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Abstract

Background: Plasmodium falciparum exhibits resistance to the artemisinin component of the frontline antimalarial
treatment Artemisinin-based Combination Therapy in South East Asia. Millions of lives will be at risk if artemisinin
resistance (ART-R) spreads to Africa. Single non-synonymous mutations in the propeller region of PF3D7_1343700,"K13"
are implicated in resistance. In this work, we use transcriptional profiling to characterize a laboratory-generated k13
insertional mutant previously demonstrated to have increased sensitivity to artemisinins to explore the functional role
of k13.

Results: A set of RNA-seq and microarray experiments confirmed that the expression profile of k713 is specifically
altered during the early ring and early trophozoite stages of the mutant intraerythrocytic development cycle. The
down-regulation of k73 transcripts in this mutant during the early ring stage is associated with a transcriptome
advance towards a more trophozoite-like state. To discover the specific downstream effect of k13 dysregulation,
we developed a new computational method to search for differential gene expression while accounting for the
temporal sequence of transcription. We found that the strongest biological signature of the transcriptome shift is
an up-regulation of DNA replication and repair genes during the early ring developmental stage and a down-regulation
of DNA replication and repair genes during the early trophozoite stage; by contrast, the expressions of housekeeping
genes are unchanged. This effect, due to k713 dysregulation, is antagonistic, such that k13 levels are negatively correlated
with DNA replication and repair gene expression.

Conclusion: Our results support a role for k713 as a stress response regulator consistent with the hypothesis
that artemisinins mode of action is oxidative stress and k13 as a functional homolog of Keap! which in humans regulates
DNA replication and repair genes in response to oxidative stress.
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Background

The World Health Organization estimates that malaria
killed 429,000 people, mostly children under the age of 5
in 2015 [1]. Prior to Artemisinin-based combination ther-
apy (ACT) becoming the World Health Organization
recommend treatment for uncomplicated Plasmodium
falciparum infection, approximately 1,000,000 people were
being killed by malaria annually [2]. It has been estimated
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that widespread ACT resistance would lead to more
than 116,000 additional malaria deaths each year [3].
ACT resistant P. falciparum is already present in
South East Asia with the ACT dihydroartemisinin-
piperaquine having treatment failure rates as high as
46% in the Pursat province of Cambodia [4]. Alarm-
ingly, resistant strains are reported to have spread to
Thailand, Laos and Vietnam [5, 6].

Multiple lines of evidence suggest that the resistance
mechanism involves pausing parasite development in the
ring stage, which is less susceptible to artemisinin, in
response to drug treatment [7-9]. Consistent with this
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observation, artesunate treatment has been reported to
stimulate entry into a latent developmental state due to
PK4 phosphorylation of elF2a [10]; furthermore, resist-
ant clinical isolates show an up-regulated protein folding
response and down-regulation of the DNA replication
machinery with a delayed progression out of the ring
stage [11]. Resistant strains created in vitro by drug
selection demonstrate altered gene expression in oxida-
tive stress, protein damage, and cell cycle pathways [12].

The gene with the strongest association with artemisi-
nin resistance is k13 [13-16]. Crystal structure similarity
suggests that K13 is a homolog of the human E3 ubiqui-
tin substrate adaptor Keapl with a root-mean-square de-
viation between the propeller domains (4zgc and 1u6d)
of 1.298 A. Evidence from Mbengue et al. [17] suggests
that K13 plays a role in regulating ubiquitination. This
human homolog of K13 is a well-characterized transcrip-
tional regulator of oxidative stress response [18], but the
processes regulated by K13 remain unknown in malarial
parasites. Because k13 is likely essential [19, 20] knock-
ing out its function is not an experimental option and
regulatory mutants provide a path to decipher K13’s
function. Birnbaum et al. [19] reported that conditionally
knocking out k13 halts growth after 3 days at the ring
stage, but the mechanisms underlying kI3 essentiality
are unknown.

In this work, we report on a k13 dysregulated mutant
(PB58) [20, 21]. Previous studies using standard 72 h
growth inhibition assays showed the mutant to be more
sensitive than the parent NF54 strain to artemisinins
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(artesunate, artelinic acid, artemether, artemisinin, dihy-
droartemisinin; See Additional file 1: S2) and the prote-
asome inhibitor Bortezomib [20, 21]. The increased
sensitivity to a proteasome inhibitor is interesting because
the resistance to ACT has been linked to the ubiquitin/
proteasome system [17, 22]. This mutant carries a single
transposon insertion in the 5 UTR of k13 in the NF54
background. Studies utilizing QISeq verified the absence
of other changes in the genomic background [23, 24].
Given K13’s BTB and propeller domains structural simi-
larity to the transcriptional regulator Keapl, we hypothe-
sized that dysregulation of K13 will result in an altered
transcriptome of functionally-connected genes. Therefore,
we conducted RNA-seq on various stages of the intraery-
throcytic developmental cycle (IDC) to understand the
cellular processes regulated by k13.

