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Abstract

Background: While the genetics of obesity has been well defined, the epigenetics of obesity is poorly understood.
Here, we used a genome-wide approach to identify genes with differences in both DNA methylation and
expression associated with a high-fat diet in mice.

Results: We weaned genetically identical Small (SM/J) mice onto a high-fat or low-fat diet and measured their weights
weekly, tested their glucose and insulin tolerance, assessed serum biomarkers, and weighed their organs at necropsy. We
measured liver gene expression with RNA-seq (using 21 total libraries, each pooled with 2 mice of the same sex and diet)
and DNA methylation with MRE-seq and MeDIP-seq (using 8 total libraries, each pooled with 4 mice of the same sex and
diet). There were 4356 genes with expression differences associated with diet, with 184 genes exhibiting a sex-by-diet
interaction. Dietary fat dysregulated several pathways, including those involved in cytokine-cytokine receptor interaction,
chemokine signaling, and oxidative phosphorylation. Over 7000 genes had differentially methylated regions associated
with diet, which occurred in regulatory regions more often than expected by chance. Only 5-10% of differentially

chance (p=22x10"%).

methylated regions occurred in differentially expressed genes, however this was more often than expected by

Conclusions: Discovering the gene expression and methylation changes associated with a high-fat diet can help to
identify new targets for epigenetic therapies and inform about the physiological changes in obesity. Here, we identified
numerous genes with altered expression and methylation that are promising candidates for further study.
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Background

In the US, 35% of children are overweight and another
26.4% have obesity [1]. Obesity early in life raises the
risk of obesity [2] and liver disease [3] later in life. Today
35% of adults in the United States are obese, and 42%
are predicted to be by 2030 [4—6]. This is a major threat
to public health, since obesity is associated with cancer,
stroke, asthma, type 2 diabetes, hypertension, heart
attack, and other serious health conditions [7]. The best
studied causes of obesity are genetics, the environment,
and their interaction [8-13]. The environment changes
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the expression of genes via epigenetic factors such as
histone modifications, noncoding RNAs, and DNA
methylation, and thus environmental factors causing
obesity may do so by inducing epigenetic modifications
that change gene expression. Epigenetic variation
between individuals may hold the key to more accurate
predictions of obesity risk, and better understanding it
could lead to new tools for fighting obesity [14, 15].
Health problems can result from dysregulated gene
expression. While much research has focused on the gen-
etic variants underlying disrupted gene expression in
obesity [12, 16], far less is known about how diet changes
gene expression through epigenetics to cause obesity.
Technological advances have made epigenetic studies
more feasible, and new journals and scientific meetings
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have been created to address the explosion of epigenetics
research [17]. The best-characterized epigenetic mechan-
ism is DNA methylation; however, even this is not
well-understood. When the majority of the cytosines in a
promoter region are methylated, gene expression tends to
be lower than when these regions are hypomethylated
[18]. This is not always the case, however, and methylation
at other regulatory regions can actually increase expres-
sion [19]. To fill in the gaps of our understanding of epi-
genetics, it is important to explore the methylation profile
of not just promoter regions in candidate genes but of the
entire genome, as we do here.

Changes in DNA methylation do not always imply
changes in gene expression, or vice versa. For instance,
rats fed a diet high in fat and sugar had higher hepatic
expression of the Hadhb gene, but they had no corre-
sponding changes in methylation [20]. Furthermore,
when Ronn et al. [21] analyzed DNA methylation in
men’s adipose tissue before and after 6 months of exer-
cise, they found methylation changes in 7663 genes, but
only 197 of those genes also had expression changes.
This illustrates a common finding in obesity epigenetics
studies: while there are methylation differences associ-
ated with obesity, many changes in DNA methylation do
not cause detectable changes in the expression of nearby
genes. More research needs to be done to characterize
the relevant DNA methylation changes in obesity. So far,
candidate-gene studies have revealed DNA methylation
differences between obese and lean individuals in a
handful of genes in different tissues [22-25].
Genome-wide methylation studies have revealed differ-
entially methylated regions in genes involved in cell dif-
ferentiation, the immune system, and transcriptional
regulation [23]. To understand how changes in DNA
methylation affect gene expression in obesity, however, it
is important to consider genetic background. C57BL/6 is
a widely studied mouse strain that has contributed enor-
mously to our understanding of obesity, however its
response to a high-fat diet differs from that of other
mouse strains. Compared to C57BL/6, when fed a
high-fat diet BALB/c mice have been shown to have
some degree of metabolic protection [26], DBA/2 mice
are 10% heavier and have decreased mean pancreatic
islet area [27], 129 T2 mice have higher glucose levels
following a glucose injection [27], and though both
C57BL/6 and BFMI mic have reduced DNA methylation
of the Mc4r gene, only BMFI mice have increased Mc4r
expression [28]. Genetic background clearly affects the
response to dietary fat, and thus it is important to deter-
mine if findings from the most commonly studied
mouse strains are replicated in other strains before
expecting the research to be informative for human
health. Here, we investigated obesity epigenetics the
Small (SM/]) strain of mouse, a strain that is less
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commonly studied overall but that our lab group has
extensively characterized in the context of quantitative
genetics, gene expression, and its obesogenic response to
dietary fat [29-31].

