coding gene content
to date. The study highlights the limitations of inferring a microbial community’s functions based on marker gene
phylogeny. The data presented expands upon the results of previous studies that examined one or few bacterial species
and supports the hypothesis that 165 rRNA and other marker genes cannot be directly used to fully predict the
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Background

Characterizing the diversity, abundance, and functional
capacity of microbial communities has remained an
important but difficult task for scientists. Current next-
generation sequencing studies typically employ either full
metagenome analysis, in which the entire genomic content
of a community is sequenced, or marker gene analysis (also
known as amplicon-based sequencing or metabarcoding)
where individual genes, most often 16S rRNA, are targeted
using amplification with conserved primers. While these
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amplicon-based studies provide valuable insight into the
diversity and relative abundance of taxa within communi-
ties, they provide no direct insight into the function or
genomic content of a community. Recently, there has been
a surge in the desire to predict functional capacity based
on taxonomic assignment from these amplicon studies. In
fact, phylogeny has been used to infer the molecular func-
tions of microbes in the past and in recent papers [1-3].
Tools such as PICRUSt [4] and Vikodak [5] have been cre-
ated to link amplicon data to functional predictions. How-
ever, using phylogeny to predict functional content has
two major limitations: it is largely dependent on database
coverage [4], and it doesn’t consider inputs from the local
ecology (environmental conditions, taxa abundance, phage
presence, etc.) in shaping community functions [6-8].
While authors are quick to acknowledge the limitations of
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inferred phylogeny to predict functional content, the limi-
tations still exist.

There are multiple lines of evidence that 16S rRNA is
not an ideal marker for characterizing functional content
[9-12]. One of the most well-known studies shows that
three different strains of Escherichia coli (two pathogenic
and one non-pathogenic) share less than 40% of their gene
products, even though their 16S sequences are identical
[13]. Recent papers have also shown this heterogeneric re-
lationship at the strain level with Roseobacter spp. and
Microbacterium spp. [14, 15]. Thus, although at some
level we already know the answer to this question, to date
we have found no large-scale analysis to quantify the cor-
relation between phylogenetic gene identity and functional
capacity. An analysis of a broader spectrum of genomes
has the potential to explore the more general limits of
phylogenetic markers, such as 16S rRNA, to predict com-
munity function.

This study aims to survey and quantify the variability of
the 16S rRNA gene and select conserved single-copy
ortholog genes (housekeeping genes) to examine its rela-
tionship with shared gene content. For this relationship,
we hypothesized that the correlation would follow two
general rates of change. (1) There is an unpredictable pro-
portion of the genome typically acquired by horizontal
gene transfer (conjunction, transformation, and transduc-
tion) [16], this proportion of the genome is independent
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of a phylogenic timescale, and results in an initial decrease
of mean shared gene content between phylogenetically
identical organisms. These events are likely ‘random’ or
environmentally driven making accurate predictions im-
possible. (2) The remaining proportion of the genome
consists of genes associated with ‘core’ function, and thus
are conserved across phylogenetically related organisms.
As phylogenetic distance increases there is a proportional
decrease in shared gene content, likely due to slow gene
loss, pseudogenes, and differences in genomic architecture
[17, 18]. Furthermore, we hypothesize that separate line-
ages/clades experience different rates of change, with re-
spect to the adaptive and core genome. That is, certain
lineages, such as E. coli and Vibrio spp., are more prone to
and efficient in laterally transferring DNA, this results in a
large pool of genes that are unshared between phylogenet-
ically related organisms [19, 20]. On the other hand, dif-
ferent lineages exhibit more of a genomic static state and
result in a higher percentage of shared genes [21].

To test these hypotheses, we conducted a comparative
genomic study using 4872 well-annotated prokaryotic
reference genomes from the publicly available RefSeq
database on NCBI (Fig. 1). Utilizing these genomes, we
examined the relationship between 16S rRNA divergence
and shared gene content on a large scale. We also exam-
ined the divergence of several concatenated single-copy
orthologs to determine if they offer a means to combat
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Fig. 1 Workflow of data analysis. The workflow for analysis starts at the upper left box “NCBI Representative Genome Database” and follows two
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potential limitations in using the 16S rRNA. Lastly, we
conducted a large-scale comparison between shared and
novel gene sets to investigate the shared and novel func-
tions of recently diverged prokaryotic organisms. Our
goal was to determine aspects of the functional profile
that may remain unknown when assuming a high pre-
dictable correlation between 16S identity and organismal
protein-coding gene content.

