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Abstract

Background: Pectin is a major component and structural polysaccharide of the primary cell walls and middle
lamella of higher plants. Pectate lyase (PEL, EC 4.2.2.2), a cell wall modification enzyme, degrades de-esterified
pectin for cell wall loosening, remodeling and rearrangement. Nevertheless, there have been few studies on PEL
genes and no comprehensive analysis of the PEL gene family in cotton.

Results: We identified 53, 42 and 83 putative PEL genes in Gossypium raimondii (D5), Gossypium arboreum (A2), and
Gossypium hirsutum (AD1), respectively. These PEL genes were classified into five subfamilies (I-V). Members from
the same subfamilies showed relatively conserved gene structures, motifs and protein domains. An analysis of gene
chromosomal locations and gene duplication revealed that segmental duplication likely contributed to the
expansion of the GhPELs. The 2000 bp upstream sequences of all the GhPELs contained auxin response elements. A
transcriptomic data analysis showed that 62 GhPELs were expressed in various tissues. Notably, most (29/32) GhPELs
of subfamily IV were preferentially expressed in the stamen, and five GhPELs of subfamily V were prominently
expressed at the fiber elongation stage. In addition, gRT-PCR analysis revealed the expression characteristics of 24

signaling pathway.

GhPELs in four pollen developmental stages and significantly different expression of some GhPELs between long-
and short-fiber cultivars. Moreover, some members were responsive to IAA treatment. The results indicate that
GhPELs play significant and functionally diverse roles in the development of different tissues.

Conclusions: In this study, we comprehensively analyzed PELs in G. hirsutum, providing a foundation to better
understand the functions of GhPELs in different tissues and pathways, especially in pollen, fiber and the auxin
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Background

Plant growth and development along with cell expansion
and division give rise to the morphogenesis of many or-
gans, tissues and cells [1]. The cell wall is a significant
structure that maintains the cell’s internal pressure, sta-
bility, tensile strength and defense [2]. Pectin, which is
mainly present in the primary cell wall and middle la-
mella, is a polysaccharide containing a linear backbone
of a-1,4-linked galacturonic acid residues that forms a
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matrix embedded in cellulose and hemicellulose [3, 4].
Homogalacturonan (HG), a major component of pectin,
can be degraded by various pectinases, including the
polygalacturonases (PGs), pectin acetylesterases (PAEs),
pectin methylesterases (PMEs) and pectate lyases (PELs)
[5]. PEL, (EC 4.2.2.2) depolymerizes HG through a
B-elimination reaction, generating 4,5-unsaturated oligo-
sacceharides [6, 7].

PELs have been widely identified in plant patho-
genic bacteria, such as Erwinia chrysanthemi, which
causes soft-rot disease in many plants [8]. In many
higher plants, expression of PEL-like genes has also
been found in a variety of tissues, including the
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pollen of tomato, tobacco and Japanese cedar [9-11],
ripening fruits of strawberry and banana [6, 12-14],
tracheary elements of Zinnia [15], fiber of cotton
[16], xylem of poplar [17] and lateral roots of Arabi-
dopsis [18].

In Arabidopsis, a genome-wide analysis and an ana-
lysis of promoters showed that PEL-like genes
(AtPLLs) play an important role in the development
of flowers and cell separation [19, 20]. In pollen de-
velopment, PELs may regulate the loosening and deg-
radation of the pollen cell wall [11]. In the process of
fruit ripening, PELs modify the pectin structure in the
cell wall [13]. In Populus, most of the 30 PtPLs are
highly expressed in xylem, performing important
functions during the development of wood [17]. In
Arabidopsis, the increased expression of AtPLAs (PEL
genes) promotes the degradation of the pectin-rich
middle lamella during lateral root emergence [18]. In
rice, the DELI gene (a PEL gene, LOC_Os10 g31910)
regulates plant growth and leaf senescence through
controlling cell numbers and triggering reactive oxygen
species accumulation [1]. Auxin, an important plant
hormone, regulates plant growth and development by
advancing acid-mediated changes in the cell wall [21, 22].
The acidification of the cell wall activates the expansins
and PMEs, which causes loosening of the cell wall [2].
Many studies have revealed that PELs respond to IAA
treatment [13, 18, 19, 23, 24]. These studies indicate
that PEL genes exhibit extensive functions in plant
growth and development and participate in the auxin
regulation pathway.