DNA methylation is just one of several regulatory
factors that control gene expression, thus we did not
expect to find methylation changes in all differentially
expressed genes. However, we were interested in genes
where expression differences and methylation differences
coincided, as these could make promising candidate
genes for epigenetic therapies in the future. We tested
the hypothesis that a high-fat diet would alter the
expression and methylation of genes involved in obesity
and diabetes. Additionally, we tested the hypothesis that
there would be sex differences in the genes affected by a
high-fat diet.

Materials and methods

Animal rearing

To investigate how a high-fat diet alters gene expression
and methylation, we studied the inbred Small (SM/])
mouse strain from The Jackson Laboratory (Bar Harbor,
Maine). The SM/] strain originated from a selective
breeding experiment for small size at 60 days of age [32].
In response to the same high-fat diet as used in the
present study we have previously shown that SM/] mice
have reduced glucose tolerance [30], increased organ
weights [30], and have 2137 differentially expressed tran-
scripts in the liver as assessed by an Illumina® WG-6 v.2
BeadChip [31]. Fifteen males and 15 females born at
Loyola University in Chicago were bred to produce 56
mice for the study population. The offspring were weaned
onto a low-fat (LF) or high-fat (HF) diet at 3 weeks of age
(16 HF females, 12 LF females, 18 HF males, and 10 LF
males). The diets were designed to be as similar as pos-
sible in terms of nutrients and calories; however, 15% of
the calories came from fat in the LF diet (Research Diets
D12284), whereas 42% did in the HF diet (Harlan Teklad
diet TD.88137) (Additional file 1: Table S1). Most of the
fat in the LF diet came from polyunsaturated fat, whereas
most of the fat in the HF diet came from saturated fat,
which has been shown to increase expression of genes
involved in inflammation and lipogenesis in mouse livers
[33]. Previous work by Erich et al. [30] showed that SM/]
mice consume the same amount of food whether they are
on the HF diet or the LF diet. The mice were fed ad libi-
tum and after weaning each mouse was housed with one
other mouse of the same sex and diet in a cage containing
a wooden gnawing block (Bio Serve), a red privacy hut
(Alt Design), and a 2” x2” cotton nestlet (Ancare).
Procedures followed an approved Institutional Animal
Care and Use Committee protocol (Project #1188, Loyola
University).
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Obesity phenotypes

The mice were weighed weekly from 1 to 17 weeks of
age. They underwent an intraperitoneal glucose toler-
ance test (IPGTT) at 15weeks of age. All tests started
with a 4-h fast at 6:00 am, followed by a tail snip to
measure the baseline glucose level, and an intraperito-
neal injection of glucose (1 mg/g body weight). Glucose
measurements were then taken from tail blood at 30, 60,
and 120 min after injection. At 16 weeks of age, the mice
received an intraperitoneal insulin tolerance test
(IPITT), with the same protocol as the IPGTT except
that insulin was injected instead of glucose (0.75 mU
insulin/g body weight). For both tests, the glucose values
at the 4 different time points were used to calculate the
area under the curve (AUC) using the trapezoidal
summation method [34].

At 17 weeks of age, the mice were fasted for 4h and
sacrificed via carbon dioxide asphyxiation between
10:00 am and 2:00 pm. Blood from a cardiac puncture
(0.5 mL) was centrifuged at 4°C, and serum levels of
insulin, leptin, triglycerides, glucose, cholesterol, and free
fatty acids were measured. We performed the necropsies
on ice and recorded the weights of the liver, heart,
reproductive fat pad, kidneys, spleen, brown fat, and
skeletal muscle (gastrocnemius). We weighed only the
reproductive fat pad rather than all of the fat pads,
because it is strongly genetically (h*=0.7-0.9) and
phenotypically correlated (r=0.67-0.82) with the other
fat pads [9, 35]. We flash-froze liver tissue in liquid
nitrogen for RNA extraction.

