Wang et al. BMIC Genomics (2019) 20:180

https://doi.org/10.1186/512864-019-5566-8 B M C G enom iCS

RESEARCH ARTICLE Open Access

Reconstruction of evolutionary trajectories ®
of chromosomes unraveled independent
genomic repatterning between Triticeae
and Brachypodium

Zhenyi Wang'#', Jinpeng Wang'*", Yuxin Pan'*", Tianyu Lei"*, Weina Ge'?, Li Wang'? Lan Zhang'~, Yuxian Li'?,
Kanglu Zhao', Tao Liu*?, Xiaoming Song'? Jiagi Zhang'~, Jigao Yu'?, Jingjing Hu'* and Xiyin Wang'**

Check for
updates

Abstract

Background: After polyploidization, a genome may experience large-scale genome-repatterning, featuring wide-spread
DNA rearrangement and loss, and often chromosome number reduction. Grasses share a common tetraploidization,
after which the originally doubled chromosome numbers reduced to different chromosome numbers among
them. A telomere-centric reduction model was proposed previously to explain chromosome number reduction.
With Brachpodium as an intermediate linking different major lineages of grasses and a model plant of the Pooideae
plants, we wonder whether it mediated the evolution from ancestral grass karyotype to Triticeae karyotype.

Results: By inferring the homology among Triticeae, rice, and Brachpodium chromosomes, we reconstructed
the evolutionary trajectories of the Triticeae chromosomes. By performing comparative genomics analysis with
rice as a reference, we reconstructed the evolutionary trajectories of Pooideae plants, including Ae. Tauschii
(2n=14, DD), barley (2n=14), Triticum turgidum (2n =4x =28, AABB), and Brachypodium (2n=10). Their extant
Pooidea and Brachypodium chromosomes were independently produced after sequential nested chromosome
fusions in the last tens of millions of years, respectively, after their split from rice. More frequently than would
be expected by chance, in Brachypodium, the ‘invading’ and ‘invaded’ chromosomes are homoeologs, originating from
duplication of a common ancestral chromosome, that is, with more extensive DNA-level correspondence to one
another than random chromosomes, nested chromosome fusion events between homoeologs account for three of
seven cases in Brachypodium (P-value=0.00078). However, this phenomenon was not observed during the formation of
other Pooideae chromosomes.

Conclusions: Notably, we found that the Brachypodium chromosomes formed through exclusively distinctive trajectories
from those of Pooideae plants, and were well explained by the telomere-centric model. Our work will contribute
to understanding the structural and functional innovation of chromosomes in different Pooideae lineages and beyond.
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Background

Whole-genome duplication (WGD) occurs recursively
and shapes the plant genomes. Ploidy changes have been
quite common during cereal evolution [1]. The origination
of cereals were related to a paleopolyploid event ~ 100
million years ago (Mya). Cereals are the major food in
temperate regions. Their genomes are characterized by a
high content of repetitive elements, such as the Triticeae
plants, barley and wheat.

Wheat is now one of the most widely cultivated crops
[2], and was domesticated in the Fertile Crescent more
than 10,000 years ago [3, 4]. It executes a diploid inhe-
ritance but has a genome of an ancestral hexaploid
origin, resulting from the union of three diploid grasses
[5]. A hybridization of the tetraploid durum wheat
(Triticum turgidum; AABB; 2n = 4x = 28) with the wild
diploid grass (Aegilops tauschii; DD; 2n=2x=14) re-
sulted in hexaploid wheat (Triticum aestivum; AABBDD;
2n = 6x =42, [6-8]). A 10.1-gigabase assembly of the 14
chromosomes of wild tetraploid wheat was reported in
2017 [3]. The Genome of wild wheat progenitor
Triticum dicoccoides was sequenced in 2018 [9]. The
complex polyploidy nature of wheat large genomes
brings difficulty of genetic and functional analyses [10].
By use of wheat ancestors, the approach would provides
a viable alternative to overcome the complex polyploidy
challenging [11]. The wheat diploid progenitor species
Triticum urartu (AA) [10, 12], Aegilops tauschii (DD)
[7, 13, 14], and tetraploid wheat Triticum turgidum
(AABB) [3, 9] provides convenience for studying the
evolution of the wheat genome structure changes.
Barley (Hordeum valgare) is among the earliest domes-
ticated crops. A high-quality reference genome assem-
bly for barley was presented [15], and the repetitive
fraction of the 5100 Mb barley genome was analyzed in
2017 [16]. Actually, both genetic research and crop
improvement in barley have benefited from genome
sequencing [17].

