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Abstract

Background: The ability of a genotype to produce different phenotypes according to its surrounding environment
is known as phenotypic plasticity. Within different individuals of the same species, phenotypic plasticity can vary
greatly. This contrasting response is caused by gene-by-environment interactions (GxE). Understanding GxE
interactions is particularly important in agronomy, since selected breeds and varieties may have divergent
phenotypes according to their growing environment. Industrial microbes such as Saccharomyces cerevisiae are also
faced with a large range of fermentation conditions that affect their technological properties. Finding the molecular
determinism of such variations is a critical task for better understanding the genetic bases of phenotypic plasticity
and can also be helpful in order to improve breeding methods.

Results: In this study we implemented a QTL mapping program using two independent cross (~ 100 progeny) in
order to investigate the molecular basis of yeast phenotypic response in a wine fermentation context. Thanks to
whole genome sequencing approaches, both crosses were genotyped, providing saturated genetic maps of
thousands of markers. Linkage analyses allowed the detection of 78 QTLs including 21 with significant interaction
with the environmental conditions. Molecular dissection of a major QTL demonstrated that the sulfite pump Ssu1p
has a pleiotropic effect and impacts the phenotypic plasticity of several traits.

Conclusions: The detection of QTLs and their interactions with environment emphasizes the complexity of yeast
industrial traits. The validation of the interaction of SSU1 allelic variants with the nature of the fermented juice
increases knowledge about the impact of the sulfite pump during fermentation. All together these results pave the
way for exploiting and deciphering the genetic determinism of phenotypic plasticity.
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Background
Phenotypic plasticity, which is the ability of a genotype to
produce distinct phenotypes in different environmental
conditions, has been widely reviewed [1–3]. It encompasses
various aspects of the organism’s life including ontogeny
[4], lifespan [5, 6], response to biotic [7, 8] or abiotic [9, 10]
factors, pathogen or disease susceptibility [11–13], and

animal behavior [12, 14]. As a universal mechanism, pheno-
typic plasticity has been reported in humans [12], animals
[6, 15, 16], plants [4], and fungi [17, 18]. The term of
phenotypic plasticity can be used at different integrative
levels. At the population level the phenotypic plasticity is
the overall phenotypic response of a species to different en-
vironments. The genetic basis of those responses is mainly
explained by transcriptional [19, 20], post-transcriptional
[21], and/or epigenetic [12, 17] regulations. Phenotypic
plasticity can also be considered at the individual level
within a species [1, 3]. In this case the phenotypic plasticity
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is measured for specific genotypes. The phenotypic re-
sponse pattern observed is termed the reaction norm.
Among individuals of the same species, non-parallel reac-
tion norms are often observed in animals [22, 23], plants
[24, 25] and fungi [26]. These different patterns of response
are due to the genotype-by-environment interaction (GxE)
determined by allelic variations having different effects ac-
cording to external conditions. The genetic bases of GxE
interactions can be investigated at a genomic level by QTL
mapping programs or genome-wide association studies car-
ried out in various environmental conditions. These two
strategies have commonly been used for animals [27–29],
plants [30–32] and QTL mapping for fungi [33–36]. Al-
though many QTLs interacting with environment are often
detected, the identification of the genetic basis of GxE at a
gene level is far from being trivial. Therefore only few mo-
lecular evidences has been reported in plants [37, 38] and
yeast [39, 40].
In agronomy, the concept of phenotypic plasticity has

been integrated a long time ago to ensure the stability
(robustness) of domesticated plant varieties and animal
races across diverse uncontrollable macro environments
[22, 41–43]. Apart from species of agronomic interest,
fungi and in particular yeast are eukaryotic organisms
with an important economic impact. The bakers’ yeast
Saccharomyces cerevisiae, is by far the major industrial
microorganism since it is involved in production of nu-
merous fermented foods including bread, wine and beer
[44]. These processes can be better controlled, by using
industrial starters that have been subjected to genetic se-
lection using breeding programs [45]. Depending on the
composition of the fermentation matrix, yeasts are faced
with various stresses and conditions inducing contrast-
ing technological response. In winemaking, the initial
composition of the grape must strongly impacts the al-
coholic fermentation. Indeed, grape cultivars, enological
practices, terroir and climate modulate biotic (popula-
tions size of various species including yeasts, molds, bac-
teria) and abiotic (sugar, nitrogen, lipid, vitamin
concentration, oxygen, temperature, turbidity) factors
and strongly shape the phenotypic variability of wine
yeasts [46–55]. Understanding how and why industrial
starters have non-parallel norms of reaction is a critical
challenge for industrial yeast selection. Understanding
phenotypic robustness (also named canalization or
homeostasis) is of great importance for selecting more
robust individuals able to ensure successful fermentation
in a wide range of conditions. Recently the dissection of
fermentation kinetics QTLs demonstrated that two
genes involved in pH homeostasis showed GxE inter-
action according to wine pH [40]. In the present work,
we applied a QTL mapping program aiming to identify
QTLs interacting with environmental conditions. Eleven
quantitative traits related to alcoholic fermentation were

measured for two distinct populations of ~ 100 progeny
each in three distinct conditions simulating diverse
winemaking practices. The use of two independent back-
grounds allowed estimation of the impact of parental di-
vergence on QTL identification. High-density genetic
maps generated by genome sequencing enabled QTLs to
be detected at the gene level. Although most of the
QTLs were robust to environmental changes, some
striking GxE interactions were identified. One of these
was explained at the molecular level revealing that the
sulfite pump Ssu1p has a strong pleiotropic and plasti-
city role in wine fermentation.

Results
Experimental design to capture GxE
The purpose of this study was to find out at a large scale
QTLs interacting with the environment by using the model
yeast S. cerevisiae. As QTLs can be readily used in yeast
breeding for strain improvement, this work was carried out
in an enological context by measuring the phenotypic plas-
ticity of wine related strains in three contrasting conditions
met in winemaking. Two particular effects were investi-
gated: (i) the phenotypic plasticity of yeast fermenting red
or white grape musts (GM) was estimated by comparing
M15_Sk (red) vs SB14_Sk (white) conditions, reflecting
common types of grape juice fermented around the world.
(ii) the phenotypic response to micro-oxygenation (μ-Ox)
in accordance with enological practices [56] was estimated
by comparing M15_Sk (shaken) vs M15 (unshaken). In
order to have the broadest landscape of phenotypic plasti-
city, we performed QTLs mapping in two distinct genetic
backgrounds derived from commercial starters widely used
in industry (SB, GN, M2 and F15). The full experimental
design is summarized in Fig. 1. With this dataset, we ad-
dressed a main question: we investigated if yeast strains dis-
play different norms of reaction according to the grape
juice and the fermentation condition used and if we can
identify the causative genetic determinants. By performing
the experiment with two independent crosses, we also had
the opportunity to evaluate the impact of the genetic and/
or phenotypic characteristics of parental strains on the
architecture of quantitative trait determinism.