Results

Validation of specific K13 dysregulation in the mutant
The k13 mutant carries a piggyBac transposon insertion
in the promoter region (Fig. 1a) as previously reported
by Pradhan, Siwo et al. [21]. As shown in Fig. 1a there
are two other genes next to k13 on the same DNA
strand. Figure 1b shows the expression levels of the
genes immediately flanking kI3 are unaffected by the
transposon insertion, whereas k13 expression is signifi-
cantly altered at 6 and 24 h of the IDC (p-values of 0.05
and 0.007936 from Wilcoxon rank sum test with
p-values corrected using the Holm method, respectively).
Thus in the mutant k13 is down-regulated during the
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Fig. 1 Transposon insertion and its effect on gene expression. (a) Insertion of a PiggyBac Transposon in the 5" upstream region the gene k73
(b) results in the gene being aberrantly down-regulated at the 6 h time point and up-regulated at the 24 h time point. The expression of k13's
same strand neighbors are unaffected by the insertion. The changes in K13 expression are consistent with the known regulation of the
calmodulin promoter in P. falciparum. The transcript expression is measured in fragments per kilobase per million mapped reads (FPKM).
The abbreviations for the piggybac transposon are: inverted terminal repeat 1 (ITR1), histidine-rich protein-2 (hrp2), human dihydrofolate
reductase (hdhfr), regulatory elements of calmodulin (cam), and inverted terminal repeat 2 (ITR2). The insertion occurs 1034 nucleotides
up-stream of k13 (see Additional file 1: S1 for a finer resolution mapping of the insertion site)
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early ring stage and is up-regulated during the early
trophozoite stage, as compared to its wild-type paren-
tal strain NF54. Microarray measurements from these
same time points are consistent with this interpret-
ation (Additional file 1: Figure S3).

K13 mutant transcriptome is overall simliar to wild-type
with the exception of several biological processes

Our initial global transcriptome analysis showed overall
conserved patterns of gene expression between the mu-
tant and wild-type transcriptomes. Even at the time
points where k13 is dysregulated, the transcriptomes
correlate well between the wild-type and mutant strains
(Pearson’s r of 0.95 for both 6 and 24 h) (Fig. 2a). Next
we analyzed the developmental time points of these
transcriptomes by using a previously published study
with extensive time points [25]. When the samples are
clustered based upon their similarity to the Derisi 3D7
reference transcriptome [27], the wild-type and mutant
strains of the same time point show the same relation-
ships to the 3D7 reference time points and progression
through the IDC, which is evident in the heatmap for
both the wild-type and mutant transcriptomes (Fig. 2b).
However, compared with the wild-type the mutant strain
at 6 h does not show as strong of negative correlations
with the trophozoite stage time points as the wild-type
strain; and this pattern becomes even more evident
when the correlations to the 3D7 reference IDC are plot-
ted out as line graphs (Fig. 2c).

The IDC is cyclical with the majority of genes showing
sinusoidal expression [25]. When the correlation of a
transcription profile for a single time point against the
reference transcriptome of 3D7 is plotted there will be
an increase in the correlation coefficient as the sample
time point approaches the corresponding reference time
point, followed by a steady decline in the correlation
coefficient as the sample time point becomes more dis-
tant to the reference time point until a new inflection
point is reached. If the transcription profile of the
mutant line is out of synch with normal IDC patterns
this curve will not be smooth.

As shown in Fig. 2c, at 6 h in the kI3 mutant, the
transcriptional rhythms are no longer in phase, suggest-
ing that a disruption in transcriptional regulation has
occurred that advanced the 6-h transcriptome towards a
more trophozoite-like state. The sequencing quality for
the wild-type and mutant 6-h samples are equivalent
(Additional file 1: S4), indicating the disruption seen in
the mutant at 6 h cannot be attributed to library prepar-
ation differences. Further, variation between biological
replicates at 6 h is not significantly different than vari-
ation at the other time point samples (p-values > 0.34 by
Wilcoxon rank sum test; Additional file 1: S5), indicating
increased sample variability is also not responsible for
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the observed IDC correlation plot distortion. Disrup-
tions to IDC correlation plots are also not present in a
piggyBac mutant with an insertion in gene PF3D7_
1305500 (Additional file 1: S6), indicating the transposon
does not cause cell-cycle shifts; and the effect is specific
to the k13 mutant. The fact that the 6-h samples display
the greatest divergence is particularly puzzling because
differential expression analysis with EdgeR shows that
the 6-h samples have the fewest number of differentially
expressed genes (Additional file 1: S7). Given that the se-
quencing data have good quality scores (Additional file 1:
S4), the variation between the 6-h replicates is not
unusually high and the paucity of differentially expressed
genes suggests that the observed shift in the transcrip-
tional rhythms at 6-h may be due to a small but consist-
ent shift in the expression levels of stage specific genes
functionally linked to k13.