We performed multivariate analysis of variance
(MANOVA) using the stats package in R to analyze dif-
ferences in the obesity traits. Multivariate tests were per-
formed on the following three groups of traits: weekly
weights, diabetes-related traits (week 15 and 16 weights,
baseline glucose during the IPGTT, IPGTT AUC, base-
line glucose during the IPITT, and IPITT AUC), and
necropsy traits (week 17 weight, organ weights, and
serum biomarkers), as well as all the associated univari-
ate tests (ANOVA). Differences were interpreted as sig-
nificant for p-values less than 0.05.

Gene expression

We extracted RNA from the liver tissue using the
Qiagen RNeasy Plus Mini kit for RNA-seq with poly-A
selection. A total of 21 libraries were sequenced, each
with 2 mice of the same sex and diet pooled together.
There were 6 LF female libraries, and 5 of each of the
other sex-diet groups. A 1 x50 single read sequencing
run was done on an Illumina HiSeq 2500 machine
(Ilumina Inc.). The FastQ files were aligned to the
Ensembl release 76 assembly using STAR version 2.0.4b
[36]. The gene counts were then analyzed with the R
package edgeR [37]; differences in library size were
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accounted for with a TMM normalization, and genes with
counts of zero were filtered out. The weighted likelihoods
were then calculated using the voom function in the R
package Limma based on the mean-variance relationship
of each gene and transcript. Generalized linear models
were used to test for differential expression. We tested for
the effect of sex, of diet, and of a sex*diet interaction on
gene expression. Any gene with a false discovery rate
(FDR) adjusted g-value of 0.05 or less was considered dif-
ferentially expressed. We performed a pathway analysis
using the R package GAGE [38] to identify pathways
that were significantly up-regulated, down-regulated,
or perturbed in both directions. We visualized the
pathways with the R package Pathview [39].

We validated the differential expression for 3 genes in
the females (Adamlil, Ladl, and Galntl10) and 3 in the
males (Adam11, Abcg8, and Collal) using rt-qPCR, with
Gapdh as a normalizer (Additional file 1: Table S2). To
do this, we extracted total RNA from the livers of 3 HF
and 3 LF mice of each sex using Tri-Reagent (MRC), fol-
lowing the manufacturer’s instructions. The concentra-
tion and quality of the RNA from each sample was
assessed twice with a NanoDrop Spectrophotometer, and
only samples with a 260/280 ratio between 1.7-2.1 and a
260/230 ratio between 2.0-2.4 were used. We then
immediately reverse transcribed the RNA to cDNA
using the High-Capacity ¢cDNA Reverse Transcription
Kit (Applied Biosystems), following the manufacturer’s
instructions. Primers were selected from the literature,
and if none were found we used PrimerBank to design
the primers. All primers were synthesized by Thermo
Fisher Scientific (the sequences are listed in
Additional file 1: Table S3). We performed RT-qPCR
using 10 pL. of PowerUp™ SYBR® Green Master Mix
(Thermo Fisher), 1 uL of the forward primer, 1 pL of the
reverse primer, 4 uL of 20-fold diluted cDNA, and 4 pL
of water, with a total volume of 20 uL for each reaction.
The RT-qPCR was performed with a StepOnePlus
Real-Time PCR System (Applied Biosystems) at the fol-
lowing conditions: 20 s at 95 °C, followed by 40 cycles of
3sat 95°C and 30s at 60 °C. For each of the 3 biological
replicates, 3 technical replicates were used, along with a
no-template control and a no-reverse-transcriptase con-
trol. We did a relative quantification of each gene using
Gapdh as a reference using the comparative AACt
method. There were no differences in Gapdh expression
between the diet treatment groups. The expression data
is available on NCBI's Gene Expression Omnibus (GEO),
record number GSE121525.

DNA methylation

We performed a phenol-chloroform extraction to isolate
DNA from the liver tissue. Genome-wide DNA methyla-
tion was then assessed with Methylated DNA
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Immunoprecipitation Sequencing (MeDIP-seq) and
Methylation-sensitive Restriction Enzyme Sequencing
(MRE-seq), as described by Li et al. [40]. MeDIP-seq
detects methylated sites while MRE-seq detects
unmethylated sites, and when used in combination these
two techniques provide a single CpG resolution methy-
lation map that has high concordance with
whole-genome bisulfite sequencing at only a fraction of
the cost [41]. The sequencing was done by running 2 x
75 bp paired-end reads via Illumina NextSeq 500. Four
mice of the same sex and diet treatment were pooled
per library, yielding 2 biological replicates per group.
The NIH Epigenomics Project recommends using 2 rep-
licates with a combined total coverage of 30x for whole
genome bisulfite sequencing [46], although this can
quickly become cost prohibitive for larger sample sizes.
When MRE-seq and MeDIP-seq are combined they have
comparable coverage to whole genome bisulfite sequen-
cing [39], making 2 replicates sufficient here.