Parental pairs have divergent profile at the phenotypic
and genetic level
The parental strains were phenotypically and genetically
characterized with other Commercial Wine Starters
(CWS). The goal is to position these strains among their
counterparts. In order to estimate the genetic relation-
ships between the four parental strains, 15 polymorphic
microsatellite markers were used [57]. The codominant
allele set of each parental strain was compared to those
of 96 CWS encompassing the overall diversity of the S.
cerevisiae wine group (Additional file 1: Table S1). This
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dataset was used to build a tree using Bruvo’s distance
(Fig. 2a). The pairwise Bruvo’s genetic distance between
all the strains ranged from 0 (identical strains) to 0.924,
with an average of 0.552. According to previous studies,
the wine strain population is poorly structured. Four
groups of strains (nodes with bootstrap values higher
than 85%) were found. One of these groups corresponds
to the Champagne-like strains, which have specific gen-
etic features [57, 58]. A second encompasses the strain
Actiflore Bo213 and the parental strain SB. As expected,
the parental monosporic clones (SB, GN, M2, F15) are
closely related to their respective commercial ancestors
(Actiflore BO213, Zymaflore VL1, Enoferm M2 and
Zymaflore F15, respectively). Considering the overall
genetic diversity of the S. cerevisiae species, the wine
yeast cluster constitutes quite a homogenous group [57,
58]. However, within this group the genetic relationships
between parental pairs are different. The strains GN and
SB are more divergent than the strains M2 and F15
(Bruvo’s genetic distance = 0.611 and 0.216, respectively;
Fig. 2b). Similar results were obtained by calculating the
% identity of a subset of 5281 polymorphic SNPs ex-
tracted from parental genomes (Sharma, personal com-
munication). The relative phenotypic distance between
parental strains was estimated using the phenotypic
values of eight fermentation traits measured in five grape
musts for 35 strains previously obtained [56]. In order to
represent the genetic diversity of commercial starters,

the sampled strains belong to the different branches of
the tree. The pairwise Euclidian’s phenotypic distance
between all the strains ranges from 0.73 (similar strains)
to 9, with an average of 3.7. The strains SB and GN are
phenotypically very different (9) while F15 and M2 have
more similar phenotypes (3). All together, these results
demonstrate that the hybrids used for QTL mapping
(M2xF15 and SBxGN) were obtained from independent
strains showing either low or medium genetic distances
and medium or high phenotypic distances.

Meiotic recombination emphasizes phenotypic variability
in either tested cross
By implementing alcoholic fermentations in a small volume,
eleven heritable traits were measured in three grape musts/
conditions for 195 strains in duplicate constituting a data set
of 14,000 data points (Additional file 2: Table S2). From fer-
mentation kinetics, six representative traits were extracted:
lag phase duration (lp), time to produce various amount of
CO2 (t35 g, t50 g and t80 g) and fermentation rate during
the first (V15_50) and the second part of the fermentation
(V50_80). Moreover four metabolites present at the end of
the fermentation were measured by enzymatic assays: acetic
acid, glycerol, pyruvate and SO2. All fermentations were
completed since the residual sugars were less than 2 g.L− 1.
The progress of alcoholic fermentation was measured by es-
timating the CO2max produced, which is stoichiometric to
ethanol. The inheritance of the eleven quantitative traits was

Fig. 1 Experimental design. Four diploid homozygous strains (SB, GN, F15, M2) were used to generate two independent hybrids (SBxGN and
M2xF15) and their 94 and 95 segregants, respectively. The whole genome sequence of each parental strain and each progeny was obtained by
high throughput sequencing and analyzed to get saturated genetic maps (3433 and 8378 markers, respectively). The phenotypic characterization
of the strains was carried out in three conditions (SB14_Sk, M15_SK and M15) in small volume vessels. Fermentation time course was monitored
and six traits were computed: lag phase (lp), time required to produce 35, 50 and 80 g.L− 1 of CO2 (t35 g, t50 g and t80 g, respectively) and
glucose consumption rate in the first and the second part of the fermentation (V15_50 and V50_80, respectively). The concentrations of five
end-point metabolites were also assayed by enzymatic methods (acetic acid, glycerol, pyruvate and SO2) or by weighting (CO2max). Grape pictures
were reprinted from CC-BY licences, the copyright holders being Lebowskyclone (Merlot) and User:Vl (Sauvignon Blanc). Machinery picture is own
by the authors
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calculated for each cross and condition (Fig. 3a). Most of the
traits were highly heritable since 75% of them had h2 values
higher than 0.5. Considering all the traits, each
cross-by-environment combination had a distinct heritability
profile and hierarchical clustering grouped them by environ-
ment rather than by cross (Fig. 3a).
The overall level of phenotypic segregation of both

sets of segregant was estimated by computing the Eu-
clidean distances within each progeny clone. The trait
values for each condition were normalized (center-re-
duced) for preventing scale effects and only one kinetics
trait (t80 g) was used, since most of them were strongly
correlated (see method) (Fig. 3b). The parental pairwise
distances confirmed that SB vs GN are phenotypically
more divergent than M2 vs F15 (Euclidian distance = 7.6
and 2, respectively). These contrasting relationships do
not impair a wide segregation in both progeny popula-
tions. Indeed, the distributions of phenotypic distances

are similar between the M2xF15 and SBxGN progenies
illustrating that meiotic segregation generated a burst of
phenotypic novelty (Fig. 3b). Surprisingly, the pheno-
typic diversity generated was higher than those observed
for the panel of 31 representative commercial starters
phenotyped in the same conditions (Additional file 3:
Figure S1). As a direct consequence, the percentage of
transgressive progenies was much higher in the M2xF15
background, except for CO2max and pyruvate (Fig. 3c).
The percentage of transgression in both crosses is illus-
trated for the t80 g measured in M15_Sk in Fig. 3d. Col-
lectively, these biometric analyses indicate that meiotic
segregation generated an important and similar pheno-
typic diversity despite the contrasting relationships of
the two parental pairs. In contrast, the relative pheno-
typic distance of parental strains had a strong effect on
the transgression level observed. In both cases, the
phenotypic variability generated significantly exceeded

Fig. 2 Genetic distance between parental strains. Panel a Genetic relationships between 96 commercial wine yeast strains and the four parental
monosporic clones GN, M2, F15 and SB used in this work (diamonds). The dendrogram tree was built using Bruvo’s distance and Neighbor-Joining’s
clustering strains from the inheritance of 15 polymorphic microsatellites described by Legras et al. [55]. Black dots represents nodes encompassing
group of strains highly similar (bootstrap values > 85). Among the strains genotyped, 31 (CWS) have been previously phenotyped and covered all the
branches of the tree (blue squares). Panel b The distribution of Bruvo’s distance for all genotyped strains. The relative distances between SB vs GN and
M2 vs F15 are 0.61 and 0.22, respectively. Panel c The distribution of the phenotypic distance computed for 35 strains (31 CWS and the four parental
strains). The data used eight traits in five grape musts and were obtained from [56]. Dashed lines shows the relative distance between parental pairs SB
vs GN and M2 vs F15
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that found for a wide panel of commercial starters. Des-
pite the fact that this analysis was only carried out with
two crosses, this underline the power of meiotic segrega-
tion to generate phenotypic transgression.

Distribution of individual reaction norms in segregating
populations show ubiquitous GxE
The phenotypic plasticity was then analyzed for both
progeny populations. First, the impact of the cross was
tested using the linear model LM1 that estimates the ef-
fects of cross (C) and environment (E) as well as their

primary interaction (C*E) (Additional file 4: Table S3).
Analysis of variance shows that the sum of C and C*E
had very low effects (below 3.4% in average) for all phe-
notypes. This result indicates that both crosses have the
same phenotypic response to environmental changes.
The environmental conditions (μ-Ox and GM) affected
the traits in a different manner. Three representative
patterns of phenotypic response are shown in Fig. 4; the
full details are given in Additional file 5: Table S4. As
the two grape musts (SB15 and M14) used have different
concentration for SO2 (34 mg.L-1 vs 46 mg.L-1) and

Fig. 3 Phenotypic distribution patterns in the two progeny populations. Panel a Heritability calculated for each trait according to cross and
condition. Panel b Dashed lines show the phenotypic distance between parental strains. Shaded areas show the distribution of the phenotypic
distance within progenies. Panel c Average percentage of transgression per trait in the three conditions according to the cross. Color key is
scaled by trait, dark green means high transgression level and dark red low transgression level. Panel d The distributions of V50_80 (M15_Sk
condition) illustrate the transgression discrepancy observed between the two crosses. Each dot represents a strain value ordered according to the
rank. Parental phenotypes are indicated by arrows. Dashed vertical lines represent the upper and lower limits set for considering transgressive
progeny clones