Cotton is the most important natural fiber crop. Pec-
tins are responsible for 25% of the cell wall components
of rapidly elongating cotton fibers (8 days postanthesis
(DPA)), indicating that the structure and configuration
of pectin can influence fiber quality [25, 26]. A study
examining GhPEL indicated that this gene is crucial for
the normal elongation of cotton fibers through degrad-
ation of de-esterified pectin, facilitating the loosening of
the cell wall [16].

However, there have been few studies related to PEL
genes in plants, and they have mainly focused on the func-
tional analysis of individual genes. In cotton, most of the
PEL genes are unknown. At present, there are no available
genome-wide analyses of the cotton PEL gene family.
With the completion of the genome sequencing of G. rai-
mondii, G. arboreum and allotetraploid cultivated cotton
(G. hirsutum cv TM-1), we can now perform a compre-
hensive analysis of PELs in cotton [27-31]. In this study,
we predicted the PELs of three Gossypium species and an-
alyzed their gene structure, phylogenetic tree, expression
characteristics and other features. The results provide a
reference for the potential functions of PELs in plant
growth and development.
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Results

Genome-wide identification of PELs in G. raimondii, G.
arboreum and G. hirsutum

Based on the conserved Pec_lyase_C (Pfam00544) do-
main and SMART analyses, we identified 53, 42, and 83
full-length putative PELs in G. raimondii, G. arboreum
and G. hirsutum TM-1, respectively. According to their
locations on the chromosomes, the family members of
the three species were designated GrPELI to GrPELS3;
GaPEL1 to GaPEL42; and GhPELI to GhPELS83, respect-
ively. The lengths of the putative GhPEL proteins varied
from 171 (GhPEL20_At) to 680 (GhPEL52_Dt) amino
acids (aa), while those of GaPELs ranged from 136 aa
(GaPEL36) to 680 aa (GaPEL14), and those GrPELs var-
ied from 222 aa (GrPEL36) to 511 aa (GrPEL27). The
predicted Mw, pI, GRAVY and subcellular localization of
the protein sequences are shown in Additional file 1:
Table S1.

Phylogenetic analysis of the PEL gene family

To examine the evolutionary relationships of the PEL
proteins and classify them into subfamilies according to
the established subfamilies in Arabidopsis, we performed
a phylogenetic analysis of 285 PEL protein sequences
from G. raimondii (53), G. arboreum (42), G. hirsutum
(83), Arabidopsis thaliana (26), Corchorus olitorius (16),
Theobroma cacao (24), Oryza sativa (11) and Populus
trichocarpa (30) to construct an unrooted phylogenetic
tree. The PEL proteins were classified into 5 subfamilies
(I, II, 111, IV and V) (Fig. 1 and Additional file 2: Table
S2). Subfamily IV and subfamily V were the two largest
subfamilies and contained 101 and 103 PEL members,
respectively, while both subfamily I and subfamily III
contained only 20 PEL members. The PEL proteins of
Oryza sativa, a monocot, were distant from the PEL
proteins of the other dicot plants. These results indi-
cated that PELs might have evolved in different direc-
tions and expanded to exhibit diverse functions among
various species.