To synthesize the MRE-seq and MeDIP-seq data and
test for differential methylation, we used the R package
methylMnM, which was specifically designed for this
purpose. First, we split the mouse mm9 genome into
500-base-pair windows (for a total of 5,283,825
windows); then, we assessed the proportion of methyl-
ated CpGs in each window; and from there we calcu-
lated the novel M&M test statistic to determine if the
methylation level was different between the two diet
treatments [42]. M&M tests two groups at a time, which
yielded 4 pairwise comparisons of the female libraries
and 4 of the males. To synthesize the information from
all 4 library comparisons per sex, we used Fisher’s com-
bined probability test [43]. To examine DMRs due to
diet in the females, the p-value from the M&M test
comparing the first HF-female library with the first
LF-female library was combined with the p-value from
the M&M test comparing the second HF-female library
with the second LF-female library according to the
following equation by Fisher:

k
Xy~ 23" In(p)
i—1

In this case, p; is the p-value from the pairwise M&M
test, and k is the number of tests combined. We calcu-
lated a combined p-value for each 500-base-pair win-
dow, corrected for FDR with the Benjamini-Hochberg
method [44], and calculated how many of these windows
were differentially methylated based on g-value cutoffs
of less than 0.05 and 0.01.

For each DMR, we then identified the nearest gene to
it, if it fell within a gene, if it fell within a promoter, if it
contained a known regulatory element listed in Ensembl
(mouse genome assembly GRCm38.p5) [45], and if the
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gene closest to it was already known to be involved in
obesity, diabetes mellitus, or cardiovascular diseases
based on Phenopedia’s continuously updated list of
genes uncovered by genetic association studies in
humans (downloaded May 7, 2017). We also classified
the DMR as being either in an intergenic region, exon,
intron, or promoter. This was done using the full list of
introns, exons, and genes downloaded from the
NCBI37/mm9 assembly on the UCSC Genome Browser.
If a DMR overlapped both an intron and an exon, it was
classified as falling within an exon. It was classified as a
promoter if it was within 2000 base pairs upstream of a
transcription start site or 600 base pairs downstream of
one. To determine if the DMRs were associated with
gene expression, we randomized the DMRs across the
genome and calculated how many fell within differen-
tially expressed genes due to chance. To account for the
general underrepresentation of DMRs in intergenic
regions during the randomization, the percent of DMRs
that were allowed to be randomized into intergenic
regions was equal to the percent that actually exist in
those regions. We performed a chi-square test to deter-
mine if the DMRs were found in regulatory regions at a
greater rate than expected due to chance.

Prior to combining the p-values with Fisher’s com-
bined probability test, we compared the replicates, which
represents technical and biological noise. There was one
significant DMR when comparing the two LF male
libraries (q <0.05) and 21 significant DMRs when com-
paring the HF male libraries, whereas each comparison
of an LF with an HF male library had between 22 and 66
DMRs. There were 84 significant DMRs when compar-
ing the two LF female libraries with each other and 22
significant DMRs when comparing the HF female librar-
ies, whereas each comparison of an LF with an HF
female library had between 9 and 190 DMRs. Very few
DMRs were found across multiple comparisons. To
understand the meaningful methylation differences, it is
important to use replicates, as we did here. The methyla-
tion data is available on NCBI's Gene Expression
Omnibus (GEO), record number GSE122016.

Results

Obesity phenotype

Diet significantly affected the weekly weights (p = 1.59 x
107 7), diabetes-related traits (p = 8.11 x 10~ "), and nec-
ropsy traits (p = 6.21 x 10~ ) (Additional file 1: Table S4).
After only one week of being on the diet treatment
(4weeks of age), high-fat (HF) mice weighed signifi-
cantly more than low-fat (LF) mice, and the differ-
ence became more pronounced with age (Fig. 1). The
HF mice had reproductive fat pads that were more
than 8 times larger than the LF mice. The ANOVA
revealed an overall increase in all organ weights on
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an HF diet, including 2.8 times heavier livers (1.51 x
107 %) and 1.6 times heavier hearts (2.39 x 10~ %) (Fig. 2,
Additional file 1: Table S4).

Diet also significantly affected the response to intra-
peritoneal glucose and insulin tolerance testing, with HF
mice having higher glucose area under the curve (AUC)
values for both the IPGTT (p =5.16 x 10~ 7) (Fig. 3) and
the IPITT (p=2.53x 10" %) (Fig. 4), indicating impaired
glucose and insulin signaling. Figures 3 and 4 depict
curves of the mouse that had the median AUC value
per sex and diet group to illustrate what the curves
looked like. All serum biomarkers except for free fatty
acids had higher levels due to an HF diet (Fig. 5),
particularly in males.