Peltier et al. BMC Genomics          (2018) 19:772 Page 5 of 20



sugars (194 g.L-1 vs 219 g.L1), the production of SO2

and CO2 (Fig. 4a) was directly impacted by the grape
juice matrix. In contrast, other traits such as glycerol
(Fig. 4b) and acetic acid were mainly impacted by μ-Ox.
Indeed, in accordance with previous reports, an in-
creased μ-Ox level increases glycerol production and de-
creases acetic acid production [50, 53, 56, 59]. Some
traits were influenced by both parameters (GM and
μ-Ox), including kinetic parameters like V50_80 (Fig.
4c). The influence of sugar content and μ-Ox on kinetic
parameters has also been reported previously [49, 55].
Finally, pyruvate production was only slightly impacted
by the environmental conditions.
In order to estimate the reaction norm at a strain level,

the variation of each trait was decomposed by a second
linear model (LM2 see methods). In this model, the over-
all genetic impact was decomposed into S and S*E compo-
nents. S represents the constant strain effect across the
three conditions (i.e. parallel norm of reaction) whereas
S*E represents the phenotypic plasticity among strains (i.e.
non-parallel norm of reaction). The analysis of variance
estimated the effect of strain (S) and environment (E) fac-
tors as well as the strain x environment (S*E) interaction
(Table 1). The model explained a great part of phenotypic
variation (between 62.8 and 96.5% according to the trait).

For the majority of traits, environment accounted for most
of the variation. However, the constant strain effect S (par-
allel norm of reaction) also explained an important part of
phenotypic variability (up to 52.4% for pyruvate). For
some traits, an important phenotypic plasticity was ob-
served. This is the case for lp (26.1%) and acetic acid
(20.6%), for which a non-parallel norm of reaction (S*E)
made a non-negligible contribution. Interestingly, the gen-
etic weight for CO2 production kinetics increased with the
fermentation ongoing. Indeed, the sum of S + S*E ex-
plained 17.1% of the variance for t35 g and linearly in-
creased to 37.6% for t80 g.
In order to better determine the parallel (S) and

non-parallel (S*E) norms of reactions, the phenotypic
plasticity of the 189 strains was organized by
k-means clustering on the basis of a matrix of correl-
ation distance (see methods). This procedure clus-
tered each progeny clone according to its phenotypic
response against environment. Divergent norm of re-
action patterns were identified for each trait (Add-
itional file 6: Figure S2). For acetic acid, four clusters
were obtained, they mainly contained strains with
plastic response to micro-oxygenation (μ-Ox: 101
strains), to grape juice (GM: 44 strains), and to the
combined effect of GM and μ-Ox (40 strains) (Fig. 5).

Fig. 4 Environnemental impact on quantitative traits Distribution of the phenotypic values according to fermentation conditions. Vertical dashed
lines indicate the average value in each condition. CO2max is mainly impacted by grape must (Panel a), glycerol mainly by micro-oxygenation
(Panel b) and V50_80 by both (Panel c)
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Strikingly only seven strains (3.7%) appeared robust
regarding environmental conditions (Robust cluster).
In the four clusters, a similar number of progeny
clones was found for the two crosses (chi-squared
test, α = 0.05) indicating that the plastic response pat-
tern is not cross specific. From an enological point
of view, the magnitude observed is quite relevant
since a 0.1 g.L− 1 acetic acid difference may impact
wine quality [60]. For example, micro-oxygenation
had a positive impact for the strains of the cluster
μ-Ox and the cluster GM + μ-Ox by significantly de-
creasing acetic acid production (Kruskal-Wallis rank
sum test, p val < 0.05). In contrast the strains of clus-
ter GM should be preferred for fermenting white
grape juice rather than red matrices (Kruskal-Wallis
rank sum test, p val < 0.05).

Genetic architecture of complex traits for M2xF15 and
SBxGN crosses is explained by a similar number of QTLs
The genetic determinism of the eleven traits was eluci-
dated by QTL mapping in both crosses. Phenotypes
were linked to segregating genetic markers identified by
whole genome sequencing ([61] and this work). The
high marker density (0.3 and 0.6 markers/kb for M2xF15
and SBxGN, respectively) ensure a precise localization of
QTLs [40, 62, 63]. Interval mapping was carried out by
applying a Haley-Knott regression model. This model es-
timates the effect of each QTL detected, the effect of
each Environment (SB14_Sk, M15, M15-Sk) and the
interaction effect between QTL and Environment (Fig.
6a). Statistical thresholds (false discovery rate (FDR) =
5%) were estimated by 1000 permutation tests [64].
Since the fermentation kinetics traits were partially

Table 1 Analysis of variance of the model LM2 for the 11 phenotypes with 189 strains and three conditions of fermentation

CO2max Lp t35 g t50 g t80 g V15_50 V50_80 SO2 Acetic acid Pyruvate Glycerol

E 90.6 *** 12.8 *** 77.2 *** 71.2 *** 53.3 *** 59.4 *** 53.3 *** 54 *** 22.1 *** 9.2 *** 55.3 ***

S 2.7 *** 23.9 *** 10.8 *** 13.9 *** 21.4 *** 17.8 *** 19.6 *** 18.3 *** 36.1 *** 52.4 *** 13.6 ***

S*E 3.2 *** 26.1 6.3 *** 8.4 *** 16.2 *** 11.7 *** 17.8 *** 12.6 *** 20.6 *** 17.9 ** 13.2

Residuals 3.5 37.2 5.6 6.5 9.2 11.2 9.4 15.1 21.2 20.5 17.9

Percentage of variance explained by the LM2 model. Signifiance codes: p. val < 0.001 = ***, p. val < 0.01 = **, p. val < 0.05 = *

Fig. 5 Divergent norm of reaction for acetic acid. Norm of reaction of each individual is shown by dotted line and cluster. They are colored
according to the cross (blue for SBxGN cross and red for M2xF15 cross). A grey solid line shows the average norm of reaction of each cluster.
Number of strains within each cluster is indicated and colored according to the cross (red for M2xF15 cross and blue for SBxGN cross)
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Fig. 6 (See legend on next page.)
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correlated (t35 g, t50 g, t80 g, V15_50 and V50_80), we
found numerous QTLs corresponding to closely related
markers. In such cases, a unique QTL was considered in
a window of 10 kb and was assigned to the kinetic trait
showing the lowest p value (see methods). For ease of
discussion, all the QTLs found for fermentation kinetics
traits were then grouped into the “Kinetics” category.
We mapped 78 unique QTLs in the two crosses (Add-
itional file 7: Table S5). With a 5% FDR only less than 4
of these QTLs are expected to be false positives. The ef-
ficiency of the multi-environment model was compared
to the simplest models, in which only one environmental
condition was used. The multi-environment model
strongly increased detection power since 45 additional
QTLs were detected by this method (Fig. 6b). Five QTLs
were only detected with one-environment model and
not with the multi-environment model. Rather than add-
itional QTLs, they should be miss localized QTLs as dis-
cussed in the discussion. The number of QTLs detected
ranged from three (for CO2max) to 28 (for Kinetics) il-
lustrating the complex genetic determinism of the traits
investigated. The number of QTLs identified is corre-
lated with the heritability measured for the trait (Spear-
man’s correlation coefficient = 0.7, α = 0.05)
(Additional file 8: Figure S3).
Despite the contrasting F1-hybrids used (Figs. 2 and 3), a