Distribution and gene duplication events of PELs

The chromosomal distributions of GrPELs, GaPELs and
GhPELs were determined according to their genomic lo-
cations (Additional file 3: Table S3). In G. raimondii, 50
GrPELs were unevenly anchored on 13 chromosomes,
while 3 genes (GrPELS51-GrPELS3) were located on scaf-
folds. D10 contained the most GrPELs (12), followed by
D09 with 8 GrPELs. However, there was only one GrPEL
on D04 and D12 (Fig. 2a). In G. arboreum, 42 GaPELs
were located on 13 chromosomes. Both A06 and All
contained the most GaPELs (6 each). In contrast, both
AO05 and AO07 only contained one GaPEL (Fig. 2b). A
total of 71 GhPELs were mapped to the 25 G. hirsutum
chromosomes, with the exception of At02, while 12
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Fig. 1 Phylogenetic tree of PEL proteins. The 285 predicted protein sequences from Gossypium raimondii, G. arboreum, G. hirsutum, Arabidopsis,
Corchorus olitorius, Theobroma cacao, Oryza sativa and Populus were aligned with ClustalX 2.0, and the phylogenetic tree was generated using
MEGA 6.0 via the neighbor-joining (NJ) method with 1,000 bootstrap replicates. Five subfamilies of PELs are indicated using different line colors
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other GhPELs were located on unassembled scaffolds.
The distribution of GhPELs on each chromosome was
highly uneven: D05 contained the most GhPELs (7);
At06 and At09 contained 5 GhPELs; and the other 22
chromosomes contained one to four GhPELs (Fig. 2c).
Previous studies have indicated that gene duplica-
tion events are vital to gene family expansion and
occur along with plant genome evolution [32]. In the
present study, a gene duplication analysis was per-
formed to investigate the expansion mechanism of the
PEL gene family in the three Gossypium species. In
general, gene duplication events include tandem and
segmental duplications. A total of 14, 13 and 35 gene
duplication pairs were identified in G. raimondii, G.
arboreum and G. hirsutum, respectively, accounting
for 71.7%, 66,7% and 86.7% of the PEL gene family
(Additional file 4: Table S4). Based on sequence simi-
larity and chromosomal location, 5, 3 and 5 gene du-
plication pairs were determined to represent tandem
duplication events in G. raimondii, G. arboreum and
G. hirsutum, respectively, while 49 other pairs

represented segmental duplication events; these pairs
are shown in Fig. 3, except for the gene pairs located
on unassembled scaffolds. A total of 13 clusters of
tandem duplication were located on D08 (GrPEL21/
GrPEL22), D10 (GrPEL32-GrPEL41), D13 (GrPEL48-Gr-
PEL50), D09 (GrPEL24-GrPEL26 and GrPEL28/GrPEL29),
A06 (GaPEL17/GaPEL18), A09 (GaPEL23/GaPEL24),
A1l (GaPEL34-GaPEL37), At05 (GhPEL13_At-GhPE-
L15_At), At06 (GhPEL18 At/GhPEL19 At), At09 (GhPE-
L26_At/GhPEL27_At), Dt05 (GhPEL54_Dt/GhPELSS5_Dt)
and Dt06 (GhPEL59_Dt-GhPEL61_Dt) (Fig. 2). These re-
sults indicated that gene duplication, especially segmental
duplication, played an irreplaceable role in the expansion
of the PEL gene family in the three Gossypium species.

To investigate the selection pressure for the segmental
duplication of PEL gene pairs, the Ka/Ks ratio was calcu-
lated. The results showed that the Ka/Ks ratios for most
of the segmental duplications of PEL gene pairs were
less than 1.0, indicating that they had experienced puri-
fying selection pressure after gene duplication events
(Additional file 5: Table S5). Because of the constraints
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Fig. 2 Chromosomal distribution of PELs from Gossypium raimondii (@), G. arboreum (b), and G. hirsutum (c). The scale represents megabases (Mb).
The chromosome numbers are indicated above each vertical bar. The putative PELs are indicated on the different chromosomes. Green, blue and
yellow bars represent the physical maps of Gossypium raimondii (@), G. arboreum (b), G. hirsutum (c), respectively. Red lines show the gene pairs
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of purifying selection on divergence, most of the seg-
mental duplications of the PEL pairs might exhibit simi-
lar functions. Only GhPEL2_At/GhPEL43_Dt presented
a Ka/Ks ratio greater than 1, demonstrating that this
GhPEL pair had undergone positive selection during cot-
ton evolution.

In addition, divergence time analysis was performed
between the segmentally duplicated PEL pairs (Add-
itional file 5: Table S5). In G. raimondii and G.
arboreum, the timing of the occurrence of the segmental
duplication of PEL pairs was inferred to be 8.48-171.46
million years ago (MYA), with an average of 91.73 MYA,
and 18.35-145.46 MYA, with an average of 85.73 MYA,
respectively. In G. hirsutum, the timing of the occur-
rence of the segmental duplication PEL pairs was pre-
sumed to be 1.00-32.75 MYA, with an average of
10.24 MYA.