To identify the genes most prominently linked to the
disrupted pattern of normal transcription, we developed,
what is to our knowledge, a novel computational method
to parse out the important differences between the data-
sets with a temporal sequence called the Dephaser Iden-
tifier (DI) algorithm. First, small numbers of genes were
removed based on their absolute rank difference in
expression between the wild-type and mutant strains
and the correlations between the mutant and wild-type
strain were recalculated. Subsequently, the process is
performed iteratively until the mutant and wild-type
strains have a correlation coefficient at least as high as
the initial highest correlation of either the mutant or
wild-type strain to the Derisi 3D7 reference transcrip-
tome (Fig. 3).

Our computational procedure identified 546 genes pri-
marily responsible for de-phasing of the rhythmic struc-
ture of the mutant 6-h IDC correlation curve. There are
305 genes that show an increase in their expression rank
and 241 genes that show a decrease in their expression
rank. Over-represented amongst the increased expres-
sion rank set are genes involved in DNA replication and
DNA replication initiation (Bonferroni corrected
p-values <0.0005; Fig. 4a) and in the decreased expres-
sion rank set genes involved in host cell invasion are
over-represented (Bonferroni corrected p-values < 0.005;
Fig. 4a).

The genes identified as dephasing at 6 h show consist-
ent changes in expression at 24 h (the time point where
k13 becomes aberrantly up-regulated). The increased ex-
pression rank de-phasing genes at 6 h are significantly
down-regulated at 24 h and the decreased rank expres-
sion genes are significantly up-regulated at 24 h
(p-values Determined by Wilcoxon Rank Sum test on
fold changes and for more information on the statistics
see Additional file 2: S2 and S3). For both increased and
decreased expression rank 6-h dephasing genes there are
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consistent shifts in relative rank with decreased rank ex-
pression dephasing genes having higher relative ranks in
the mutant compared to the wild-type at 24 h and 6 h in-
creased rank expression de-phasing genes are more likely
to have lower relative rank compared to the mutant than
expected by chance (p-values from Wilcoxon rank sum
test between de-phasing genes and random samples. See
Additional file 2: S4 and S5 for more information on the
statistics). The statistical evidence is much stronger for
the 6-h up-regulated dephasing genes; since kI3 is

aberrantly down-regulated at 6 h and aberrantly up-regu-
lated at 24 h together these results suggest K13 acts as a
negative regulator of this de-phasing gene set.

The DI algorithm identifies more biologically consist-
ent gene sets as dysregulated compared to randomly
sampled genes (Fig. 4a). Of 100 dephasing gene sets
created by randomly removing genes, only 3 (p-value =
0.03) created as many statistically significant gene sets
as the DI algorithm (Additional file 2: S6). Furthermore,
two independent control methods confirms that the DI
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Fig. 3 The DI Algorithm identifies genes responsible for IDC correlation shifts. The DI algorithm identifies the genes responsible for decreasing
the correlations of the mutant and wild-type transcriptomes by iteratively removing genes that show the largest changes in rank expression
between them. The genes are removed in one quantile batches and the correlations between the transcriptomes are re-computed. The filtering
process ends when the correlation between the mutant and wild-type transcriptomes is at least as good as the highest correlation either has
with the Derisi 3D7 IDC transcriptome. The correlation to Derisi 3D7 IDC transcriptome was chosen as an unbiased cut-off since 2 samples from
the same lab should be at least as well correlated with each other as a sample from a different lab. For the 6 h samples the DI algorithm
identified 546 genes as most disruptive to the transcriptome correlations and for the 24 h samples 127 genes were identified as being de-
phasing genes. The overlap between the dephasing sets was small (23 genes), but the genes identified as dephasing at 6 h showed consistent
regulatory changes at 24 h (Additional file 2: S2-55). The DI algorithm did not identify any genes as major disruptors in either the 38 h or 48 h
samples. The shift in the 38 and 48 h curves results because the DI algorithm can make correlation curves arbitrarily precise, however the genes
removed did not qualify as dephasing because the mutant and wild-type samples were already better correlated with each other than with the
Derisi reference set