similar number of QTLs was mapped in both progeny pop-
ulations, with 36 and 42 QTLs for M2xF15 and SBxGN, re-
spectively (Fig. 6c). The positive contribution of each
parental strain was evaluated considering the suitable trait
value expected according to enological practices. The num-
bers of positive alleles inherited from M2, F15, SB and GN
was 19, 17, 31 and 11, respectively. According to the trait
and the cross, the positive alleles were inherited from both
or mostly one parent. A noteworthy unbalance was found
for kinetics traits since 15/16 of the positive alleles were
inherited from the fastest parental strain (SB) in the SBxGN
cross whereas only 6/13 were inherited from the fastest par-
ental stain (F15) in the M2xF15 cross (Fig. 6c). In order to
find QTLs common to both progeny populations, we sought
QTLs impacting the same trait in a 20-kb window (Fig. 6d).
Only two QTLs were shared by the two progeny

populations. The first locus was detected for SO2, lp and
V50_80 and is closely linked to the gene SSU1 (markers:
XVI_SBxGN_371802 and XVI_M2xF15_355235). In the SBxGN
progeny, this QTL peak was strongly linked with the marker
XV_SBXGN_172951 (Additional file 9: Figure S4). This gen-
etic linkage between two presumably independent markers
is caused by a reciprocal translocation event previously de-
scribed in wine yeasts [65]. The linkage between SSU1 and
the SO2 content at the end of the alcoholic fermentation is
consistent with its molecular function. Indeed this gene en-
codes a sulfite transporter (Ssu1p) able to pump out the
SO2 accumulated in the cytoplasm [66]. The GN inheritance
of this QTL, which reduces lag phase by increasing the
SSU1 expression [65] also increases the final SO2 concentra-
tion (Fig. 6). Interestingly, in the M2xF15 hybrid the marker
XVI_M2xF15_355235 was strongly linked to the marker
VIII_M2xF15_6499 (Additional file 9: Figure S4). These two
loci correspond to a translocation event (VIII-t-XVI) involv-
ing the gene SSU1 previously described by Perez Ortin et al.
[67] and present in M2xF15 hybrid [61].
The second common QTL mapped concerns the pro-

duction of pyruvate and is located on chromosome VIII
(markers VIII_SBxGN_446336 and VIII_M2xF15_449469).
This QTL explains 19.6 and 30% of the total variance of
pyruvate production in M2xF15 and SBxGN cross, re-
spectively. Until now, the sequence analysis of the four
parental strains did not reveal any relevant candidate
SNP close to this QTL.
All together these results suggest that most of the

mapped QTLs are background dependent. Moreover, the
similar number of QTLs in both progenies demonstrates
that the mapping efficiency is not related, neither to the
genetic, nor to the phenotypic distances between parental
strains. However, a balanced contribution is more frequent
when the strains are phenotypically similar.

QTLxEnvironment interactions shape the phenotypic
variability
The genetic determinism of phenotypic plasticity was then
investigated at a genomic scale using the linear model LM3
(see method). For each QTL mapped, the constant genetic
effect across environment (G), the interaction effect with

(See figure on previous page.)
Fig. 6 Number of QTLs identified according to cross or environmental conditions. Panel a. LOD score obtained with SBxGN cross for V50_80. In
grey, LOD score for the model with environment as additive variable, in pink, LOD score for the model with environment as interactive variable.
The corresponding horizontal colored lines represent the 5% FDR threshold. The table details the QTLs identified by indicating their chromosome
(Chr), the position of the marker with the highest LOD score within the QTL peak (Pos), the maximum LOD score within the QTL peak (Lod.score)
and the model that detected the QTL (Type, A = additive, I = interactive). Panel b. The Venn diagram presents the number of QTLs identified
according to the model used. The All ellipse corresponds to the multi-environmental model while M15, SB14_Sk and M15_Sk ellipses counts QTLs
detected only using a single condition. Panel c. The bar chart presents QTLs identified according to cross and trait. Common QTLs identified for
t35 g, t50 g, t80 g, V15_50 and V50_80 are pooled in Kinetics category and are counted only as one QTL. QTLs are colored according to the
parental strains that possess the favorable allele in an enological context. Panel d. Distribution of the QTLs identified along the genome
according to the cross (M2xF15 inner track, SBxGN outer track). Each point indicates a QTL and is colored according to the trait. The two QTLs
that colocalize in the two crosses are indicated with a black pike
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grape must (GM), as well as the interaction effect with
micro-oxygenation (μ-Ox), were estimated by analysis of
variance. From this analysis, QTLs could be sorted as ro-
bust (no interaction) or interactive (significant interactions
with GM and/or μ-Ox). The overall GxE pattern was
shown for both crosses (Fig. 7). The less the QTLs inter-
acted with GM and μ-Ox, the closer they were from the
bottom left corner of the ternary plot. Most of the QTLs
(57/78) were quite robust to environmental changes (Add-
itional file 10: Table S6). This was the case for the QTL
V_M2F15_311505 that is one of the most robust. Indeed,
progeny clones with both M2 and F15 inheritance showed
parallel norms of reaction for V50_80. In contrast, 21 GxE
interactions were detected and most of them (17) were due
to the grape must composition. Interactions were mostly a

“scale effect” or specific effect as shown for the inheritance
of the marker XVI_SBxGN_879639, which had an impact on
t35 g only in unshaken conditions (Fig. 7). Few loci had an-
tagonistic effects like the QTL V_SBxGN_161933 that influ-
ences fermentation kinetics V50_80 according to the grape
must. The Additional file 10: Table S6 and Additional file 11:
Figure S5 provides a complete overview of GxE for the 78
QTLs detected in this work.

Molecular dissection of the XV-t-VXI translocation
demonstrates its interaction with environment
The accuracy of the QTL mapping and the powerful mo-
lecular genetics of S. cerevisiae offer the possibility to bridge
the gap between a QTL and the causative nucleotide varia-
tions. A particular GxE interaction is discussed in this

Fig. 7 Interaction level of QTLs and environmental conditions. Panel a. The ternary plot shows the proportion between genetic effect (G),
interaction with grape must (GM) and interaction with micro-oxygenation (μ-Ox) for each QTL. Significance levels were assessed by ANOVA (α =
0.05). Panel b. Three examples of QTLs for which extreme levels of interaction were identified (i.e. the less interacting QTL, the most interacting
QTL with micro-oxygenation and the most interacting QTL with grape must). Dashed lines show the reaction norm of each segregant according
to their allele inheritance. Full lines show average value of the all the segregant according to marker inheritance
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section. Among the QTLs of interactions,
XVI_SBxGN_373847 strongly linked three traits (lp, SO2, and
V50_80) and is located in the gene SSU1. Since this QTL
was physically linked to the marker XV_SBXGN_172951 we
concluded that the XV-t-VXI translocation could play a
pleiotropic role during alcoholic fermentation. In addition,
this QTL showed important GxE interactions with GM that
are likely due to the difference in the SO2 effect between red
and white grape juices. In order to test if the SSU1 inherit-
ance has both pleiotropic and GxE effects, we compared the
phenotypic response of previously obtained hemizygous hy-
brids. Those hybrids are isogenic to SBxGN but have only
one functional copy of SSU1. The allele SSU1SB is located in
a wild type chromosomal environment (XVI-wt), while the
allele SSU1GN has a translocated environment. The chromo-
somal break point occurs at the position 161,342 and
373,561 for the chromosome XV and XVI, respectively. This
increases its expression due to the proximity of the ADH1
promoter [65]. The phenotypic responses of hemizygous
hybrids were measured in the three conditions (Add-
itional file 12: Table S7) and compared to the two groups of
SBxGN according to their inheritance for the SSU1 locus

(Fig. 8). For each of the traits investigated, the progenies re-
action norms and hemizygous hybrid responses were very
similar. Both interacted significantly with GM and the slope
on variation was oriented in the same direction. Strains that
have an active SSU1 translocated gene (hemizygote SBxGN
SSU1GN / ΔSSU1SB) or segregants that inherit from GN) are
different from other strains with no lp increase in SB14_Sk
and a 10% lower V50_80 in SB14. This result demonstrates
that SSU1 allele inheritance accounted for a significant part
of the non-parallel reaction norm shown by the SBxGN pro-
geny. Moreover it demonstrates the pleiotropic effect of the
SSU1 gene that impacts lag phase duration but also unre-
lated phenotypes such as end-product concentration of SO2

as well as the fermentation kinetics.