Owing to its small and conservative genome, rice
proved to be a model for other monocotyledonous species.
It was sequenced as the second plant genome, and re-
ported to have evolved much slower than other grasses,
and preserved the ancestral genome structure after the
grass-common whole-genome duplication (cWGD) [18,
19]. Brachypodium distachyon (Brachypodium) is a mem-
ber of the Pooideae subfamily, its morphological and gen-
omic features make it a model monocot plant for both
comparative and functional genomics for its Pooideae
relatives [20-25]. It has a small and compact genome,
self-fertility, a life cycle of less than 4 months, and
undemanding growth requirements [25, 26]. Besides, it is
phylogenetically close to barley and wheat [25]. Due to the
availability of its genome sequence [27] and many tools
for functional genomics, Brachypodium was proposed to
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be used as a model for genomes of all temperate grasses
[28]. The molecular cytogenetic studies advanced greatly
with the development of Brachypodium bacterial artificial
chromosome (BAC) libraries [29]. These resources
coupled with the sequenced genome of Brachypodium
provided insight into grass karyotype evolution [30].
Brachypodium shares an extensive synteny among other
grasses, so it was a good structural model for the assembly
of large genomes [28]. Brachypodium is also taken as a
good intermediate between wheat and rice [31]. The
availability of Brachypodium pan-genome sequences
revealed genes doubled previous inference in an indi-
vidual genome [32].

During the evolution of grasses, there has been con-
tinually genome repatterning, especially after the
whole-genome duplications, often followed by genome
instability and fractionation. Eukaryotic chromosomes
contain linear structure possessing centromeres and
telomeres, which keep the integrity of them and prevent
chromosome fusions during nuclear divisions. Centro-
meric sequences may differ between species, while telo-
meric sequences are usually highly conserved among
plants. Karyotype evolution can be resolved by genome
sequencing, comparative genetic mapping, and compara-
tive chromosome painting [33]. The A. thaliana ka-
ryotype evolution was inferred based on comparative
chromosome painting in 2006 [33]. It was proposed that
chromosome number reduction is often the result of re-
ciprocal translocations, which combine two chromosomes
into a larger one and a smaller one. The smaller chromo-
some got lost during meiosis [34]. Whole-genome dupli-
cation and erroneous DNA double-strand break repair are
the main sources of genome structural variation [35].

Paleogenomics is adapted to reconstruct ancestral
genomes from the genomes of actual modern species
[36]. Modern genomes arose through centromeric fusion
of protochromosomes, leading to neochromosomes [37].
The genome of the common ancestor of flowering
plants was reconstructed in 2017 [38]. A new theory
of telomere-centric genome repatterning explains
chromosome number reductions of linear chromo-
somes [19], emphasizing the removal of telomeres
during the process. Accordingly, evolutionary trajec-
tories of genome repatterning and chromosome
changes along some major grass lineages were recon-
structed during the last ~ 100 millions of years [18].

So far, the formation and evolutionary trajectory of
Triticeae chromosomes, shared by wheat, barley, and
other close relatives, have not been available. With
Brachpodium as an intermediate linking different major
lineages of grasses and a model plant of the Pooideae
plants, we wonder whether/how it mediated the evolu-
tion from ancestral grass chromosomes to Triticeae
chromosomes. Here, by inferring the homology within
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each genome and between them, we reconstructed the
evolutionary trajectories of the Triticeae chromosomes,
and compared to those of Brachypodium chromosomes.
This present work will contribute to understanding the
structural and functional innovation of chromosomes in
different Pooideae lineages.