HF mice had higher levels of cholesterol (p =5.05x
10" '% 2.2 times higher in females, 3 times higher in
males), triglycerides (p=0.003; 1.3 times higher in
females, 2.1 times higher in males), glucose (p =1.35 x
10" % 1.4 times higher in females, 2 times higher in
males), and insulin (p =1.05x 10" % 6.7 times higher in
females, 38 times higher in males) (Fig. 5). HF mice also
had substantially higher levels of leptin (p = 7.61 x 10™ %),
with HF female mice having 20 times more leptin in
their serum and HF male mice having 42 times more
than LF mice (Fig. 6a). The correlation between serum
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leptin levels and the leptin receptor (Lepr) gene was
negative (R =-0.481, p=0.027) (Fig. 6b), with HF mice
having 7 times lower expression of Lepr in the liver than
LF mice (Fig. 6c). Leptin had a strong positive
correlation with fat pad weight (R=0.917, p=5.262 x
10~ ®) (Fig. 6d).

The body weights (p = 4.17 x 10~ °), diabetes traits (p =
0.002), and serum biomarkers (p=1.54x 10" ') were
also significantly affected by sex. Irrespective of diet,
males weighed more (p=4.64x 10" * at 17 weeks), had
heavier livers (p =0.014) and kidneys (p = 2.20 x 10~ '),
and had higher glucose AUC values during glucose toler-
ance testing (p = 1.59 x 10™°),

Although the sex-by-diet interaction effect was not
significant on a multivariate level, it was significant on a
univariate level for cholesterol (p =0.005), insulin (p =
0.002), and glucose AUC during the intraperitoneal insu-
lin tolerance test (IPITT) (p = 0.024).

Gene expression

The multidimensional scaling (MDS) plot indicated that
the gene expression libraries clustered primarily by sex
(dimension 1, 74% of the variance) and then by diet
(dimension 2) (Additional file 1: Figure S1). Diet altered
the expression of 4356 genes in the liver (q<0.05), or
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Fig. 4 High-fat diet mice had a reduced sensitivity to insulin tolerance testing. HF =
HF male n=18, LF female n=12, HF female n=16. *** p<0.001, ** p<0.01, * p<0.05, absence of asterisks indicates not-significant
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approximately one-fifth of the genome. The log2 fold
changes of the significantly differentially expressed genes
ranged from - 0.19 to - 5.83 and 0.20 to 7.17. More dif-
ferentially expressed genes were detected in males
(3330) than in females (1750). Of the genes that were
differentially expressed, 848 were differentially expressed
due to diet only in females and 2428 were unique to
males (Additional file 1: Tables S5 and S6). There were
184 genes with significantly different expression due to a
sex-by-diet interaction, which a GO Enrichment ana-
lysis (Gene Ontology Consortium) showed were
enriched for three biological processes: epoxygenase
P450 pathway (p=2.36x10"°), oxidation-reduction
process (p=5.58x10"°), and response to stilbenoid
(p=521x10"3).

The GAGE pathway analysis revealed that an HF diet
changed the regulation of 7 pathways (Additional file 1:
Table S7). This included the downregulation of the oxi-
dative phosphorylation pathway and upregulation of the
cytokine-cytokine pathway, indicating that the HF diet
reduced mitochondrial function and increased inflam-
mation (Additional file 1: Figure S2). In females, there
were 4 pathways upregulated by an HF diet:
cytokine-cytokine receptor interaction, chemokine sig-
naling, cell adhesion molecules, and the natural killer
cell mediated cytotoxicity pathways. In males, the
cytokine-cytokine receptor interaction pathway was also
upregulated by an HF diet, while the ribosome and oxi-
dative phosphorylation pathways were downregulated

(Additional file 1: Table S8). In females, 29 GO Biological
Processes were upregulated, nearly all of them related to
the immune system. Even more were upregulated in
males, with 61 affected processes, again mostly involved in
the immune system (Additional file 1: Table S9). No GO
processes were downregulated, which was perhaps related
to the strong upregulation of inflammation.

Methylation
A g-value cutoff of 0.05 revealed tens of thousands of
differentially methylated regions (DMRs) associated with
diet, which encompassed 0.6—0.8% of the nearly 5.3 mil-
lion 500-base-pair windows in the genome. A cutoff of
0.01 was more discriminating, with less than 0.04% of
windows falling below it, allowing us to focus on a few
thousand genes with differential methylation (Additional
file 1: Tables S10 and S11). The comparison of HF and
LF females resulted in 2356 DMRs (q < 0.01), which was
more than the 1539 DMRs between the HF and LF
males (Additional file 1: Table S12). There were even
more DMRs due to sex than diet, with HF males and
females differing at 3831 regions and LF males and
females differing at 5632 regions (q<0.01). A greater
percentage of DMRs were found on the X chromosome
in the between-sex comparisons (2.3-2.8%) than in the
within-sex comparisons (0.1-0.3%, q < 0.01).