algorithm produces highly specific results. For the first
control method, we randomly removed genes from
the transcriptome datasets, and we show that ran-
domly removing genes does not change the transcrip-
tome IDC correlations between 2 samples (Fig. 4b).
For the second control method, we ran our DI algo-
rithm on 100 simulated datasets, which showed that
the DI algorithm consistently identifies the genes that
decrease sample correlation each iteration whereas
randomly removing genes does not (Fig. 4c). To in-
crease confidence in our results, we removed lowly
expressed genes before filtering to prevent the DI al-
gorithm from being biased towards lowly expressed

high variability genes with large fold changes (Fig. 4d;
Additional file 2: S7).

Analysis of differentially expressed gene sets

To confirm that regulation of DNA replication is signifi-
cantly disrupted in the mutant, gene set enrichment ana-
lysis using GAGE was performed on all P. falciparum
pathways in KEGG [26, 27]. The enrichment analysis
showed that DNA replication and repair is up-regulated
in the mutant at 6 h and interestingly the same pathways
are down-regulated in the mutant at 24 h, when K13 is
up-regulated. This pathway analysis supports k13 being
a negative regulator of DNA replication and repair
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\

identifying high variance-low confidence genes as dephasing (Additional file 2: S7). This volcano plot shows that the identification of
dephasing driver genes is not biased by expression level like other methods of detecting transcriptome differences between samples

(Table 1). To confirm that DNA replication and repair
alterations in expression are specifically dysregulated
in the mutant transcriptome, we compared their ex-
pression changes to other housekeeping pathways
(Additional file 3) that are also actively transcription-
ally regulated around 6 and 24 h (Fig. 5; DNA replica-
tion and repair genes combined into one graph since
they have similar expression profiles—Additional file 1:
S8). Our results revealed DNA replication and repair
pathways are specifically disrupted at 6 and 24 h, in

contrast to housekeeping genes of the proteasome,
transcription, and translation. These housekeeping
genes have no shift in expression despite undergoing
similar rates of transcriptional regulatory changes
around the 6- and 24-h time points (Fig. 5c¢) [25].
Further, DNA replication and repair genes are nor-
mally expressed at higher levels at 24 h than at 6 h
(Additional file 1: S9A) [25], which is similar in the
wild-type strain NF54 (Additional file 1: S9B). However,
for the kI3 mutant, DNA replication and repair genes



Gibbons et al. BMC Genomics (2018) 19:849 Page 7 of 14

Table 1 KEGG pathways dysregulated in the mutant

6 hour up-regulated KEGG pathways 24 hour down-regulated KEGG pathways

KEGG p.geomean p.statmean p.wval q.val setsize KEGG p.geomean p.statmean p.val qg.val set.size
Gene set Gene set

pfa03030 DNA replication  2.49E-05 4.50 1.70E-12 748E-11 29 pfa03030 DNA replication  5.67E-05 —4.21 2.02E-17 890E-16 29
pfa03430 Mismatch repair 2.83E-03 2.96 1.18E-06 2.60E-05 19 pfa03430 Mismatch repair 7.03E-03 —2.51 8.72E-08 192E-06 19
pfa03440 Homologous 2.08E-02 217 261E-04 261E-03 13 pfa03440 Homologous 261E-02 -1.86 6.82E-05 7.50E-04 16
recombination recombination

pfa03410 Base 231E-02 2.05 4.57E-04 2.87E-03 16 pfa03410 Base 4.08E-02 -1.77 1.08E-04 9.48E-04 13