Methods

Plant genome data sets

The genome of the rice (Oryza sativa; 2n=24) and
Brachypodium (Brachypodium distachyon; 2n = 10) were
downloaded from the Phytozome version 12 (https://
phytozome.jgi.doe.gov/pz/portalhtml). The genome of
the wild diploid grass Aegilops tauschii (2n=2x=14;
DD) was downloaded from the GenBank as v4.0 under
BioProject PRJNA341983. The genome of the Barley
(Hordeum vulgare; 2n = 14) was downloaded from the
IPK Barley Blast Server (http://webblast.ipk-gatersle-
ben.de/barley_ibsc/). The genome of the tetraploid
wheat Triticum turgidum (2n=4x=28; AABB) was
downloaded from the WEWSseq (http://wewseq.wixsite.-
com/consortium).

Inferring collinear homologs

Grasses share extensive gene collinearity, that is,
thouands of genes share the same chromosomal order in
the different plants, indicating descent from a common
ancestral chromosomal region. To reveal gene colinear-
ity, each genome was compared against other genomes
using BLASTP, and also compared against itself. The
best five hits meeting an E-value threshold 1 x 10~ > were
retrieved. The syntenic regions were grouped to form
multiple alignments using MCscan, the homologous
pairs were used as the input for MCscan [39]. The
default scoring scheme is min (logl0 E, 50) match score
for one gene pair and 1 gap penalty for each 10kb
distance between any two consecutive gene pairs. The
resulting syntenic chains were evaluated using a pro-
cedure adopted by ColinearScan [40], and E-value
threshold was set to be 1 x 10™'°. We enriched the col-
linear gene data set by inferring more small homologous
blocks by running ColinearScan to detect pairwise
chromosome homology. In collinearity methods, ma-
ximum gap length (mg) is the most important parameter
which determines the length, quality and extensiveness
of the predicated collinearity. The mg was set to be 40
intervening genes between neighboring genes in colli-
nearity on both chromosomes. Gene clusters that con-
tain 30 or more genes in a chromosome were removed
from the present analysis, in that they may algorithcally
happer the inference of gene colinearity, especially when
they clustered up in a neighboring region [41].
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Dot-plot generation

We used BLASTN to search for CDS anchors (E-value
<1 x10™°) between every possible pair of chromosomes
in multiple genomes. The best, second best, and other
matches with E-value >1le-5 were displayed in different
colors, to help distinguish orthology from paralogy, or
layers of paralogy as a result of recursive WGD events.
Gene families with >30 members were removed from
the analysis, for gene redundancy may lead to an
aberrantly fast evolutionary rate and affect the accuracy
of analytical results. Dot-plots were produced using
Perl scripts [19].

Flash cartoon production

We used Adobe Flash language to produce flash multi-
media cartoons. The seven ancestral chromosomes in
seven different colors were related to extant and inter-
mediate chromosomes in different grasses. These color
schemes was integrated previous color schemes for
grasses [19]. These color schemes were also used in
dot-plots.

Statistical significance of homoeologous chromosome
fusion

We estimated the occurrence probability of nested
chromosomal fusions (NCFs) between homoeologous
chromosomes with combinatorial statistics. For instance,
rice (2n=24) merged from 14 ancestral chromosomes,
or seven ancestral homoeologous chromosome pairs. If
merged chromosomes are viewed still as independent
chromosomal segments, the probability of this event can
be estimated. For example, the occurrence probability of
one out of two NCFs between homoeologous chromo-
somes can be estimated with combinatory formula
(7, 1)/(14, 2), where (n, m) is n!/[m!(n — m)!)].

Results

Inference of Triticeae karyotype evolution
Parsimony-based phylogenomic analysis can help find
and relatively date genomic changes, therefore contrib-
ute to clarify karyotype evolution. For example, compar-
ing two grass genomes sharing the 100-mya tetraploidy
[18], a single chromosomal inversion in their common
ancestor would result in incongruity between paralogous
chromosomes in both grasses, but no incongruity
between the corresponding orthologous chromosomes,
whereas an inversion in a chromosome of one grass ge-
nome would lead to incongruity with its orthologous
chromosomes in the other grass, and at the mean time
incongruity with the outparalog chromosomes. Similarly,
the above analysis can infer the occurrence of chromo-
some fission, fusion, and number reduction.
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Here, to understand the evolutionary trajectories of Pooi-
deae chromosomes, we analyzed the syntenic conservation
and chromosome rearrangements between the genomes of
Ae. tauschii, barley, Triticum turgidum, and two sequenced
grass relatives, rice and Brachypodium for comparison. By
searching homologous genes within a genome or between
different genomes, we drew homologous gene dotplots,
which showed orthologous correspondence between these
genomes and paralogous correspondence in each genome.