In all, 7814 genes (38.3% of genes) in the liver con-
tained at least one diet-induced DMR (q < 0.05) between
its outermost transcription start and end sites in the
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Fig. 7 a High-fat (HF) diet mice had significantly higher methylation and higher Adam11 expression than low-fat (LF) diet mice. b HF mice also
had higher Galnt10 gene expression, with HF females having significantly less methylation in their first intron than LF females. ¢ HF mice had
higher expression of Lad1, and the first intron (also a promoter region) had lower methylation in HF females than LF females. d HF mice had
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males. e HF males had less methylation at a region between the genes Abcg8 and Abcg5, which lie head-to-head, and the HF males had
significantly increased expression of both Abcg8 and Abcg5

females, as did 7086 genes (34.7%) in the males
(Additional file 1: Table S13). When the DMRs were
assigned to one of four categories, 15% fell within pro-
moters, 25% in exons, 34% in introns, and 31% were in
intergenic regions. Not all of these categories were mu-
tually exclusive, since several DMRs encompassed both
exons and promoters. Many of the DMRs were in regu-
latory regions, including 10-12% in enhancers, 14—16%
in promoters, 3-7% in CTCF transcription factor bind-
ing sites, and 34% in promoter flanking regions as
defined by Ensembl (Table 1). Across the genome, only
4% of the windows overlapped enhancers, 2% overlapped
CTCEF binding sites, and 8% overlapped promoter flank-
ing regions. DMRs were far more likely to be found in
these regulatory regions than in non-regulatory regions
of the genome (% p <1 x 107 '),

Although only a small percentage of the DMRs fell in
differentially expressed genes, it nevertheless happened

Table 1 The distribution of significant differentially methylated
regions (DMRs) (g < 0.01) across the genome associated with
diet. Numbers indicate how many 500 base pair windows
overlap each genomic region, with the percent of the total
significant DMRs that overlap such regions in parentheses for
the female and male mice. The percent of windows across the
entire genome that overlap these genomic regions is listed as a
comparison, illustrating the overrepresentation of regulatory
regions in the DMRs

Region Female DMRs Male DMRs  Whole Genome
Enhancer 237 (10.0%) 180 (11.7%) 3.5%

CTCF Binding Site 157 (6.7%) 55 (3.6%) 1.7%

TF binding site 33 (1.4%) 12 (0.8%)  03%

Promoter Flanking Region 795 (33.8%) 522 (33.9%) 8.1%

Promoter 370 (15.7%) 215 (14.0%) 4.5%

Exon 598 (25.4%) 415 (27.0%) 7.5%

Intergenic 748 (31.8%) 471 (30.6%) 58.6%
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more often than expected by chance (% p=2.2x10"%).
In the females, 2170 (5.6% of) DMRs fell within differen-
tially expressed genes, whereas only 1994 (5.1%) were
expected to by chance. In the males, 3209 (10.2% of)
DMRs fell within differentially expressed genes, whereas
only 2992 (9.5%) were expected to by chance.

Candidate genes with differential methylation and
differential expression

The differentially expressed gene with the lowest g-value
in the females was ADAM metallopeptidase domain 11
(Adaml1l) (q=7.6 x10"?°), which also had three adja-
cent DMRs encompassing exons 14—18 of the gene. The
males had the same DMRs and exhibited the same pat-
tern as the females of having higher methylation and
higher Adami1 expression due to an HF diet (Fig. 7a).
Although the Adamil1 gene is known to be expressed in
the mouse liver (MGI Gene Expression Database), its
role in obesity and diabetes has not been discussed. It
belongs to a family of genes involved in cell signaling,
migration, and adhesion, and mice lacking Adam11 have
impaired spatial learning and motor coordination, along
with a reduced response to inflammatory pain [47]. Per-
haps the increased inflammation associated with obesity
leads to an increase in inflammation-related pain.

An HF diet also increased expression of the
UDP-N-acetyl-alpha-D-galactosamine:polypeptide N-acetyl-
galactosaminyltransferase 10 (Galnt10) gene in both the
males and the females. A DMR in its first intron was signifi-
cantly less methylated by an HF diet in the females (the
same trend was observed in the males, but was not signifi-
cant) (Fig. 7b). Genome-wide association studies have found
SNPs in GalntlI0 that are associated with BMI [48] and
physical activity [49]. GALNT10 catalyzes the synthesis of
mucin-type O-glycosylation, a type of post-translational
modification. Important mucin-type O-linked glycoproteins
include interluekin-2 and proteins involved in homing leu-
kocytes to inflamed areas [50].