excision repair excision repair

Definitions of terms: p.geomean: geometric mean of p-values from pairwise sample comparisons. stat.mean: Average Mann Whitney U test statistic
from pairwise sample comparisons. p.val: p-value for the assumption of no change in pathway regulation. g.value: False discovery rate corrected p-values. set.size:
number of genes in the KEGG Gene Set
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Fig. 5 DNA replication and repair pathways are dysregulated, but housekeeping pathways are not. There are clear shifts in the expression patterns of
the DNA replication and repair genes that are not apparent in other gene sets that also undergo rapid transcriptional regulation at the same points of
the life-cycle. As indicated by the data from Bozdech et al. 2003, the proteasome, transcriptional machinery and translational machinery
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equivalent rates of transcriptional regulation (Additional file 1: S8). The g statistic in (@) and (b) refers to the false discovery rate
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actually have higher expression levels at 6 h then 24 h
(Additional file 1: S9B). These data indicate that the regu-
latory effect of k13 is specific for cell-cycle dependent
differentially-regulated genes, but not for others. In par-
ticular, DNA replication and repair expression levels
change consistently in response to differential k13 expres-
sion, but not in the other housekeeping pathways ana-
lyzed. In this k13 piggyBac mutant parasite clone that is
more sensitive to artemisinin, DNA replication and repair
expression levels at 24-h actually fall below their 6-h
expression levels when k13 is up-regulated strongly. This
result is interesting because in artemisinin-resistant strains
resistant k13 polymorphisms are associated with the
down-regulation of DNA replication genes during the
ring-stage [11] and in the trophozoite and schizont stages
[28], indicating that regulation of DNA replication genes
is linked to the artemisinin resistance response.
Chemogenomic profiling of P. falciparum isogenic
mutants has previously linked K13 to DNA replication
and repair [21]. Further, the functional interaction
network of P. falciparum [29] available as plasmoMap
predicts that DNA replication linked genes are over-
represented among the predicted functional inter-
action partners of K13 (Additional file 4—compiled
predictions from 3D7, HB3, and Dd2 with a minimum
threshold of 2.5). In particular, 4 of the 5 components
of DNA replication factor C complex are present in
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the predicted K13 functional interactors with a fold
enrichment of 8.02 and false discovery rate of 0.0007 as
computed by PlasmoDB. Indeed, our RNA-seq and micro-
array results are consistent with this prediction (Fig. 6 and
Additional file 1: S10) showing up-regulation of DNA rep-
lication factor C (PF3D7_0219600, PF3D7_0218000,
PF3D7_1463200, PF3D7_1241700, PF3D7_1111100) at
6 h and down-regulation at 24 h.

The structural similarity of K13’s BTB and propeller
regions to human Keapl, which is a known negative
regulator of transcription [18], supports the functional
interaction observed in P. falciparum between K13 and
the DNA replication and repair genes and likely results
from K13 regulation of a malaria parasite transcription
factor. To identify the most likely regulated transcrip-
tion factor, we looked for over-representation of dysreg-
ulated genes among genes with promoter sequences
associated with transcription factors that regulate DNA
replication genes described in Campbell et al. [30],
using Fisher’s exact test (Additional file 5). In this ana-
lysis, we found that the 6-h increased rank de-phasing
genes disproportionally (Bonferroni adjusted p-value
7.2e-6) have a promoter binding site for AP2 domain
transcription factor, putative (PF3D7_0802100). This
suggests that this AP2 domain transcription factor is a
positive regulator of growth negatively regulated by
K13 via ubiquitination (Fig. 7).
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Fig. 7 Proposed model of K13's biological role. The crystal structure of K13 resembles the E3 ubiquitin substrate ligase adapter Keap1, which is
known as a stress response regulator in humans. The structural similarity and the data suggest that K13 functions similarly to Keap1 promoting
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Discussion

Detecting differentially-expressed genes is notoriously
difficult in P. falciparum [31, 32] and this problem is ev-
idenced here by dramatic alterations to the transcrip-
tome that were undetectable at the individual gene level.
In this study, the difficulty of identifying differentially-
expressed genes stemmed from the low average
fold-change of only 1.4 for the most dysregulated genes.
However, small but coordinated changes in pathway
gene expression can have large phenotypic effects [33]
and the DI algorithm revealed that small but consistent
changes were occurring in genes with common biological
processes consistent with the identified dysregulated genes
being linked by co-regulation. We statistically verified that
dysregulation was occurring amongst the largest gene set
(DNA replication) identified as dysregulated by the DI al-
gorithm. Thus, the DI algorithm provides an unbiased
way to identify sets of genes to be examined for changes
in expression.

The k13 mutant (PB58) in this study came to our
attention through a chemogenomic screen of isogenic
mutants that identified it as being more sensitive to arte-
misinin antimalarial drugs than the wild-type parent
NF54 strain [21]. This mutant has a transposon in the 5’
upstream region of k13, suggesting dysregulation of k13
expression led to an altered drug sensitivity phenotype,

which this study confirmed. The fact that this dysregula-
tion occurs at 2 different stages of the IDC and involves
both up and down-regulation of kI3 allows the direct
testing of the effect of K13 expression on the broader
transcriptome.