Conserved domains and amino acid sites of GhPELs

The Pec_lyase_C domains and signal peptides of the
PEL sequences were investigated and shown according
to the phylogenetic tree of the GhPELs (Additional file 6:

Figure S1). All of the GhPELs contained a Pec_lyase_C
domain, indicating that this domain was conserved. Four
Asp residues, one Cys residue, one Arg residue, and five
additional amino acid residues (Asp, His, Thr, Pro and
Arg) in the Pec_lyase_C domain involved in Ca**-bind-
ing, disulfide bonds, catalysis and substrate binding, re-
spectively, were found to be highly conserved, indicating
that these amino acid sites were significant for the func-
tion of GhPELs (Additional file 7: Figure S2). Most
members of the GhPELs (77.1%) exhibited the predicted
signal peptide. However, the members of subfamily I ex-
hibited no signal peptide, which was consistent with a
previous study on PtPLs [17].

Gene structure and conserved protein motifs of GhPELs

To further understand the conservation and diversifica-
tion of the GhPELs, their exon-intron structures and
conserved motifs were investigated and were shown in
Fig. 4. The members of subfamily I and subfamily III
each contained 5 exons and 3 exons, respectively. Most
members of subfamily II exhibited 2 exons, except for
GhPEL20_At, GhPEL19 At and GhPEL60_Dt, which
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Fig. 3 Circos figure of gene pairs of segment duplication in GrPELs, GaPELs and GhPELs. The chromosomes of Gossypium raimondii, G. arboreum
and G. hirsutum are filled with red, green, and blue, respectively. Gene pairs involved in segment duplication are linked by a line

presented 3 exons. More than half (17/32) of subfamily
IV contained 4 exons, while the other members dis-
played 2 or 3 exons, with the exception of GhPEL52_Dt,
with 7 exons. The exon numbers of subfamily V mem-
bers varied from 3 to 7. The exon numbers were highly
diverse among GhPELs (ranging from two to seven), in-
dicating that functions of GAPELs might be diverse.
However, closely related GhPELs showed similar
exon-intron structures, and these genes might play simi-
lar roles in plant growth and development (Fig. 4b).

We identified 6 conserved motifs of the GhPEL pro-
teins using MEME (Fig. 4c). Within a given subfamily,
most of the members exhibited similar motif construc-
tion. Motifs 1, 5, 3 and 6 within the conserved Pec_lya-
se_C domain were identified in most of the GhPEL
proteins. A total of 90.4% of the GhPEL proteins (except
for the members of subfamily I and GhPEL20_At,
GhPEL40_At, GhPEL19_At, and GhPEL43_Dt) con-
tained motif 4. Motif 2 existed in 96.4% of the
GhPEL proteins (except for GhPEL20_At, GhPE-
L40_At, and GhPEL43_Dt). Taken together, the motifs

and their arrangement showed a high conservation in
the GhPEL family.

Analysis of cis-elements related to auxin in putative
GhPEL promoter regions

Many studies have shown that PELs respond to auxin
treatment. Therefore, the 2000 bp upstream regions
from the initiation codons (ATG) of GHPELs were
scanned in the PLACE database to obtain the cis-acting
elements related to auxin. The results showed that all of
the putative GEPEL promoter regions contained at least
one of the six major auxin-responsive cis-elements:
S000024, S000026, S000270, S000273, S000360, and
S000370. In addition, the putative promoter region of
GhPEL63_Dt contained the largest number (15) with all
six auxin-responsive cis-elements. Ca>*- mediated cross-
linking of demethyl-esterified HG, the substrate of PEL,
can change cell wall structure, which is important for
cell expansion and division [33]. A Caz+—responsive
cis-element (S000501) and calmodulin-binding/CGCG
box (S000507) were identified in 35 (42.2%) of the
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putative promoter regions of GhPELs (Additional file 8:
Table S6). This result indicated that some GAPELs might
alter the configuration of the cell wall with Ca**.