Results

Prokaryote genome dataset and gene extraction

A total of 4872 complete representative prokaryotic ge-
nomes are available through the NCBI ftp portal, span-
ning 28 of the 29 accepted bacterial phyla [22] and both
classically accepted archaeal phyla, Crenarchaeota and
Euryarcheaota [23]. Complete taxonomic distribution of
the data, as constructed by Krona tools is shown in
Fig. 2. See Additional file 1: Table S1 for a complete
datasheet of all genome accessions and taxonomy used
in this study. From this data, three amplicon datasets
were generated: (1) Full-length 16S rRNA, including
10,072 sequences from 4773 genomes, ranging in length
between 1001 and 1856 bps (1 = 1516.9, 0 = 86.5, 2) The
V4 region of the 16S rRNA, including 9710 sequences
from 4426 genomes, ranging in length between 334 and
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509bps (u = 412.3, 0=4.6); and (3) Concatenated
single-copy orthologs, including 3985 sequences (five
genes), one for each genome, ranging in length between
6001 and 7434bps (u = 7001.9, 0=376.5). In this
multi-locus sequence analysis (MLSA) we chose five
single-copy orthologs: 30S ribosomal proteins S12 and
S15, GTPase Der, ATP-synthase delta, and CTP syn-
thase, because of their uniform presence and nomencla-
ture across the dataset.

Intra organism 16S rRNA variation

For genomes within this dataset, 16S rRNA copy number
ranged from one (n=2485) to twenty (n=1, accession
GCF_000686145), with an average of 2.3 copies per sample
(0=2.1). The majority (99.1%) of the 16S rRNA copies
with each genome examined have high sequence similarity
(> 97%), however, a total of 38 genomes were found to have
16S rRNA copies that are less than 97% identical (Fig. 3).
See Additional file 2: Table S2 for the full datasheet of 16S
rRNA copy statistics. While no significant relationship be-
tween copy number and minimum gene identity was
observed (R?=0.013), all genomes with less than 97%
intra-genomic 16S copy identity have less than nine copies
of the gene.

Alphaproteobacteria

represents data at the class level

NCBI Taxonomy
(RefSeq)

Unassigned 0.5%

Fig. 2 Taxonomic classifications of NCBI's RefSeq representative prokaryotic genomes. A KronaTool map representing the relative taxonomic breakdown
of the genomes used in this study. The inner circle represents genomes at the domain, the middle circle corresponds to phylum, and the outer circle
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16S Copy Number vs. Minimum Percent Identity
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Fig. 3 Relationships between intra-organism 165 rRNA copy number and the percent identity across copies. A scatter bubble plot represents the
relationship between 165 rRNA copy number and the percent identity between those copies. The circle size corresponds to the number of bacterial
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Through sequence alignment validation of the low per-
cent identity copies we found that 15 of the genomes con-
tain one or more 16S rRNA copies with long stretches of
unidentified nucleotides (represented by N’s sequence) or
had large gaps within the alignment. For example, the
genome GCF_000332335 has five copies of the 16S rRNA
gene, four of which were nearly identical while one se-
quence was highly diverged and contained several
stretches of unidentified nucleotides. In such cases, these
highly diverged copies were not included in the analyses
comparing 16S copy number and sequence variation.

Sequence clustering

To explore the relationship between gene identity and
shared gene content, we first clustered all marker gene
sequences at intervals between 95 and 100%. This was
completed separately for each of the three datasets
(complete 16S, variable region of 16S, and MLSA). For
the complete 16S rRNA and the V4 16S rRNA datasets,
a large proportion of the 16S rRNA copies from the ge-
nomes clustered with 16S rRNA copies from different
genomes at or above 95% sequence similarity (71 and
80% respectively), thus retaining a large number of com-
parisons for this analysis. Because only 8% of the MLSA
dataset concatenated sequences clustered with sequences
from other genomes at 95% or greater, we included fur-
ther comparisons at 93.0-93.9% and 94.0-94.9%. At this

range 520 marker gene sequences (13%) clustered into
groups with two or more unique genomes.

A representative graph depicting the sequence cluster-
ing of the complete 16S rRNA dataset for each percent
identity group can be seen in Fig. 4 (a). The y-axis de-
picts the total number of 16S rRNA clustering groups
and the x-axis depicts the total number of unique ge-
nomes (as represented by their 16S rRNA sequence)
found within the respective clustering group. A similar
trend was observed for each dataset. As the percent
identity of the marker genes decreases there is an
increase in marker gene clusters that include two or
more genomes.