An HF diet was also associated with increased expression
of the ladinin 1 (Ladl) gene in the males and females, ac-
companied by decreased methylation in the females (with a
non-significant trend in the males) at two adjacent DMRs
in its first intron, which is also a promoter region (Fig. 7c).
Ladl is a part of the basement membrane, which increases
around liver vessels in liver fibrosis. Basement membrane
peptide levels increase in the serum as the severity of liver
damage increases [51]. This is relevant because the HF
mice had visibly fattier livers, in line with the increased risk
of non-alcoholic fatty liver disease (NAFLD) due to obesity.

Further epigenetic evidence of liver distress induced
by an HF diet is the upregulation of the collagen type I
alpha 1 chain (Collal) gene in HF males and females,
accompanied by increased methylation in the males at a
DMR spanning exons 23 and 24 of the gene (Fig. 7d).
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COL1AL1 is a subunit of type 1 collagen, which accumu-
lates in the liver during fibrosis and cirrhosis. When Cal-
vente et al. [52] administered siRNA to degrade
transcripts of Collal in mice with advanced liver fibro-
sis, collagen deposition decreased by half and several
other profibrogenic genes were downregulated. Our re-
sults support the notion that siRNA or other epigenetic
treatments for elevated Collal levels may help in
obesity-related liver fibrosis.

The ATP binding cassette subfamily G member 5
(Abcg5) gene lies head-to-head with Abcg8, and both were
expressed higher in HF males than LF males. A DMR
close to the start of both genes, located in the first intron
of Abcg5, had lower methylation due to an HF diet and
may be involved in the co-regulation of the genes (Fig.
7e). They encode proteins forming a heterodimer that fa-
cilitates the excretion of cholesterol into bile. Mutations in
either gene are associated with atherosclerosis and sitos-
terolemia, a condition that leads to cardiovascular disease
through the accumulation of sterols [53]. Our findings
support previous studies that have identified the upregula-
tion of Abcg5 and Abcg8 in response to insulin resistance
and an HF diet [53—56]. The upregulation of the heterodi-
mer may show an attempt to eliminate the excess choles-
terol from the body, although HF mice still had 2-3 times
as much serum cholesterol as LF mice.

Discussion

The results supported our hypothesis that a high-fat
(HF) diet would alter the expression and methylation of
genes involved in obesity and diabetes. The results also
supported our hypothesis that the set of genes affected
by an HF diet in males and females would not com-
pletely overlap. In the females, 2170 (5.6%) of differen-
tially methylated regions (DMRs) (q<0.05) occurred
within genes that were differentially expressed due to
diet, whereas in males 3209 (10.2%) of DMRs did.

An HF diet was associated with drastic alterations
in DNA methylation, gene expression, and physiology
in the SM/] mice. By 17 weeks of age, mice on an HF
diet weighed 70% more than mice on a low-fat (LF)
diet, which we interpret as obesity. An HF diet sig-
nificantly: increased all body weights and organ
weights; decreased glucose and insulin tolerance; and
increased serum levels of cholesterol, triglycerides,
glucose, leptin, and insulin. The HF diet did not
increase levels of free fatty acids in the serum, a
trend that Do et al. [56] also found in C57BL/6]
mice, despite elevated fatty acid levels in the liver.

The expression of 4356 genes and the methylation of
more than 7000 genes in the mouse liver were associated
with diet. More than one-third of genes had at least one
DMR associated with diet. The DMRs occurred in regula-
tory regions such as enhancers, transcription factor
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binding sites, and promoter flanking regions signifi-
cantly more often than these regions occur in the
genome, supporting the notion that methylation plays
an important role in regulating the response to an
HF diet. That role is not straightforward, however.
The DMRs fell within differentially expressed genes
significantly more often than expected by chance;
however 31% of the DMRs did not even occur within
genes at all, although 17% of those overlapped with
enhancers or transcription factor binding sites. This is
on par with the findings of Ronn et al. [21], who
noted that fewer than 3% of adipose tissue DMRs fol-
lowing 6 months of exercise were located in differen-
tially expressed genes in men. Methylation is only
one piece of the puzzle; it will be interesting in the
future to correlate the DNA methylation changes with
histone modifications, as these two regulatory features
work together to modulate gene expression.