DNA replication was identified as the biological process
with the largest enrichment amongst the dephasing genes.
Subsequently, we confirmed that DNA replication and
repair pathways are the most dysregulated of the P. falcip-
arum pathways annotated in KEGG. The dysregulation of
DNA replication and repair genes is specific as evidenced
by the fact that other housekeeping pathways that undergo
similar rates of transcriptional regulation show no shifts in
their expression levels. The unique k13 expression profile
of this mutant provides further evidence for this phenotype
with down-regulation of K13 corresponding to an up-regu-
lation of DNA replication and repair and up-regulation of
K13 corresponding to a down-regulation of DNA replica-
tion and repair.

k13 is the gene with the strongest observed link to the
artemisinin resistance phenotype observed with the in
vitro ring survival assay [34]. The link to artemisinin’s
mechanism of action is evident in the isogenic k13 mu-
tant studied here because it is more sensitive to artemin-
sin drugs than its wild-type parent strain NF54. These
previous data together with the transcriptome alterations



Gibbons et al. BMC Genomics (2018) 19:849

revealed by our analysis using the DI algorithm suggests
that K13 functional changes are relevant to P. falcipar-
um’s response to artemisinin. Other studies [17, 35] indi-
cate that the resistance associated kI3 alleles have
decreased target binding; however, the increased suscep-
tibility of this k13 mutant to arteminsins is puzzling be-
cause K13 is down-regulated during the early ring stage.
A logical conclusion of this observation is that the in-
creased sensitivity would occur during the early tropho-
zoite stage during which ki3 transcript levels are likely
either up-regulated due to the calmodulin promoter or
could participate in a negative feedback loop to suppress
the premature pro-growth phenotype. K13’s homology
to Keapl and the regulation of DNA replication and re-
pair as detected here are consistent with K13 being a
stress response regulator. A role for K13 regulating
DNA replication and repair comports with previous
studies that found artemisinin resistant strains
down-regulate DNA replication genes [11, 28] and previ-
ous network analysis studies that linked K13 to DNA
replication and repair [21, 29].

Conclusion

Understanding K13’s function is important to under-
stand the mechanism of artemisinin resistance. Given
that K13 is likely essential for parasite survival, regula-
tory mutants are one of the important ways to study
K13. This work compared the transcriptional profiles of
isogenic strain pairs of P. falciparum with divergent K13
regulation during the IDC. The points of dysregulation
show consistent and specific disruption to the normal
expression patterns of DNA replication and repair genes.
This finding supports the proposed function of k13 as a
regulator of stress response based on kI13’s homology to
KEAPI and is consistent with previous network analysis
studies that linked k13 to DNA replication and repair
[21, 29] and showed that artemisinin resistant strains
down-regulate DNA replication genes [11, 28].

Methods

Parasite culture and sequencing

RNA -seq

The parasite strains NF54 and PB58 (the K13 mutant)
[21] were maintained in identical standard culture
conditions and synchronized by 3 rounds of sorbitol
synchronization. The time points collected were 6
(n=3),12(n=2),24 (n=5),38 (n=3),and 48 (n =3
for wild-type and n =2 for K13 mutant) hours after
time zero. Time zero was defined as the time when
the synchronized culture was half late schizonts and
half early rings. When a culture reached a harvest time
point the parasites were separated from the red blood
cells with 0.015% saponin at room temperature for
5 min. The parasites were then pelleted and washed
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three times in 10 mL room temperature PBS and the
samples were stored at — 80 °C in 1 mL TRIzol reagent
(Fisher Scientific, Hampton, NH) until extraction. For
extraction 200 pl of chloroform was added and the
samples vortexed vigorously for 15 s and then incu-
bated at room temperature for up to 5 min. The sam-
ples were then spun down at 12000xg (10,800 rpm) at
4 °C for 10 min and the supernatant discarded. 1 mL
of 75% ethanol was added and then the samples spun
down at 10000xg (9800 rpm) for 5 min. The resulting
supernatant was discarded and the pellet briefly
allowed to dry and the pellet dissolved in 20-50 pl of
DEPC-treated water while being incubated at 55 °C for
10-15 min.

0.5 pg-1.0 pg of RNA samples were prepped for
sequencing using the Illumina TruSeq Stranded mRNA
Kit. Library quantification was measured by qPCR and
TapeStation (Agilent Technologies). Sequencing was
performed on an Illumina MiSeq using 300-cycle V2
MiSeq reagent kit (Illumina).

Microarray
The microarray measurements were performed as de-
scribed in [36]. Briefly, RNA was extracted using TriZol
reagent (Invitrogen, Carlsbad, CA) and the quality and
quantity determined by NanoDrop (NanoDrop Tech-
nologies). 300 ng of RNA was used for cDNA synthesis
using Sigma WTA2 whole transcriptome amplification
kit. 1 pug of ¢cDNA was labeled with Cy3 dye and
allowed to hybridize to a custom Agilent array for 17 h
followed by washing. The microarray image was taken
using a 2 pM scanner and probe intensity values
obtained using Agilent Feature Extraction software.
Normalization of probe intensities was done using the
robust multichip average (RMA) method. The time
points were obtained as described above for the
RNA-seq measurements and include the time points 6
(n =3), 24 (n =3) and 38 (n = 3) hours after time zero.