Intra-organism 16S rRNA copies and sequence clustering

As previously shown, many of the genomes in this data-
set have low sequence similarity across their 16S rRNA
copies. To investigate how this affected sequence clus-
tering we tracked the 16S rRNA copies for each genome
across the clustering groups. Figure 4(c) and (d) depict
the percentage of genomes whose 16S rRNA copies are
found in one, two, or greater than two different 16S
rRNA clustering groups for the complete 16S and V4
16S dataset respectively. As shown, the majority of the
16S rRNA copies from a single genome cluster into a
single group, however, some are effectively divided and
grouped with 16S rRNA copies from a different genome.
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Fig. 4 165 rRNA clustering statistics. a The relationship between the number of 165 rRNA clustering groups and the number of bacterial genomes
represented in each cluster at various percent identity thresholds. b Taxonomic resolution (genus level) based on clustered marker genes for each of
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This is true regardless of the sequence identity thresh-
old used.

Marker gene sequence identity and taxonomic
identification

Determining proper phylogenetic identification is often an
important step in metabarcoding analyses, we therefore
examined the taxonomic relationships between genomes
at various marker gene sequence identity thresholds. As
shown in Fig. 4 (b), the MLSA-like approach shows the
highest correlation between percent identity and taxo-
nomic matches at the genus level. Even at 98% sequence
similarity, 99% of the genomes cluster into groups with
their respective genera. By contrast, genomes with 100%
V4 16S rRNA identity show only 85% taxonomic matches
at the genus level and 58% taxonomic matches at the
genus level by 97% sequence identity.

Percent shared genes vs. marker gene similarity

After clustering marker gene sequences into sequence
similarity intervals, pairwise comparisons of protein cod-
ing gene content were completed for each genome using
Orthofinder. Percent shared genes is defined here as the
ratio between the number of genes matched among two
genomes and the total number of genes present in both.
Figure 5 depicts the relationship between similarity cut-
off values and the percent shared gene content for the
three different marker gene data sets. Among all com-
parisons, the percent shared genes range from 24.6 to
98.4% and results show an initial decrease in shared
genes between organisms whose marker genes cluster at
100% or 99%. At the highest percent identity interval, the
arithmetic means for each marker gene dataset are as fol-
lows; 78% shared gene content at 99% 16S rRNA identity,
72% shared gene content at 100% V4 16S rRNA sequence
identity, and 83% shared gene content at 100% MLSA
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Fig. 5 Phylogenetic marker(s) and single-copy ortholog(s) relationship to shared gene content. Shown are box and whisker plots depicting the
percentage of shared genes between genomes clustered at various percent identity intervals: (@) 165 rRNA, (b) V4 16S rRNA, (c) Five-concatenated
MLSA orthologs. Boxplots show the first and third quartile (bottom and top lines of the box), the median (middle line of the box), and the smallest

and largest data-points excluding outliers (bottom and top whiskers). Dat.

a-points outside the whiskers correspond to outliers

sequence identity. While all datasets show a similar trend,
the decrease in average shared gene content between clus-
ter groups is highest in clustering done via the V4 16S
rRNA (Fig. 5a) and lowest in the single-copy ortholog
dataset (Fig. 5c). See Additional file 3: Table S3 for data
used in construction of Fig. 5.

To expand upon these findings, we wanted to deter-
mine if there are certain groups of bacterial lineages
where the relationship between marker gene identity
and shared genome composition is higher or lower than
the combined dataset (Fig. 6). We examined this in the
V4 16S dataset at 99% sequence similarity but expect
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Fig. 6 Relationship between 99% similar V4 16S rRNA and shared gene content across select microbial lineages. Violin plots representing the
distribution of phylogenetically identical organisms (99% V4 16S rRNA) across select microbial lineages and the percentage of shared gene content
The dotted black line corresponds to the mean shared gene content of the entire dataset and the width of the violin represents the relative