Expression patterns of GhPELs in different tissues

To explore the possible biological functions, the
spatio-temporal expression patterns of GhPELs were
investigated in different tissues, including root, stem,
leaf, petal, stamen, pistil, ovules and fibers at various
developmental stages. Using the transcriptome data-
sets of G. hirsutum (TM-1) [30], the expression pro-
files of 62 GhPELs with FPKM =>1 in at least one of
the 8 investigated tissues were shown in Fig. 5. The
other 21 GhPELs, including all of the members (12)
of the subfamily II, were very low or not expressed in
all of the investigated tissues and developmental
stages and 15 genes from gene duplication events, in-
dicating that functional redundancy or pseudogenes
existed in the GHPEL family.

Based on a clustering analysis, the 62 GhPELs were di-
vided into 4 major patterns (A-D) (Fig. 5). Cluster A con-
tained 29 genes, all belonging to subfamily IV and
dominantly expressed in the flower, especially in the sta-
men, with very low expression in other tissues. In cluster
B, all 4 GhPELs (GhPEL28_At, GhPEL37 At, GhPEL63_Dt
and GhPEL66_Dt) from subfamily V were shown to have
higher expression levels in the leaf than in other tissues.
Cluster C contained 16 GhPELs from subfamily V and I

general expression in all of the tissues, with some genes
primarily expressed in fiber, stamen and other tissues.
Cluster D was composed of another 13 GhPELs, from sub-
family V and III, with lower expression in fiber than vege-
tative and reproductive organs. The gene expression
pattern could manifest functions of genes, in part. The
dominant expression of GhKPELs in cluster A indicated
that these genes performed crucial and conserved func-
tions in the development of the flower, especially the
stamen, which was concordant with PLLs generally
expressed in flower and several PLLs highly expressed in
pollen in Arabidopsis [19]. Some GhPELs in cluster C, in-
cluding the GhHPEL gene (GhPEL48 Dt) that was reported
to regulate fiber elongation [16], showed higher expression
in fiber than other tissues, which hinted that these
GhPELs might regulate fiber development.

Expression characterization of GhPELs in anther
development

To explore the expression features of GHPELs in anther de-
velopment, using qRT-PCR, we identified the expression of
24 GhPELs in four stages of anther development, including
meiosis stage, mononucleate stage, binucleate stage and
mature stage (Fig. 6). The expression levels of 7 GhPELs
(GhPEL29 At, GhPEL31_At, GhPEL62_Dt, GhPEL6_At,
GhPEL21_At, GhPEL17 At and GhPEL58_Dt) were highest
in the meiosis stage and decreased in subsequent stages,
especially GHPEL17 At and GhPEL58_Dt with plummeting
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the bottom; the genes are shown on the right; and the

expression after the meiosis stage (Fig. 6a). Twelve GhPELs
showed a constantly increasing expression to a peak at the
binucleate stage, then decreased at the mature stage (Fig.
6b). The remaining 5 genes (GhPEL5_At, GhPEL7_At,
GhPEL22_At, GhPEL36_At and GhPEL45_Dt) exhibited
higher levels at the mature stage than at the other three
stages, especially GHPEL36_At, which displayed a very low
expression at the other three stages except for the mature
stage (Fig. 6¢). These results indicated that some GhPELs
performed various and significant functions in the different
development stages of anthers.

Characterization of GhPEL gene expression in fiber
development

Two cultivars with significantly different fiber lengths
(TM-1, with longer fibers, and kenN27-3, with shorter
fibers) were chosen to explore the function of GhPELs in
fiber development [34]. The expression of 7 genes
(GhPEL4_At, GhPEL48 Dt, GhPEL30_At, GhPEL68_Dt,