As to homologous gene dotplots between wheat and
its Pooideae relatives, we found their 7 chromosomes
had nearly perfect orthologous correspondence, showing
that they inherited their ancestral karyotype and chro-
mosomes without much changes in chromosome consti-
tution. A homologous dotplot between rice and the
Pooideae grasses showed the evolutionary changes that
led to chromosome number reduction from 12 in an
ancestral haploid grass genome, as previously studied
[19]. The 12 ancestral chromosomes were just well
represented by extant rice chromosomes with 1-1 cor-
respondence. Therefore, for simplicity, we used rice
chromosomes Os1-12 to represent ancestral chromo-
somes Al-12. Correspondence between orthologous
chromosomes or chromosomal segments indicated that
Triticeae chromosome 1 (T1) formed by a nested fusion
of ancestral chromosome Os10 into chromosome Os5
(Figs. 1a, e and 2). The nested fusion process can occur
as follows: Os10 crossed-over to form a major chromo-
some and a satellite chromosome, then the major
chromosome insert the centromeric regions of Os5, the
satellite chromosome may be lost. Spatial proximity
would then favor ligation, resulting in NCFs.

Likewise, Ae2 (Hv2) formed by a fusion of Os4 and
Os7 (Figs. 1b, f and 2), Ae7 (Hv7) formed by a fusion of
Os6 and Os8 (Figs. 1c, g and 2). Ae3 (Hv3) and Ae6
(Hv6) were simple, they respectively corresponding to
Osl and Os2. The most complex evolutionary process
was Aed (Hv4) and Ae5 (Hv5). A fusion of Osll and
Os3 formed an intermediate Os11/3 by nested chromo-
some fusion (NCF), another intermediate Os12/9 formed
by Os12 and Os9 with end-end joining (EEJ), that
produced a satellite chromosome, reciprocal trans-
location of arms between the two intermediates pro-
duced extant chromosomes Ae4 (Hv4) and Ae5(Hv5)
(Figs. 1d, h and 2). The chromosome evolutionary process
of Triticum turgidum was the same as Ae. Tauschii and
barley from the dot-plot between Triticum turgidum and
rice (Additional file 1: Figure S1). The evolution process of
Triticeae is represented in the form of graphs and a video
(Fig. 2; Additional file 2: Video S1).

During the formation of Triticeae chromosomes,
four intra-chromosome telomere-proximal crossing
occurred to produce four free-end intermediate chro-
mosomes (Fig. 2), which fused into the peri-centromeric
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Fig. 1 Chromosome fusions during the evolution of Hordeum
vulgare and Aegilops tauschii. Chromosomes, shown as rectangular
blocks, are arranged horizontally and vertically to the dot-plot. The
color scheme (A1-A7, the seven ancestral chromosomes was used
seven different colors as reference were related to chromosomes in
different grasses) for the chromosomes of grasses follows that of a
previous study [19]. Homologous blocks can be classified as primary,
resulting from chromosomal orthology, and secondary, resulting
from paralogy from ancestral polyploidy. Hv, Hordeum vulgare; Ae,
Aegilops tauschii; Os, Oryza sativa. a Formation of chromosome Hv1;
b formation of chromosome Hv2; ¢ formation of chromosome Hv7;
d formation of chromosome Hv4 and Hv5; e formation of
chromosome Ae1; f formation of chromosome Ae2; g formation of
chromosome Ae7; h formation of chromosome Ae4 and Ae5
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regions of other chromosomes, and four satellite chromo-
somes; and one inter-chromosome telomere-proximal
crossing occurred to produce an end-end merging
chromosome and a satellite chromosome. The total five
satellite chromosomes were all lost, and reduced the
chromosome number from 12 to 7 in extant Triticeae
genomes. Besides, an inter-chromosome in-arm crossing-over
occurred, to exchange DNA between two chromosomes.