concentration of data (i.e. wider regions contain more data points)
J

gene ontology (GO) of the matched and unmatched pro-
teins identified from Orthofinder. We chose to focus on
genomes whose V4 16S rRNA clustered at 99% sequence
similarity or greater. This dataset consists of 6,324,117
protein accessions and 3515 total genome-genome com-
parisons. Of these accessions, 3,791,226 are found in the
“Other” is comprised of highly similar 16S sequences  UniprotKB databases with a total of 2,803,829 containing
that span different bacterial classes. As expected, these  gene ontology metadata. Results show 1794 GO terms sig-
comparisons contain a significantly lower number of nificantly more likely to be shared, and 1119 GO terms
shared genes (Fig. 6; p < 0.05). Other classes of bacteria, more likely to be novel (unshared) (p-value <0.01)
like Bacilli, Clostridia, and Alphaproteobacteria contain  (Additional file 5: Table S5). The top five significant
similar amounts of shared genes when compared to the shared and novel functions for each of the GO groups
(biological process, molecular function, and cellular com-

similar trends for other marker genes. Based on a
Kruskal-Wallis test with a Dunn’s multiple comparisons
and Bonferroni correction the data shows that Spiro-
chetes, Gammaproteobacteria, Cyanobacteria, Molli-
cutes, Archaea, and Flavobacteriia have a higher mean
percent of shared genes (p<0.05). The group termed

overall dataset.
To further validate these findings and test if the un-  ponent) are shown in Table 1.
The top five GO terms (ordered by p-value) for each

shared genes may have been misannotated or if their
functionality was lost due to rapid evolution, we of the three broad categories of ontology: biological
subjected unshared genes to a tBLASTn search against  process, molecular function, and cellular component.
complete genomes in the clustering group rather than ‘Count-shared’ and ‘Count-unshared’ refer to the num-
their associated protein FASTA file. We found that most  ber of times that particular GO term was found to be
of these genes (u=287.4%, 0=0.3) are not found in the shared or unshared in the genome wide protein-coding
closely related genome at >70% identity and only 1.8%  content comparisons with Orthofinder. For an expanded
on average are found at greater than 95% identity —summary of significant GO terms, see Table S5 in
(Additional file 4: Table S4). Additional file 5.
Discussion

Shared and novel functions
Data presented thus far shows genomes clustered via Dynamic genome evolution
The current study quantifies the functional evolution of

identical or near identical 16S or single-copy orthologs

share, on average, only 72-83% of protein-coding gene  microbial genomes by describing the relationship be-
content. To determine if specific functions are more tween marker gene identity and shared protein-coding
likely to appear in the shared or unshared across closely  gene content. Results show that prokaryotic genomes
related bacterial genomes data sets, we analyzed the exhibit a dynamic rate of evolutionary change. Although
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Table 1 Significant shared and unshared gene ontology terms between phylogenetically identical organisms (99% V4 16S rRNA)

Ontology GO.ID Term Count-shared Count-unshared P-value
Molecular Function
unshared GO:0004803 transposase activity 4591 8641 < le-30
GO:0003964 RNA-directed DNA polymerase ... 165 288 < le-30
GO:0097351 toxin-antitoxin pair type Il bind ... 72 274 < 1e-30
GO:0090729 toxin activity 357 915 < 1e-30
GO:0009036 type Il site-specific deoxyribon ... 24 180 < le-30
shared GO:0019843 rRNA binding 42,179 808 < 1e-30
GO:0046872 metal ion binding 124,123 28,675 < 1e-30
GO:0003735 structural constituent of ribos ... 63,194 2123 < 1e-30
GO:0003723 RNA binding 32,770 4032 < 1e-30
GO:0000287 magnesium ion binding 50,000 8454 < le-30
Biological Function
unshared G0O:0032196 transposition 1435 1887 < 1e-30
GO:0045927 positive regulation of growth 69 327 < le-30
GO:0045926 negative regulation of growth 86 338 < 1e-30
GO:0051607 defense response to virus 235 756 < 1e-30
GO:0043571 maintenance of CRISPR repeat ... 162 560 < 1e-30
shared GO:0006412 translation 70,775 2978 < 1e-30
GO:0071555 cell wall organization 18,821 1788 < 1e-30
GO:0006457 protein folding 11,000 826 < 1e-30
GO:0009252 peptidoglycan biosynthetic proc. ... 16,336 977 < 1e-30
GO:0008360 regulation of cell shape 17,552 1049 < 1e-30
Cellular Component
unshared GO:0012506 vesicle membrane 143 220 < le-30
GO:0009341 beta-galactosidase complex 487 567 < 1e-30
GO:0031469 polyhedral organelle 37 149 < 1e-30
GO:0008305 integrin complex 38 83 < 1e-30
GO:0030077 plasma membrane light-harv ... 68 147 < 1e-30
shared GO:0015934 large ribosomal subunit 8067 252 < 1e-30
GO:0005623 cell 15,927 4518 < 1e-30
GO:0005886 plasma membrane 157,863 45460 < 1e-30
GO:0015935 small ribosomal subunit 7833 98 < 1e-30
GO:0005737 cytoplasm 248487 26,478 < 1e-30