Discussion
This work aimed to estimate and identify the genetic de-
terminism of phenotypic plasticity. In the last decades,
this universal phenomenon has moved from a marginal
interest to a new paradigm shaping the evolution of liv-
ing species in their biotopes [1–3]. Although of great
interest, molecular examples of natural genetic

Fig. 8 Effect of the XV-t-VXI translocation on phenotypic plasticity. Panel a. The norm of reaction of the segregants that inherited from SB or GN
for QTL XVI_SBxGN_373847. Dashed lines show the reaction norm of each segregant according to their allele inheritance. Full lines show average
value for all segregants according to marker inheritance. Panel b. The norm of reaction of the hemizygotes. A star means significant difference
(Wilcoxon, α = 0.05)
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variations having a relevant GxE effect are quite scarce
[37, 39, 40]. To challenge this task, we used the species
S. cerevisiae as it is a powerful tool for achieving quanti-
tative genetics [68]. Winemaking conditions allowed us
to reproduce a complex and changing environment suit-
able for identifying alleles conferring phenotypic plasti-
city. Therefore, in order to match enological practices as
closely as possible, the genetic material used was derived
from commercial wine starters and the culture condi-
tions used were natural grape juices. This choice was
also motivated by the possibility of using the QTLs de-
tected in further selection programs using molecular
markers as previously described [69–71].

Lesson from QTL mapping with divergent wine parental
pairs
Before achieving the QTL analysis, we compared the two
population progenies demonstrating that the parental
pairs are quite divergent. Indeed, in the SBxGN cross the
genetic and phenotypic distance of parental strains was
much more higher than in the M2xF15 one. In yeast
breeding, the selection of parents is mostly based on their
phenotypic values. Indeed for optimizing numerous traits,
the common strategy consists of selecting parental strains
having extreme and opposite phenotypes in order to com-
bine their allelic set in a unique strain [72]. This rational
has been adopted by many authors for achieving QTL
mapping programs [40, 73–75]. For the first time, this
work compares the efficiency of QTL mapping performed
with hybrids resulting from close and distant yeast strains.
Answering this question comprehensively would ideally
require comparison of several crosses at a variety of gen-
etic and phenotypic distances. However, in a first ap-
proach, the comparison of two crosses offers a surprising
insight. Indeed, QTL mapping efficiency was similar in
both populations since the number of QTLs detected as
well the part of variance they explained were very similar
(Fig. 6 and Additional file 13: Figure S6). Another note-
worthy result is the near absence of QTL co-localization
(only two loci for 78 QTL detected). This finding has been
previously reported in S. cerevisiae where the majority of
the QTLs are specific to a single cross-combination [76].
However, the four parental strains used in that study were
widely divergent (African or Malaysian forest, sake fer-
mentation (Japan) and European wine). In the present
work, we observed similar results with strains derived
from the same biotope (wine fermentation) that have been
subjected to intensive human selection (commercial
starters). This could mean that most yeast strains under-
went numerous mutations in different loci affecting the
same phenotype, as previously demonstrated for beer
yeasts [77]. This observation was supported by the fact
that phenotypic segregation in both crosses generated
phenotypic variability exceeding those found in a wide

panel of commercial starters. This promises the possibility
of improving strain performance by tapping into this nat-
ural mutation pool present within the population of wine
strains. It is important to note that each QTLs has a re-
duced effect, less than 10% of the explained variance. This
is consistent with the infinitesimal model that consider
that the phenotype variability of a population is explained
by few major QTLs and a high number of minor QTLs
[78]. The use of two divergent populations was then bene-
ficial for capturing more genetic variability, multiplying by
two the potential number of natural variations to explore.
This also underlines the wide number of mutations in the
yeast genome that can affect a phenotype. The expressivity
(penetrance) of such mutations in different backgrounds
should be very low due to underlining epistasis. However,
two common QTLs were found suggesting that they could
be due to positive ongoing selection as discussed below.

Phenotypic plasticity is the rule and QTL mapping allows
the capture of its genetic determinants
In order to detect QTLs explaining plasticity, eleven quan-
titative traits were measured in three environments. The
conditions applied were chosen for reflecting two relevant
enological parameters, the nature of grape must (GM) and
the micro-oxygenation (μ-Ox) [56]. We first characterized
the reaction norm of all the strains, demonstrating that an
important part of observed variance was due to strain x
environment interactions (up to 26%, Table 1). The acetic
acid patterns measured for 189 strains (Fig. 5) revealed
that non-parallel reaction norms are the rule and not the
exception. By changing the oxygen input (from 2 mg.L− 1

in the unshaken condition to 4 mg.L− 1 in the shaken con-
dition) or by changing the strain, a variability was ob-
served for 96.3% of the strains with amplitudes that are
relevant for the wine industry. As for QTL detection effi-
ciency, the hybrid genetic background does not seem to
govern those patterns. This original result demonstrates
that GxE are important in wine fermentation and should
be better investigated.
The multi-environment QTL analysis drastically in-

creased the statistical power of QTL detection since most
of the QTL (45) were only identified with this model, con-
firming the efficiency of this strategy as previously de-
scribed [79–81]. Five QTLs were only identified with a
single-environment model. Rather than original QTLs,
these peaks seem to be QTLs with ambiguous positions
that vary greatly between single and multi-environment
analyses. Indeed, in an extended window of 100 kb, a QTL
identified with the multi-environmental model was found
for the same trait. The use of several environments makes
it possible to evaluate QTLs robustness. Here, 72% of the
QTLs are statistically robust against environment. Since the
applied conditions are very different from an enological
point of view (white vs red grape must, hypoxic vs
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micro-oxygenation), most of these QTLs should be robust
for most of the fermentations and are suitable for develop-
ing selection programs assisted by molecular markers. The
28% of remaining QTLs had a significant interaction with
the environment. Except for two QTLs showing antagonis-
tic effects, the interactions detected were due to “scale ef-
fect”. This contrasts with the observation made by [33]
where QTLs of interaction mostly had antagonistic effect
according to environment or were specific to one environ-
ment. However the various media tested in that work were
quite divergent since the yeast growth was measured in ei-
ther fermentable or non-fermentable carbon sources, thus
creating drastic physiological switches. In our study, the
conditions applied remain restricted to the fermentation
creating fine-grained interactions.
This study introduces an approach to bridge the gap be-