GhPEL76_Dt, GhPEL38_At, and GhPEL53_Dt), most of
which exhibit higher expression in fiber than other
organs, was analyzed in 10 DPA, 15 DPA, 20 DPA and 30
DPA fibers of TM-1 and kenN27-3. The results revealed
that 5 genes (GhPEL4 _At, GhPEL48 Dt, GhPEL30_At,
GhPEL68_Dt and GhPEL76_Dt) displayed higher expres-
sion levels in TM-1 than in kenN27-3 in all stages and
showed a significant difference in at least one stage, espe-
cially in the rapid elongation stage of fiber (10 DPA and 15
DPA) (Fig. 7a). GhPEL38_At and GhPELS3_Dt exhibited
remarkably higher expression in fiber elongation stages and
lower expression in the secondary wall thickening stage
in TM-1 than kenN 27-3 (Fig. 7b). According to these
results, these GhPELs might play an important role in
fiber elongation.

Responses of GhPEL genes to IAA treatment
Studies have shown that auxin can regulate the activity
of PEL [18, 19, 23]. Therefore, the expression features of
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16 GhPELs were explored after IAA treatment (Fig. 8).
Seven genes were notably up-regulated, and eight genes
were notably down-regulated, mainly at 6 h and 12 h
(Fig. 8a, b). The expression of GhPEL67_Dt showed not-
ably earlier down-regulation and then up-regulation in
response to IAA treatment at 3 h and 6 h, respectively
(Fig. 8c). These results indicated that some GhPELs
might take part in the biological pathways regulated
by auxin.

Discussion

Characterization of PEL genes in cotton

Previous studies on PEL genes have mainly been con-
ducted in plant pathogenic bacteria, focusing on patho-
genic mechanisms [8, 35]. However, PEL-like genes have
also been found in many plants, with genome-wide ana-
lyses revealing 26 PEL homologous genes in Arabidopsis,
12 in Oryza sativa, 46 in Brassica rapa and 30 in Popu-
lus trichocarpa (17, 19, 20, 36]. In the present study, a
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smaller number of PEL genes was identified in Oryza
sativa (12 to 11), ignoring the Os06 g38520 genes due to
exceeding the threshold (le-10). We also identified 53
PEL homolog genes in G. raimondii, 42 in G. arboreum
and 83 in G. hirsutum; these numbers are larger than
those reported in most other species, indicating that
gene expansion has occurred in the PEL gene family, es-
pecially in the IV and V subfamilies, during the evolution
of cotton genomes. Gene duplication events have been
reported to play an important role in gene expansion
and both functional conservation and novelty in gene
families [37, 38]. Our analysis of gene duplication in
three cotton species showed that gene expansion in G.
hirsutum and G. arboreum likely resulted primarily from
segmental duplication (72.3% and 47.6%), whereas in G.

raimondii, it resulted almost equally from tandem and
segmental duplication (Additional file 5: Table S5). Gen-
omic studies of cotton have revealed that two
whole-genome duplication (WGD) events occurred in
both G. arboreum and G. raimondii, one ancient and
one recent event, at approximately 115-146 and 13-20
MYA, respectively [27-29]. Subsequently, polyploidiza-
tion of A and D diploids and the emergence of G. hirsu-
tum occurred, approximately 1-2 MYA [30]. In our
study, analysis of the timing of the occurrence of seg-
mental duplications showed that most of the events ob-
served in G. raimondii and G. arboreum might have
occurred from 8.48-145.46 MYA, except for GrPEL3/
GrPEL13 (148.15 MYA) and GrPEL31/GrPEL43 (171.46
MYA), suggesting that these duplication events might
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have derived from the two WGD events. In G. hirsutum,
the segmental duplication events most likely occurred
before the hybridization of the two extant ancestors, ac-
cording to the range of divergence times (1.00-32.75
MYA) and average time (10.24 MYA). The uneven
chromosomal distribution of the PEL genes in the three
cotton species might be due to the occurrence of these
gene duplication events in the evolution of cotton.