A comparison of karyotype evolution in Pooideae

As reported previously, the extant Brachypodium chro-
mosomes (Bd1-5) formed exclusively by recursive
occurrence of NCFs (Brachypodium genome sequencing
project), and resulted in formations of 7 satellite chro-
mosomes [19]. Here we showed the evolutionary process
by following the telomere-centric model. Bd1 formed by two
fusions, a fusion of Os3 and Os7 formed an intermediate
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Os3/7 by NCE, and then, intra-chromosome crossed-over at
the proximal regions of two Os6 telomeres produced a
major chromosome and a satellite chromosome. One
of the sticky ends of Os6 intermediate attached to the
peri-centromeric regions of Os3/7 intermediate through
NCEF to form Bdl, eventually (Figs. 3a and 4).

Bd2 formed by a NCF of Os5 into Osl. Bd3 formed
also by two NCFs, with Os8 and Os10 nested into Os2
sequentially in time, or in reversed order (Figs. 3c and
4). Bd4 formed also by two NCFs, with Os11 and Os12
nested into Os9 (Figs. 3d and 4). Bd5 preserved the
structure of Os4 (Fig. 4).

During formation of five extant Brachypodium chro-
mosomes, seven nested chromosome fusions occurred,
to produce seven satellite chromosomes. The loss of
these satellite chromosomes resulted in the chromosome
number reduction from 12 to 5.

Distinct evolutionary pathways taken by chromosomes
Brachypodium and its Pooideae relatives

Notably, the above inference of the evolutionary trajector-
ies of Pooideae chromosomes showed that the karyotypes

(a) _Os3_Os6 Os7 (b)__Os1 _ Os5
Ay B e
----- : o B = i
__________ Aoy D
w MR & /
S L ™ i

L
A1 A2 A3 A4 A5 A6 A7

Fig. 3 Chromosome fusions during the evolution of Brachypodium.
Chromosomes, shown as rectangular blocks, are arranged
horizontally and vertically to the dot-plot. The color scheme (A1-A7,
the seven ancestral chromosomes was used seven different colors as
reference were related to chromosomes in different grasses) for the
chromosomes of grasses follows that of a previous study [19].
Homologous blocks can be classified as primary, resulting from
chromosomal orthology, and secondary, resulting from paralogy
from ancestral polyploidy. Bd, Brachypodium distachyon; Os, Oryza
sativa. a Formation of chromosome Bd1; b formation of
chromosome Bd2; ¢ formation of chromosome Bd3; d formation of
chromosome Bd4
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of Brachypodium and its Pooideae relatives under consid-
eration formed totally independently (Figs. 2 and 4). This
means that not a single event, e.g., crossing-over or fusion,
to form intermediate or extant chromosomes, was shared
by two lineages.

Besides, in Brachypodium, more frequently than would
be expected by chance, the ‘invading’ and ‘invaded’ chro-
mosomes are homoeologs, originating from duplication
of a common ancestral chromosome, that is, with more
extensive DNA-level correspondence to one another
than random chromosomes. In Brachypodium, three out
of seven NCF events occurred between homoeologous
chromosomes, and the corresponding probability can be
estimated by (7, 1, 6, 1, 5, 1)/[(14,2, 12, 2, 10, 2)], where
(n, m) is n!/[m!(n-m)!], or P-value~0.00078. However,
this phenomenon was not observed during the for-
mation of other Pooideae chromosomes. Just none
homoeologous fusion occurred to produce Pooideae
chromosomes. These suggest that chromosomes in two
lineages evolved in exclusively different trajectories.