tween non-parallel reaction norms observed and their
underlying genetic causes. Some QTLs with significant
GxE effects were matched with the strain reaction norms.
Among the nine QTLs with significant GxE effects for kin-
etic traits, two of them (XV_M2xF15_26284 and
XVI_SBxGN_371802) had high interaction levels explaining
3.7% and 5% of the variance, respectively. Their inheritance
shaped a large part of the phenotypic plasticity of the
V50_80 in both populations (Fig. 8 and Additional file 14:
Figure S7) separating the strains in the distinct reaction
norms predicted by the k mean clustering (Additional file
6: Figure S2). When non-parallel reaction norms were
more complex like acetic acid and pyruvate, the few QTLs
with significant GxE interactions were not sufficient for
explaining the overall phenotypic response observed (Fig.
5). However those loci could be helpful for developing
breeding programs focusing on specific applications. For
example, some strains do not have the appropriate pheno-
typic response in the presence of micro-oxygenation by
not decreasing their acetic acid production (Fig. 5). By
interacting with μ-Ox, the QTLs V_SBxGN_70702 and
XIV_SBxGN_623501 explained a part of this phenotypic re-
sponse. The incorporation of their favorable alleles by a
cross-breeding strategy in commercial strains, which show
inappropriate response to micro-oxygenation, could be
very valuable. Based on our data, their additive effect
would theoretically reduce up to 66% of this compound in
micro-oxygenated conditions. However, all the phenotypic
responses were not explained. Indeed, none of the QTL
identified for acetic acid explains the phenotypic response
of strains of cluster GM and μ-Ox that had an increased
production of acetic acid in SB14_Sk compared to M15_Sk
(Fig. 5). Similarly for pyruvate, no interactive QTL was
identified while highly divergent norm of reaction were ob-
tained for this trait. This large number of type of reaction
norms may reflect a complex genetic determinism with a
high number of interacting loci. The segregation of these
factors in less than a hundred individuals does not allow

their identification. Therefore, the characterization of the
genetic determinants of complex traits such as that of
acetic acid or pyruvate seems to require the study of a lar-
ger population.

The Ssu1p sulfite pump a protein under balanced
selection have pleiotropic effects
Within an evolving population subject to selection, the
genetic variations are a mix of three types: (i) rare and
deleterious alleles resulting from recent mutational
events not yet eliminated by selection; (ii) neutral alleles
whose frequencies follow the rules of genetic drift; (iii)
alleles with intermediate frequencies that are subjected
to different counterbalanced selection pressures [82–84].
For this last type of allelic variation, the selection pres-
sure can be balanced because one allele may have a fa-
vorable or an unfavorable effect according to the
environment in which it is expressed, meeting the QTLs
described by [33]. Otherwise, the selection pressure can
be balanced because one allele can have a pleiotropic ef-
fect on fitness parameters, positively affecting some
traits but negatively other ones creating phenotypic
trade-offs. Mutations with balanced effects have already
been identified in Arabidopsis thaliana for water use ef-
ficiency [37] or delay of germination [38]. They have
been useful for understanding why particular accessions
are better adapted to specific environment. In yeast,
pleiotropic genes (MKT1 or IRA2) that affect unrelated
traits like temperature resistance [85, 86] or sporulation
efficiency [87] were previously described. The effect of
the gene SSU1 in the context of the translocation
XV-t-XVI is an interesting case where a single gene can
have pleotropic effects on several phenotypes and inter-
action with environments.
In S. cerevisiae, the sulfite pump Ssu1p is required for ef-

ficient sulfite efflux [66]. The expression of this transporter
can be strongly enhanced by chromosomal translocations
that modify the promoter environment of SSU1. This en-
hanced expression confers a higher resistance to the inhibi-
tory effect of SO2 added to the grape must. Two
independent translocations (VIII-t-XVI and XV-t-XVI) have
been reported in the literature [65, 67], and are hallmarks
of adaptation to winemaking practices [88]. Both transloca-
tions confer an important adaptive advantage in respect to
indigenous flora by reducing the lag phase duration, how-
ever, they are not present in all wine strains and are often
present in a heterozygous state [65, 89]. In this work, we
demonstrated that both translocations impact the final
amount of SO2 and the late fermentation rate. Using hemi-
zygous hybrids previously constructed, we validated the
pleotropic effect of SSU1 in the SBxGN background (Fig.
8). The phenotype of the translocated form is in agreement
with the expected increase in SSU1 expression. Therefore,
translocated progeny clones leave more SO2 at the end of
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fermentation. More startling is the translocation effect on
the late fermentation rate (V80_80). Indeed, in the SB14_Sk
conditions (containing more active sulfites), the translo-
cated strain has a slower end-fermentation rate that may be
due by the higher SO2 concentration still present in the
medium. This opposed effect of yeast fitness (short lag
phase but lower fermentation rate and viability) constitutes
a phenotypic trade-off and suggests that SSU1 has under-
gone a balanced selection. Despite the great advantage con-
ferred by a short lag phase (more than 20 h in high sulfite
conditions) the non-translocated form of SSU1 also confers
adaptive advantages. Indeed, due to their low SO2 efflux,
the strains having the non-translocated allele do not have
to cope with the toxicity of SO2 in the late stages of the fer-
mentation, which improves yeast viability. Moreover the ef-
fect of the translocation on lag phase duration is much
lower in red grape must (Merlot) creating environmental
conditions that preserve this allele from selective pressure.
Pleiotropic genes are likely important levers of the complex
architecture of quantitative traits and they have been re-
ported in other living organisms. The gene SSU1, with its
translocated forms, is a good example of pleotropic gene
promoting phenotypic trade-offs conditioned by environ-
mental conditions.

Conclusions
This study confirms that QTL analysis in S. cerevisiae is a
powerful tool for identifying natural genetic variations that
impact complex technological traits. Phenotyping under
several environmental conditions increased the detection
power compared to other studies with the identification of
78 QTLs. This large number of QTLs found between wine
parental strains suggest the presence of a large reserve of
untapped genetic variations available to improve industrial
strains performance. This approach also allowed us to iden-
tify the genetic determinants that explain the contrasting
phenotypic responses of industrial strains. Although most
of the QTLs were robust to environmental changes, some
striking GxE interactions were identified. The effects of
SSU1 allelic variants were explained at the molecular level
revealing that the sulfite pump Ssu1p has a strong pleio-
tropic and plasticity role in wine fermentation. These allelic
variations are natural and therefore can be incorporated in
a non-GMO way, by approaches such as marker-assisted
selection, in commercial wine starter cultures. Thus, QTLs
that are robust to environmental variation can be used to
improve the overall performance of strains, and QTLs
whose effects are dependent on the environment can be
used to correct a defective phenotypic response.

Methods
Yeast strains and culture media
Strains used in this study belong to the yeast species Sac-
charomyces cerevisiae. The four parental strains (SB, GN,

M2, F15) are diploid homothallic monosporic clones de-
rived from wine commercially available starters. They
were acquired from their respective company. The strains
GN, SB and F15 were derived from VL1, Actiflore BO213,
Zymaflore F15 (Laffort, Bordeaux, France), respectively,
while M2 was derived from Oenoferm M2 (Lallemand,
Blagnac, France). The two populations used to perform
QTL mapping were obtained from two F1-hybrids
(M2xF15 and SBxGN). The first progeny (95 individuals)
was obtained by tetrad dissection of the F1-hybrid
M2xF15 generated by Huang et al. [90]. The second pro-
geny (94 individuals) was obtained by tetrad dissection of
the F1-hybrid SBxGN (formerly named HO-BN by Mar-
ullo et al. [70]). Both crosses clones are homozygous and
diploid due to the homothallic nature of the parental
strains. All the strains were grown at 28 °C on YPD
medium (1% yeast extract, 1% peptone, 2% glucose), so-
lidified with 2% agar when required. Sporulation was trig-
gered by plating fresh cells on potassium acetate medium
after three days at 24 °C. The strains were stored long
term in YPD with 50% of glycerol at − 80 °C. Construction
of the hemizygotes SBxGN_SSU1SB / ΔSSU1GN and
SBxGN_SSU1GN / ΔSSU1GB (formerly named G092G and
S092S) has been described by Zimmer et al. [65].