Ethical approval for the use of human blood in this
study was granted by the Institutional Review Boards of
the University of South Florida and the University of
Notre Dame. All of the blood used for the in vitro cul-
turing of parasites was obtained from healthy adult vol-
unteers and drawn by trained personal from Interstate
Blood Bank.

The NF54 strain was originally obtained from the
Naval Medical Research Center.

Obtaining gene expression data

Reads were aligned to 3D7 reference release 27 using
HISAT?2 version 2.0.4 [37]. Raw counts were obtained
using FeatureCounts Version 1.50.0-p3 [38] . Transcripts
were assembled using Cufflinks Version 2.2.1 and FPKM
(Fragments per kilobase per million mapped reads)
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values calculated using Cuffnorm Version 2.2.1 using the
classic-fpkm setting and normalization was performed
by strain and time point [39]. Expression data available
as Additional file 6.

Since lowly expressed genes are more subject to sto-
chastic fluctuations mitochondrial and apicoplast genes
as well as genes with less than 3 reads for every million
reads sequenced in more than half the samples were
removed from further consideration.

Identification of sample outliers

TMM (trimmed mean of M-values) normalized count
data was used to calculate Pearson correlation pairwise
between all replicates. If a sample had a correlation of
less than 0.7 with at least 2 other replicates it was
removed as an outlier. This cutoff was chosen based on
the fact that most of the biological replicates had correl-
ation coefficients of at least 0.7, but a few had correl-
ation coefficients that were lower.

Determination of K13 dysregulation

To test differential expression of k13 at 6 and 24 h the
wilcox.test in R version 3.4.1 was used to implement the
nonparametric Mann-Whitney test. The input was the
FPKM values for kI3 and the samples were tested for
down-regulation of K13 at 6 h and up-regulation of K13
at 24 h. The Holm procedure in R version 3.4.1 was used
to adjust p-values for multiple testing [40].

EdgeR analysis

Differential expression analysis was performed using
EdgeR version 3.18.1 [41]. As previously noted the counts
used as input to EdgeR were obtained using Feature-
Counts Version 1.50.0-p3. Mitochondrial, apicoplast and
genes with less than 3 counts per million in more than
half the samples were not considered (filtered as previ-
ously described). TMM (trimmed mean of M-values)
normalization [42] was performed prior to differential
expression analysis and differential expression was tested
between strains at each time point.

Determination of DNA replication factor C dysregulation
The differential expression of the DNA replication
Factor C components was performed following the same
procedure described under “Determination of K13 Dys-
regulation” for the 6 and 24 h time points except the
false discovery rate was used to adjust p-values [43].

Gene set analysis

All P. falciparum pathways annotated in KEGG on
September 4 2017 were analyzed for differential expression
using Gage 2.26.3 via the Mann Whitney U test on un-
paired samples [26].
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GSAR version 1.10.0 was used to perform a KStest
[44] on DNA replication and repair, proteasome, tran-
scription and translation gene ontology sets obtained
from PlasmoDB [45]. The lists of genes used to form the
gene sets is found in Additional file 3.

To see if the down-regulated dephasing genes at 6 h
are more likely to be up-regulated at 24 h we checked to
see if the fold-changes of these genes are higher than the
fold changes of a random sample of genes. The same is
done for the up-regulated dephasing genes, but now they
are expected to be more down-regulated. More specific-
ally, a Wilcoxon rank sum test on the log2 fold changes
of the FPKM values between the mutant and wild-type
strains at 24 h was performed and the results compared
to random samples. For the up-regulated dephasing
genes the controls were genes that also showed an
increase in relative rank at 6 h (n =1704) and for the
down-regulated dephasing genes the controls were genes
that showed a decrease in relative rank at 6 h (z = 1951).
This was performed 1000 times on different random
samples to get the p-value distribution (Additional file 2:
S3). The number of genes in each control set was equal
to the number of genes in the experimental set.

A similar procedure to that described above was used
to verify that the dephasing genes experienced consistent
changes to their relative ranks at 24 h. For this test the
input to the Wilcoxon rank sum test was the differences
in the gene expression relative rank of the mutant and
wild-type at 24 h. The resulting p-value distributions are
shown in Additional file 2: S5.