Ancestral genome reconstruction

By checking gene collinearity, we revealed homologous
genes within Triticeae genome, and between it and other
grass relatives. Most of the collinear genes with Triticeae
were produced by the grass cWGD [42, 43]. Here we
used two methods to show the collinearity information.
On the one hand, the putative 7 ancient chromosomes
was inferred with collinear genes in paralogous regions
in a genome, as shown previously [19], and by using
these preserved genes to relate to extant chromosomal
regions (Fig. 5). On the other hand, rice genes on its 12
chromosomes were related to other genomes to show
the collinearity/orthology between them (Fig. 5). These
two representation schemes helped find homologous
regions between genomes and display evolutionary
repatterning results.

Discussion

A different evolutionary history

Integrated synteny and phylogenomic analyses of grass
genomes had revealed ancient polyploidy events and
lineage-specific WGD events [44]. WGD events have
been of central importance in angiosperm macroevolu-
tion and have provided raw material for natural selection
[45, 46]. Poaceae was profoundly influenced by a WGD
event that occurred ~ 100 Mya [18]. Following the
WGD, genomic instability increased by extensive
chromosomal rearrangements and numerous gene losses
[42, 43, 47, 48]. These changes eventually led to the
formation of a new diploid karyotype [33, 36, 49]. Fac-
tors including gene loss, chromosomal rearrangement
events and repeat-rich sequence accumulation may have
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Fig. 4 The evolution process of Brachypodium distachyon (Bd) chromosomes

contributed to the evolutionary history, which have to
be left for future exploration.

The evolution of chromosome number in organisms is
caused by the rearrangement of centromeres and telo-
meres [50]. The mechanism of chromosome number
changes have been studied in certain eukaryotes, such as
the fusion of two chromosomes and the insertions of

whole chromosomes into other centromeres [51-56]. As
to chromosome number reduction, we previously pro-
posed a telomere-centric model to explain likely mecha-
nisms, emphasizing the role of telomeres during the
process [19]. Telomeres were inferred to be removed
from the same chromosome by forming an intermediate
free-end chromosome, which would eventually insert
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into another chromosome, or from two different chro-
mosomes, the major structure of which would fuse to
produce a larger chromosome. During the process, a
satellite chromosome, formed by the two removed telo-
meres and some intervening DNA would be produced.
If the satellite chromosome was lost or not counted, that
would explain chromosome number reduction.
Chromosomes evolved along exclusively diffrerent tra-
jectories in two studied lineages: Pooideae and Brachy-
podium. Actually, in that Brachypodium was taken as a
model of Triteceae plants, we would anticipated that
chromosomes in two lineages may share much of their
evolution. Interestingly, we found that Triticeae chromo-
somes were produced by sequential occurrence of 4
NCFs and 1 chromosome end-end merge, and likely
produced 5 satellite chromosomes, while Brachpodium
chromosomes were produced 7 NCFs and 7 likely satel-
lite chromosomes. The lost of those satellite chromo-
somes resulted in chromosome number reduction.
Notably, the Pooideae and Brachypodium lineages
evolved their extant chromosomes through exclusively
different trajectories, that is, not a single event, e.g.,
crossing-over or fusion, to form intermediate or extant
chromosomes, was shared by two lineages. More
requently than would be expected by chance, in
Brachypodium, the ‘invading’ and ‘invaded’ chromosomes
are homoeologs, originating from duplication of a com-
mon ancestral chromosome, that is, with more exten-
sive DNA-level correspondence to one another than

random chromosomes, NCF events between homoeo-
logs account for three of seven cases in Brachypodium
(P-value~0.00078). However, this phenomenon was not
observed during the formation of other Pooideae chro-
mosomes. The situations were completely different
along two lineages.

Conclusions

With Brachpodium as an intermediate linking different
major lineages of grasses and a model plant of the Pooi-
deae plants, we wonder whether it mediated the evolution
from ancestral grass karyotype to Triticeae karyotype.
Notably, we found that the Brachypodium chromosomes
formed through exclusively distinctive trajectories from
those of Pooideae plants, and were well explained by the
telomere-centric model. Our work will contribute to
understanding the structural and functional innovation of
chromosomes in different Pooideae lineages and beyond.

Additional file

Additional file 1: Figure S1. Dot-plot between Triticum turgidum and
Oryza sativa. Triticum turgidum and Oryza sativa chromosomes are,
respectively, aligned horizontally and vertically. Red dots show homologous
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