Our gene expression findings mostly support those
of other mouse studies, while highlighting differences
that can be caused by factors such as genetic back-
ground, percent of fat in diet, and type of fat in the
diet. For instance, Do et al. [56] compared liver
expression of HF and LF male C57BL/6] mice and
found that an HF diet perturbed genes that were
enriched for processes involved in immune and
inflammatory response. Of the 332 genes they found
differentially expressed due to an HF diet, 120 were
the same as the ones we identified in the males (they
did not study females). These included Adamlili,
Abcg5, and Abcg8, which we highlighted here as hav-
ing differences in both expression and methylation
associated with diet. We found 28 genes in common
with Kim et al. [57], who identified 97 differentially
expressed genes due to an HF diet in C57BL/6]
males. We found more genes in common with Kim et
al. [57] and Do et al. [56] than either did with each
other, even though they used the same mouse strain,
which shows the utility of RNA-seq data over micro-
array data when comparing across studies. Of the 309
differentially expressed genes that Kirpich et al. [58]
identified in male C57BL/6 mice due to an HF diet,
we found 124 of the same genes. Kirpich et al. [58]
shared 12 genes in common with Kim et al. [57] and
57 genes in common with Do et al. [56], and the only
genes found in all three studies were Nsdhl and Sqle
(Additional file 1: Figure S3). This highlights the diffi-
culty of repeatability in gene expression studies. Like
Inoue et al. [59] found in C57BL/6Ncrj male mice,
we found that Pparg and its target gene Cd36 were
both upregulated in the male and female HF mice,
corroborating their conclusion that an HF diet in-
duces liver steatosis by upregulating Pparg. Similar to
other studies, we found an upregulation of genes in
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pathways associated with defense, stress, and inflam-
mation responses [56, 57].

We compared our list of differentially expressed genes
with those found in 9 other mouse strains exposed to an
HF diet by Shockley et al. [60] and found 16—27 genes in
common with the males in each study and 3-15 genes in
common with the females (Additional file 1: Table S14).
The strain dependent results underscore the importance
of studying obesity in multiple strains of mice instead of
basing conclusions off of one strain. Differences in dur-
ation of diet treatment [61], type of fat [62], and percent
of fat in the diets [63] also can affect gene expression and
may contribute to variation across studies.

Replicating DMRs across studies can be even more
difficult than replicating gene expression, since methyla-
tion can be more variable and fewer studies have investi-
gated it, especially genome-wide. Ge et al. [64] found
that Lep had lower hepatic expression and higher pro-
moter methylation in HF-fed female CD-1 mice. Here,
we also found a hypermethylated DMR in the Lep pro-
moter of the females (q=0.02), but no difference in
expression. Ge et al. [46] additionally found a hypo-
methylated Ppara promoter, and although we too found
a DMR in Ppara, ours was hypermethylated in HF mice,
it was located in the second intron, and the gene was
not differentially expressed. Yoon et al. [65] identified
hypomethylated CpG sites 1.5-kb upstream of the Caspl
gene in C57BL/6 N male mice, but we found no DMRs
there or in that gene. Like them, we did find lower
expression of Ndufb9 in HF males along with a DMR,
but our DMR was hypomethylated by an HF diet
whereas theirs was hypermethylated. As exemplified by
this variability across studies, understanding the methy-
lation changes underlying obesity will require much
more research in the context of multiple genetic
backgrounds.

Males and females responded differently to an HF diet.
Compared to HF females, HF males had higher choles-
terol, higher insulin, and higher glucose AUC during the
intraperitoneal insulin tolerance test. The sex differences
were visible on the levels of methylation and gene
expression as well. There were more differentially
expressed genes associated with diet in the males (3330)
than in the females (1750), and more than 2000 genes
were differentially expressed only in the males. The 184
genes with a significant sex-by-diet interaction were
enriched for the epoxygenase P450 pathway,
oxidation-reduction process, and response to stilbenoid,
suggesting sex differences in these pathways mediate the
difference between the male and female response to diet-
ary fat. Cytochrome P450 genes are important for
homeostasis and encode enzymes involved in metaboliz-
ing fatty acids and drugs, so sex differences in this path-
way are relevant to pharmaceutical approaches to weight
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loss. Likewise, a sex-by-diet effect on the response to
stilbenoids is interesting because they have been shown
to regulate lipids, and Lin et al. [66] found that the stil-
benoid TSG prevented NAFLD in HF-fed rats, with
results that hinted at a small but inconclusive difference
between males and females. Although there were more
differentially expressed genes due to diet in males than
in females, the opposite was true for DMRs. However,
while there were fewer DMRs total in males, more of
their DMRs occurred within genes that were differen-
tially expressed due to diet.

Conclusions

This study identified thousands of genes that were differ-
entially expressed and differentially methylated in
response to a high-fat diet in SM/] mice. Genome-wide
studies such as this are essential for developing a better
understanding of the relevant epigenetic changes in
obesity and identifying new targets for treatments. It is
crucial that these treatments take sex into consideration,
since—from the level of methylation to expression to
obesity traits—males and females responded quite differ-
ently to an obesogenic diet.
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