most of the genome mimics a rate of change following
marker gene divergence, on average, 22—28% of the gen-
ome is independent of phylogenetic identity (Fig. 5).
This dynamic nature can be explained by three general
phenomena: 1) large introduction of non-native DNA from
events like horizontal gene transfer; 2) gene deletion/loss of
function; and 3) significant differences between genes in
their evolutionary change. However, when we compared the
unshared genes of genomes with high marker gene se-
quence similarity, we found that most of these genes have

no matches even at low sequence identity thresholds, indi-
cating that different rates of evolutionary change do not
contribute significantly to genomic divergence in the tested
genomes. We therefore propose that gene deletion, along
with large introduction of non-native DNA, are more prob-
able explanations for the results shown here. These phe-
nomena are largely dependent on the organism’s
environment, resulting in a portion of the genome that is
dependent on microbial niche, selective pressures, and en-
vironmental conditions [24—28].



Sevigny et al. BMC Genomics (2019) 20:268

Choice of marker gene

We analyzed the complete 16S rRNA, the variable por-
tion of the 16S rRNA, and various single-copy orthologs
through an MLSA-like approach. We expected that the
greater resolution by the complete 16S dataset and
MLSA approach would significantly dissect the observed
rapid change in gene content, but it was only marginally
improved. Although marginal, these results support the
use of an MLSA approach to improve the resolving
power between shared protein-coding gene content and
percent identity. This style of analysis has been routinely
used in genotyping pathogens, such as methicillin-resist-
ant Staphylococcus aureus [29] or differentiating lineages
or strains within a species [30, 31].

Intra organism 16S variation and genome clustering
Evidence shown in both Fig. 3 and Fig. 4 (c and d) suggest
that there is a subset of genomes with a few highly divergent
copies of the 16S gene. While we observed that the majority
of 16S copies within a genome have high sequence similarity
(> 97%), many contain 16S copies with > 3% divergence, and
similar findings have been reported in previous literature
[32-34]. Furthermore, we observed that all genomes with
greater than 3% divergence in 16S copies are genomes with
less than nine total copies (Fig. 3). Although untested here,
this phenomenon may be an artifact of the assembly
process, where sequences may become biased toward a con-
sensus when deduced based on highly covered reads/kmers,
such as those from genes with a high copy number. Con-
versely, this may reflect a mechanism of conserved evolution
where genomes with greater copy numbers avoid unwar-
ranted gene sequence changes via redundancy.

Figure 4 depicts how these divergent copies clustered
within UCLUST. In cases where 16S copies clustered into
more than one group, some copies of the 16S are more like
copies in a different genome than 16S copies within their
own. In these cases, a single organism would be represented
by several sequence variants and have a direct effect on
functional prediction as well as affecting abundance estima-
tions based on marker gene identity, even at the 97% species
level criteria. Based on these observations a 97% criteria for
clustering species is no more informative than 96% or 98%.
Even so clustering and predicting OTUs or assigning species
level taxonomy based on 97% identity is practical and in-
formative in most cases.

The field is moving away from using OTU sequence
clustering for amplicon analyses and has begun to use
exact sequence variants instead (i.e., 100% sequence simi-
larity clustering after error-correction) [35]. The results
shown here mainly support this transition and expand
upon the problems of using the typical 97% OTU cluster-
ing for variant identification. For example, it is likely that
OTUs are unnecessarily reducing our resolution by poten-
tially grouping different genera into a single OTU (Fig. 5b).
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However, using exact sequence variants (or 100% OTU
clustering) does not offer a means to combat the
intra-organism 16S rRNA variation that often exists within
an organism’s genome (Figs. 4 and 5). This observation re-
mains regardless of whether OTU clusters or exact se-
quence variants are used and remains a limitation with
amplicon studies.