Fermentations
The two grape juices used, Merlot of vintage 2015 (M15)
and Sauvignon Blanc of vintage 2014 (SB14), were provided
by Vignobles Ducourt (Ladaux, France) and stored at − 20 °
C. Before fermentation, grape juices were sterilized by
membrane filtration (cellulose acetate 0.45 μm Sartorius
Stedim Biotech, Aubagne, France). Their main enological
characteristics are given in Table 2 Sugar content, assimil-
able nitrogen, pH, total and free SO2 were assayed by the
enological analysis laboratory (SARCO, Floirac, France).
Malic acid was determined by enzymatic assay [56].
Fermentations were carried out as previously described

by Peltier et al. (2018) [56]. Briefly, fermentations were run
at 24 °C in 10 mL screw vials (Fisher Scientific, Hampton,
New Hampshire, USA) with 5 mL of grape must. Hypoder-
mic needles (G 26–0.45 × 13 mm, Terumo, Shibuya, Tokyo,
Japan) were inserted through the septum for CO2 release.
Two micro-oxygenation conditions were used by applying
or not constant orbital shaking at 175 rpm during the over-
all fermentation. During this study, three fermentation con-
ditions were used: SB14 with shaking (SB14_Sk), M15 with
shaking (M15_Sk) and M15 without shaking (M15).
Fermentation progress was estimated by regularly

monitoring regularly the weight loss caused by CO2 re-
lease using a precision balance. The amount of CO2 re-
leased over time was modeled by local polynomial
regression fitting with the R-loess function setting the
span parameter to 0.45. Seven parameters were extracted
from the model:
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lp (h): the lag phase time observed before to release of
CO2 at 2 g.L− 1;
t35 g, t50 g and t80 g (h): time (minus lp) until 35, 50
and 80 g.L− 1 of CO2 were released;
V15_50 (g.L− 1.h− 1): average sugar consumption
between 15 and 50% of tCO2max;
V50_80 (g.L− 1.h− 1): average sugar consumption
between 50 and 80% of tCO2max;
CO2max: maximal amount of CO2 released (g.L− 1).

Metabolic compounds
At the end of the fermentation the concentration of four
compounds was measured at the metabolomics platform of
Bordeaux (http://metabolome.cgfb.u-bordeaux.fr) by
semi-automated enzymatic assays [56]. Four phenotypes
were measured: acetic acid (g.L− 1), glycerol (g.L− 1), pyruvate
(mg.L− 1) (from the final samples taken from each fermenta-
tion) and SO2 Yield (mg.L− 1) ([SO2] final - [SO2] initial).
Each fermentation was carried out two times for the

progeny clones and their respective hybrids and 10 times
for each parental strain (M2, F15, SB, GN). The entire
data set is given in the Additional file 2: Table S2.

Genotyping and marker map construction by high
throughput sequencing
The procedure used for genotyping the 94 SBxGN pro-
genies was the same as published by Marti-Raga et al.
[40]. Briefly, all the 94 diploids progeny clones were ge-
notyped by whole-genome sequencing at a low coverage
(3–6 X). DNA libraries were pooled and sequenced with
a MiSeq apparatus using the standard kit v2 (Illumina)
generating paired-end reads of 2 × 250 bp. Filtering and
mapping of all sequencing data was performed using
publicly available tools (https://usegalaxy.org). Sequen-
cing data were treated as single reads. The main parame-
ters of filtering and mapping were: read trimming (− 39
bases), Phred quality cut-off (Q = 20), and read mapping
(BWA software with default parameters). Once the reads
had been mapped, BAM files were extracted and a
pileup dataset was generated using SAMTools’ [91] for
every segregant. The pileup dataset was opened in R and
SNP between the parental strains was evaluated using an
R script [40]. To construct the marker map, we retained
the markers with a 1:1 segregation among the progeny
(Chi-x test, α > 0.05) and being evenly distributed along
the genome (1 marker/15 kb). The final map generated
had 3433 markers (Additional file 15: Table S8). The

procedure used for genotyping the 95 M2xF15 progenies
was described by Roncoroni [61].

Microsatellite genotyping
The DNA of S. cerevisiae strains was quickly extracted in
96-well microplate format using a customized LiAc-SDS
protocol [92]. Fifteen polymorphic microsatellite loci
SCAAT3 (C3, C5, SCYOR267C, C8, C11, SCAAT2,
YKL172, SCAAT6, C9, C4, SCAAT5, SCAAT1, C6, YPL009,
YKL172W) were used for estimating the genetic relation-
ships within 96 commercial starters and the four mono-
sporic parental strains (GN, SB, M2, F15) used in this
work (Additional file 16: Table S9). The genotyping condi-
tions used were broadly those described by Börlin et al.
[93]. Briefly, two multiplex PCRs allowing genotyping of
seven loci were carried out in a final volume of 12.5 μL
containing 6.25 μL of the Qiagen Multiplex PCR master
mix and 1 μL of DNA template, and 1.94 μL of each mix
was added in the mixture using the concentrations indicated
in the Additional file 16: Table S9. Both reactions were run
with the following program: initial denaturation at 95 °C for
5 min, followed by 35 cycles of 95 °C for 30 s, 57 °C for
2 min, 72 °C for 1 min, and a final extension at 60 °C for
30 min. The size of PCR products was analyzed by the
MWG company (Ebersberg, Germany) using 0.2 μL of 600
LIZ (GeneScan) as a standard marker. Chromatograms were
analyzed with the GeneMarker (V2.4.0, Demo) program.

Data analyses
All the statistical and graphical analyses were carried out
using R software [94].

Estimation of environment, cross and strain effect
The variation of each trait was estimated by the analysis of
variance (ANOVA) using the aovp function of the lmPerm
package in which significance of the results were evaluated
by permutation tests instead of normal theory tests.
The LM1 model estimated the effects of the cross, of the

environment and of the cross-by-environment interaction
of fermentation traits according to the following formula:

yij ¼ mþ Ci þ E j þ C � Eð Þij þ ϵij:

where yij was the value of the trait for cross i (i = 1, 2) in
environment j (j = 1, 2, 3), m was the overall mean,
Ci was the cross effect, Ej the environment effect, (C ∗

Table 2 Grape juices used in the study

Grape must Code Sugar content
(g.L−1)

Assimilable Nitrogen
(mg N.L− 1)

Malic acid
(g.L− 1)

pH Total SO2

(mg.L− 1)
Free SO2

(mg.L− 1)

Sauvignon Blanc 2014 SB14 194 157 5.6 3.19 34 7

Merlot 2015 M15 219 99 1.9 3.53 46 33

Peltier et al. BMC Genomics          (2018) 19:772 Page 15 of 20

http://metabolome.cgfb.u-bordeaux.fr
https://usegalaxy.org


E)ij was the interaction effect between cross and envir-
onment and ϵijk the residual error.
The LM2 model estimated the effects of the strain,

of the environment and of the strain-by-environment
interaction on fermentation traits according to the
following formula:

yij ¼ mþ Si þ E j þ S � Eð Þij þ ϵij:

where yij was the value of the trait for strain i (i = 1, …,
189) in environment j (j = 1, 2, 3), m was the overall
mean, Si was the strain effect, Ej the environment effect,
(S ∗ E)ij was the interaction effect between strain and en-
vironment and ϵijk the residual error.

Estimation of the genetic distances within strains
The microsatellite dataset was manipulated using the
adegenet package [95] implemented in R. The percent-
age of missing data was 1.6%. The genetic distance
within the strains was estimating using the Bruvo’s dis-
tance using the poppr package [96]. The unrooted den-
drogram was built by Neighbor Joining (ape package)
[97]. Since the bootstraps estimated did not allow the
resolution of clear groups, the genetic structure was esti-
mated by a k mean clustering using the function
find.cluster allowing the detection of three main groups.
The minimal goodness of fit was selected using compar-
ing AIC, BIC and WSS criteria using default parameters.