Mutant vs. wild-type similarity assessment

The sample transcriptomes were correlated with the
Derisi 3D7 transcriptome [25] downloaded from Plas-
moDB [45]. The steps to calculate the correlations are as
follows:

1. Replicate FPKM values were averaged

2. The average value for a gene at a specific time point
was divided by the average expression of that gene
for all time points and samples and the log2 taken

3. The Spearman correlation between each sample
time point was calculated with respect to each of
the 3D7 reference IDC time points individually

4. Time point and strain clustering as well as heatmap
creation were performed using the heatmap.2
function in gplots version 3.0.1

Computational procedure to identify dephasing genes

Significant distortions to the mutant 6 h transcriptome
were identified by plotting out line graphs of the Spear-
man correlation with the 3D7 reference transcriptome
(calculated as described above). Given that very few
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differentially expressed genes were detected at this time
point (Additional file 1: S7) we developed an algorithm
named Dephaser Identifier (DI) detailed below to iden-
tify the genes responsible for the distortions to the IDC
correlation curve. Prior to performing the procedure
mitochondrial and apicoplast genes as well as genes
with counts per million less than 3 in more than half
the samples were removed and only genes present in
our data set and in the Derisi reference transcriptome
set were used. The DI algorithm is as follows:

1. Calculate relative gene expression level vectors for
the control and mutant strains separately as follows

1 Average gene expression at a specific time point
o
2 Average gene expression across all time points

2. Define a minimum acceptable correlation
between the control and mutant strains. For this
experiment the minimum acceptable correlation
was defined as the highest spearman correlation
that either the control or mutant strain had with
a specific time point from the Derisi reference
IDC time points [25] with the logic that 2
samples from the same time point and the same
lab should correlate at least as well with each
other as with a sample from a different lab

3. Rank the relative gene expression levels for both the
control and mutant strains

4. For a given pair of time points and for each gene
calculate the difference in rank between the control
and mutant strains

5. Calculate the absolute value of the difference in
rank for each gene

6. Assign the absolute value of the rank differences for
each gene to quantiles (1% quantiles were used and
the quantiles were calculated using the type 7
procedure in R version 3.4.1)

7. Remove the highest unfiltered quantile of genes
from the relative gene expression level vectors for
the control and mutant strains and calculate the
Spearman correlation

8. Repeat step 7 until the Spearman correlation
between the control and mutant strains is higher
than the minimum acceptable correlation or there
are no more genes left to filter

DI algorithm performance assessment
To determine if the DI algorithm was identifying function-
ally related genes better than chance a simulation was run
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100 times were a set of genes equal to the number of 6 h
dephasing genes (n =546) was randomly chosen and
checked for biological process enrichment using topGO
[46]. The minimum gene ontology set size (the node_size
parameter in topGO’s run_enrichment_tests function) was
set to 10 and a classic Fisher test was performed. Gene
ontology terms with p-values of less than or equal to 0.05
were considered significant. The Bioconductor library
org.Pf.plasmodb [47] was used to obtain the gene ontology
annotations. The same procedure was performed once on
the real 6 h dephasing gene set and the results compared
to the simulation (Additional file 2: S6).

Identification of transcription factor regulators

Genes with promoter regions linked to DNA replica-
tion regulating transcription factors were identified
from the data set reported by Campbell et al. [30].
Campbell et al. linked 5 AP2 domain containing genes
to DNA replication genes. The genes associated with
each of these transcription factors were downloaded
from PlasmoDB [45] if the p-value for an association
with one of the transcription factors was less than or
equal to 1x 10" % As shown in Additional file 5 the
genes associated with each of the transcription factors
were used to partition the genome into genes pre-
dicted to have a binding site for the given transcrip-
tion factor or not and whether or not the gene was
identified as being an up-regulated 6 h dephasing gene
or not to create contingency tables. The contingency
tables were used to perform Fisher’s Exact Test in R
version 3.4.1 and the p-values corrected using the
Bonferroni method.

Additional files

Additional file 1: Supplemental data pertaining to the K13 mutant and
P. falciparum transcriptome. (PDF 1197 kb)

Additional file 2: Supplemental data pertaining to DI algorithm. (PDF 483 kb)

Additional file 3: Housekeeping gene sets. Genes sets for DNA replication
and repair, translation, transcription and proteasome. (XLSX 70 kb)
Additional file 4: Predicted K13 functional interactors. Genes predicted
to have functional interactions with K13 from plasmoMAP. (XLSX 57 kb)

Additional file 5: Fisher's exact test results for transcription factor
binding sites linked to dephasing genes. (XLSX 42 kb)

Additional file 6: Expression data. Expression data as counts and FPKM.
(XLSX 2029 kb)
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