Functional analysis

The purpose of the GO enrichment analysis was to deter-
mine if the functions that change rapidly are unique and
predictable. Additionally, we wanted to identify what func-
tions are lost when a close correlation between marker
gene identity and overall functional capacity is assumed.
We found that although most gene ontology terms are
shared across the genome dataset, many important and
unique functions are significantly more prevalent in the
novel/unshared gene sets (Table 1). Key functions such as
‘transposase activity’ (molecular function), ‘transposition’
(biological processes), and ‘vesicle membrane’ (cellular
component) are the top hits across GO terms within this
novel dataset. These processes may be related to horizontal
gene transfer and represent key functions that could medi-
ate microbial niche adaptation. Furthermore, many func-
tions related to metabolic processes, such as ‘glucosidase
activity’ or ‘fucose metabolic processes, which may also be
crucial to a specific environmental niche, are found in the
unshared datasets. From the thousands of pairwise compar-
isons, we found that these functions are more likely to be
found in unshared gene datasets. Within the shared data-
sets we observed GO terms such as ‘DNA repair, DNA
binding, and ‘integral component of the plasma membrane’.
These are essential components that are necessary for a
microbe to function, regardless of environment.

These findings related to the novel/unshared PCG func-
tions are expected and similar to the observation of a core
and accessory genome within microbes and supports the
pan-genome concept, which is the collection of shared gen-
omic resources that varies across environments [36]. When
scientists study the microbial community of a novel environ-
ment, they are often interested in how that community
functions and differs from other known communities. By
grouping species based on marker gene(s) sequence similar-
ity and predicting functional content, we miss much of the
novel functions or overestimate the functional capacity. This
prevents thorough comparison of two communities and po-
tentially hinders the discovery of novel functions, an aspect
that may have motivated such a study in the first place.

Dataset and potential bias

The RefSeq representative prokaryotic genome database
contains a large and diverse representation of major bac-
terial taxa for a comprehensive microbial dataset. All
included genomes underwent a consistent annotation
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pipeline and nearly all protein-coding genes are linked
to RefSeq GenBank files, so annotations and gene func-
tions can be determined programmatically in an efficient
manner. However, because many of the genomes avail-
able are biased towards biomedically and clinically rele-
vant taxa, we anticipate some level of bias in the
functional content of these organisms.

Implications

Authors of programs aimed at inferring functional con-
tent from amplicon data are quick to acknowledge the
limitations that are expanded upon here. PICRUSt does
provide a QC metric, Nearest Sequenced Taxon Index
(NSTI), which can help elucidate the limitation of data-
base coverage and aid in interpretation of data. However,
databases such as GenBank are severely biased towards
easily culturable bacteria, like Proteobacteria, which
comprises of 46% of the genomes sequenced [37], leav-
ing unculturable bacteria vastly uncharacterized. De-
pending on the environment sequenced, this could lead
to a majority of bacterial functions being predicted from
distantly related genomes [38]. Thus, programs such as
PICRUSt and Vikodak promote a potentially misguided
idea that the presence of certain organisms corresponds
to what functions they should be carrying out. At best
such programs can present hypotheses to be tested.

Conclusions

The central hypotheses in this study address the rela-
tionship between marker gene identity and protein cod-
ing gene content. We observed with overwhelming
evidence that even phylogenetically identical organisms
do not share substantial proportions of their gene prod-
ucts, highlighting the gap between marker gene identity
and protein-coding gene content. Specifically, we found
that 22-28% of an organism’s functional capacity cannot
be determined from marker gene(s) alone, even with
MLSA. This is true even when analyzing 100% identical
sequences, demonstrating the limitations of amplicon-
based studies and their ability to characterize the func-
tional capacity of microbial communities. Future studies
using additional marker genes or other variable portions
of the 16S gene, along with environmental datasets,
would build on the results presented here and further
elucidate the dynamics of microbial evolution.

Methods

Prokaryote genomes and 16S extraction

Prokaryotic genome and assembly accessions were iden-
tified from the NCBI representative genome report file.
Corresponding genome/assembly FASTA, general fea-
ture format (GFF), amino acid FASTA (FAA), and Gen-
Bank feature format (GBFF) files were then downloaded
via the NCBI ftp server ([39], release 75). Taxonomic
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information for each sample was determined from the
README file within the ftp repository. Visualization of
taxonomic information was completed with Krona tools
v2.2 [40]. For each sample, a Python script was used to
extract the 16S rRNA gene sequences from the genome
assembly FASTA file. Gene identifications, direction,
start, and stop locations were obtained directly from the
corresponding GFF files. Sequences less than 1000 bps in
length were removed from the dataset and not included
in subsequent steps. For each genome, 16S copy number,
sequence lengths, and intra-organism gene variation sta-
tistics were calculated. For genomes with two or more
16S sequences, average and pairwise percent identity be-
tween 16S rRNA copies was determined using the
T-Coffee v11.0 seq_reformat utility sim_idscore [41]. For
genomes with two or more 16S rRNA copies that are
less than 99.9% identical an alignment was constructed
using Muscle v3.8.31 [42] and examined to validate the
sequences and annotations.