Estimation of the phenotypic distance within strains
Phenotypic distances were computed by calculating the
Euclidian distances within the strains of the same group
in each environmental condition and for each trait. For
comparison of the overall phenotypic distance between
the commercial starters (n = 31) (obtained in [56]) and
each progeny population (n = ~ 100), 1000 random pools
of 31 spore clones of each progeny population were
compared to the commercial dataset by a one way ana-
lysis of variance aovp function of lmPerm package.
Tukey’s honest significant difference post hoc test was
used to confirm differences between groups (α = 0.05).
The phenotypic variability of M2xF15 and SBxGN

progenies measured in M15 was visualized by a Principal
Component Analysis (PCA) using the ade4 package
(Additional file 3: Figure S1). An additional dataset, re-
cently obtained by Peltier et al. [56], was added to the
projection corresponding to the phenotypic values of 31
commercial strains. M15 condition was compared with
the only similar condition described in that work
(noSk.5_SV). The contribution of each phenotypes to
the PCA dimensions and the correlation circle were ob-
tained by the fviz_contrib and the fviz_pca_var functions
of the factoextra package [98].

Norm of reaction clustering
For each trait the distance between norms of reaction
were calculated according to the formula:

Dij ¼ 1−corr
P1i
P2i
P3i
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@
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where Dij was the distance between strains i and j, P1i and
P1j the phenotypic values measured in SB14_Sk, P2i and
P2j the phenotypic values measured in M15_Sk and P3i
and P3j the phenotypic values measured in M15 for
strains i and j, respectively. The minimal distance (0) was
set between norm of reactions with null variances and the
maximal distance (1) was set between norm of reaction
with a null variance and all the other norm of reactions
with a non-null variance. K-means clustering was per-
formed on distance matrix with the pam function of the
cluster package of the R program. Appropriate number of
cluster was determined by the best silhouette value be-
tween one and ten clusters with the silhouette function of
the cluster package of the R program.

Estimation of heritability, transgression level and
phenotypic distance within segregating population
The lato sensu heritability h2 was estimated for each
phenotype according to Marullo et al. [72] as follows:

h2 ¼ σP2−σE2

σP2 :

where σP2 is the variance of progeny population in each
environmental conditions, explaining both the genetic
and environmental variance of the phenotype measured,
whereas σE2 is the median of the variance of replicates
in each environmental conditions, explaining only the
environmental fraction of phenotypic variance.
Percentage of transgression was calculated as described

in Marullo et al. (2006) [72]. Results were displayed on a
heatmap (heatmap.2 function) of the gplots package [99].

QTL mapping
Before linkage analysis phenotypes were normalized by
Rank-transformation using the GenABEL package [100].
The QTL mapping analysis was performed with the R/
qtl package [101] on the data collected in the three en-
vironmental conditions by using the Haley-Knott regres-
sion model that provides a fast approximation of
standard interval mapping [102]. Environment effect and
its interaction with QTL effect were assessed by adding
environment as additive and interactive covariate. As en-
vironment has a large effect on the phenotype, its inclu-
sion in the analysis reduce residual variation that is not
genetic and therefore enhance QTL detection. It also al-
lows to asses QTL x Environment interactions. For each
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phenotype, a permutation test of 1000 permutations
tested the significance of the LOD score obtained, and a
5% FDR threshold was fixed for determining the pres-
ence of QTLs [64]. QTLs identified for the fermentation
rate parameters t35 g t50 g t80 g V15_50 and V50_80
being in the same 10 kb windows were considered as a
unique locus. The QTL position was estimated as the
marker position with the highest LOD score among all
markers above the threshold in a 30 kb window.

Estimation of the level of QTL interaction
The interaction level of each QTL was estimated by
ANOVA using the aovp function of the lmPerm package.
The LM3 model estimated the effects of the cross, of the
environment and of the QTL-by-environment inter-
action on traits according to the following formula:

yij ¼ mþ Qi þ E j þ Q � Eð Þij þ ϵij:

where yij was the value of the trait for allele i (i = 1, 2) in
environment j (j = 1, 2 or j = 1, 2, 3), (three combinations
of environments were considered: a) SB14_Sk and
M15_SK to assess the grape must effect (GM), b) M15_Sk
and M15 to assess the micro-oxygenation effect (μ-Ox), c)
SB14_Sk, M15_SK and M15 to assess the overall genetic
effect), m was the overall mean, Qi was the QTL effect, Ej
the environment effect, (Q ∗ E)ij was the interaction effect
between QTL and environment and ϵijk the residual error.
In order to compare the level of interaction across traits
and environment, their % of variation explained was cal-
culated by omitting the total sum square of environment.
The ratio between grape must interaction, micro-
oxygenation interaction and genetic effect was calculated
as the ratio of the percentage of variation explained by
QxE by considering SB14_Sk and M15_SK for grape must
interaction, M15_Sk and M15 for micro-oxygenation
interaction and the percentage of variation explained by Q
in all conditions for the overall genetic effect.

Additional files

Additional file 1: Table S1. 97 commercial strains used (XLSX 10 kb)

Additional file 2: Table S2. Phenotypic dataset (XLSX 108 kb)

Additional file 3: Figure S1. Meiosis emphases phenotypic novelty.
Panel A. PCA of winemaking properties of M2xF15 and SBxGN progenies
and 31 CWS in M15. Panel B. Correlation circle indicating the correlation
of the variables for axes 1 and 2. Panel C. Average phenotypic distance
computed from M15 condition for CWS, and the two M2xF15 and SBxGN
cross. (PDF 455 kb)

Additional file 4: Table S3. LM1 model for the 11 phenotypes with 189
strains and three conditions of fermentation (XLSX 11 kb)

Additional file 5: Table S4. Phenotypic plasticity at the population
level. The first line indicates M15_Sk average phenotypic values and the
two other indicate the effect of each environmental parameter:
difference between M15_Sk and SB14_Sk (grape must effect), difference
between M15_Sk and M15 (micro-oxygenation effect). Significant
differences are indicated by * (Wilcoxon test pval < 0,05). (XLSX 11 kb)

Additional file 6: Figure S2. Clustering of Norm of reaction for each
trait. Norm of reaction of each individual is shown in dotted line and are
colored and faceted according their cluster. Solid line shown the average
norm of reaction of each cluster. Number of strains within each cluster is
indicated by n. (PDF 2768 kb)

Additional file 7: Table S5. List of QTL identified. (XLSX 17 kb)

Additional file 8: Figure S3. Heritability is correlated to the number of
QTLs detected. The data represented are the number of QTLs identified
according by cross and by trait according to the average heritability by
cross and by trait among the three conditions. (PDF 21 kb)

Additional file 9: Figure S4. Linkage between translocation markers in
M2xF15 and SBxGN crosses. The data represented are the number of
segregant according to their genotype for the marker next to the
chromosomal break point. Genotypes A strong linkage is shown with less
than 10% recombinants. (PDF 4 kb)

Additional file 10: Table S6. Number of QTL and their interaction level.
(XLSX 10 kb)

Additional file 11: Figure S5. Variation of QTL effect according to
condition. For each QTL, the values shown are the difference between
the phenotypic values measured for all the segregant that inherited the
allele of SB or M2 minus those that inherited from GN or F15. A star
means a significant difference (Wilcoxon, α = 0.05). (PDF 25 kb)

Additional file 12: Table S7. Hemizygote dataset. (XLSX 13 kb)

Additional file 13: Figure S6. Variance explained by QTL according to
cross. Each dot represent a QTL. Bigger points indicate average. There is no
significant difference between the two cross (Wilcoxon test pval > 0,05).
(PDF 721 kb)

Additional file 14: Figure S7. Impact of QTL XV_M2xF15_26284 on
V50_80. Panel A. The norm of reaction of the segregants that inherited
from M2 or F15 for QTL XV_M2xF15_26284. Dashed lines show the reaction
norm of each segregant according to their allele inheritance. Full lines
show average value of the all the segregant according to marker
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