Extraction of the 16S variable region

An additional parallel dataset consisting of only the V4
variable region of each 16S rRNA gene was also con-
structed. In this approach the 16S variable region were ex-
tracted from each 16S rRNA sequence bioinformatically
using a pair of primers commonly used for amplicon stud-
ies, the 515f (GTGYCAGCMGCCGCGGTAA) forward
primer and 926r (CCGYCAATTYMTTTRAGTTT) re-
verse primer.

Single copy orthologs extraction and concatenation

We constructed a third and final dataset consisting of
concatenated single-copy orthologs to test a multi-locus
sequence analysis (MLSA) like approach. Following the
example of previous studies [43-45], single-copy ortho-
logs present in at least 90% of bacterial species were iden-
tified using OrthoDB [29]. Out of the many potential
genes identified, we chose five based on consistent anno-
tation nomenclature and their presence as single copy
genes across our dataset. For each organism, we extracted
the five gene sequences from the genome assemblies and
then concatenated them into a single sequence.

Clustering gene sequences

For each of the three datasets (full-length 16S, V4 168,
and MLSA), we used UCLUST software v1.2.22q [46] to
cluster the prokaryotic sequences into a set of clusters
based upon sequence similarity. We clustered the se-
quences using identity thresholds of 95, 96, 97, 98, 99,
and 100% to discern meaningful trends.

To investigate how the 16S rRNA gene copies from a
single genome fell out into clustering groups, we exam-
ined the number of unique clustering groups per genome
and identified any genomes whose rRNA copies were
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found in different clustering groups. In addition, we iden-
tified the number of unique genomes represented in each
clustering group and their taxonomic assignments.

Calculating percent shared genes

Next, we wanted to calculate the shared gene content
between all genomes represented within the marker gene
clustering groups using the program OrthoFinder v0.4,
with default settings [47]. For validation of this method
we subjected unmatched genes identified in Orthofinder
to a tBLASTn search against the complete genomes of
other members in the respective cluster. We recorded
significant matches (e-value <le-10) with a query cover-
age and percent identity greater than 70%.

The shared gene content comparisons were then
linked back to the marker gene clustering groups ob-
tained from UCLUST. Each comparison is only included
in the highest percent identity group, effectively dividing
the data into comparisons from 95.0-95.99, 96.0-96.99,
97.0-97.99, 98.0-98.99, 99.0-99.99, and 100% marker
gene identity. Using R v2,14.2, we created box plots
depicting shared content in relation to percent marker
gene identity for each of the three datasets.

To determine if different lineages exhibit a higher or
lower relationship between shared gene content and
marker gene percent identity compared to the complete
dataset, we split the V4 16S dataset into each of the
major bacterial classes and completed the marker gene
clustering and percent shared gene calculations outlined
above. A Kruskal-Wallis test followed by a Dunn test for
multiple comparisons with a Bonferroni correction was
then completed to determine if the mean percent shared
genes for each lineage was significantly different than
the complete dataset.

Determining shared and novel functions

To better understand the differences in shared and novel
functions of closely related genomes, we examined all
protein-coding genes from genomes whose V4 16S clus-
tered together at 99% identity. First, the count of each pro-
tein accession within a matched or unmatched Orthofinder
output file was determined across all comparisons. We
linked accessions to gene ontology (GO) using the
UniprotKB Swiss-Prot and TrEMBL databases (download
date: May 01, 2016). Protein accessions and their respect-
ively mapped GO terms were imported into the topGO
software v3.8 [48]. For each gene ontology environment
(molecular function, biological process, cellular component)
enrichment of matched and unmatched GO’s were tested
using Fisher’s exact test with the ‘weight01” algorithm.

Statistical analyses
All routine statistical analyses were performed in either
Python v3.4 or R v2.14.2 with plottrix package [49].
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shared and unshared GO terms for bacterial genomes whose V4 165
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