Phylogenetic analysis indicated that the PEL genes could
be classified into five subfamilies, with the largest mem-
bers in subfamilies IV and V (Fig. 1, Additional file 2:
Table S2). The PELs of Oryza sativa were located a long
distance from those of the other plants, which might be
related to different functions of these proteins between
monocots and dicots [39]. All of the GAPELs exhibited the
conserved Pec_lyase_C domain, with highly conserve Ca*
"-binding, disulfide bonds, catalysis and substrate binding
amino acid sites (Additional file 6: Figure S1 and Add-
itional file 7: Fig. S2). The conserved motif analysis
showed that the six motifs existed in most of the GhPELs
(Fig. 2¢). These data indicated that the GhPELs (especially
the members of the same subfamily) might show a rela-
tively conserved function in upland cotton growth. How-
ever, gene structure analysis revealed high diversity in the
exon numbers of GhHPELs, which could be related to diver-
sification of their functions (Fig. 2b) [19, 40]. The similar-
ities and differences of the gene structures, domains and
motifs of GhPELs might be related to conservation and
subfunctionalization, resulting from their long evolution-
ary history and gene duplication in cotton [37, 41].

Role of GhPELs in plant growth and development
PELs are cell wall-modifying enzymes that can cleave
a-1,4-glycosidic linkages of demethylated HG, the struc-
tural polysaccharide of the primary cell walls and middle
lamella in higher plants, via a B-elimination mechanism
[5]. Highly methyl-esterified HG is secreted into the
extracellular matrix during cell division and is then
de-esterified by PMEs. Demethylated HG is degraded by
PELs and PGs more easily, promoting the loosening of
the cell wall and regulating cell growth, cell division and
organ morphogenesis in plant growth and development
[2, 42, 43]. These findings indicate that pectinases, in-
cluding PGs, PAEs, PMEs and PELs, regulate the cell
wall composition and structure, playing important roles
in different developmental processes of plants.
Comprehensive analyses of PEL genes have been re-
ported in Arabidopsis, Brassica rapa and Populus, with
most of these genes being expressed in flowers [9, 10,
17, 19, 20, 36]. In the present study, a transcriptomic
analysis of GhPELs revealed that 90% of the members in
subfamily IV were preferentially expressed in the sta-
men, in agreement with the above reports (Fig. 5). To
further explore the differences in the expression of
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GhPELs in anther development, we analyzed the expres-
sion of 24 GhPELs in four developmental stages of an-
thers, with 7, 12 and 5 GhPELs showing peak expression
levels in meiosis, binucleate and mature stages, respect-
ively (Fig. 6). These results indicated that many GhPELs
performed synergistic and diverse functions in the
process of anther development in upland cotton. Similar
findings have been reported in Brassica rapa, in which
BrPLL1, BrPLL8-1 and BrPLL11-3 were expressed only
at the mature pollen stage, while BrPLL6 showed specific
expression at the meiosis and tetrad stages of anthers,
and in tomato, in which LAT56 and LAT59 displayed
maximal expression levels in the mature anthers [9, 36].
The PELs expressed during anther development might
function to facilitate the degradation of the primary cell
wall in pollen mother cells (PMC) during the meiosis
stage and take part in anther dehiscence, cell wall loos-
ening in pollen, pollen tube elongation and the promo-
tion of pollen penetration through style tissue
degradation in mature anthers [11, 44—46].

Cotton fiber, which is a widely used natural fiber in
the textile industry, is produced from a single differ-
entiated epidermal cell of the ovule [47, 48]. In cot-
ton fiber, pectin was produced beginning at anthesis,
continuously through 19-20 DPA, and was only
found only in the primary cell wall [49]. Here, we ex-
plored the expression features of 7 GhPELs, including
3 paralogous gene pairs with high expression in fiber,
in two upland cotton cultivars showing significantly
different fiber lengths. All 7 GhPELs exhibited signifi-
cantly higher levels of expression in TM1 than kenN
27-3 during the rapid elongation stage of fiber (Fig.
7). However, GhPEL38 At and GhPEL53 Dt showed
lower expression at 30 DPA, which was the secondary
wall thickening stage. GHPEL (GhPEL48 Dt) has been
shown to play an important role in fiber cell elong-
ation through the degradation of pectin in the
primary cell wall, facilitating cell wall loosening [16].
GhPEL4_At, GhPEL30_At, GhPEL68 Dt  and
GhPEL76_Dt appear to exhibit the same expression
characteristics as GhPEL48_Dt, indicating that these
genes might perform similar functions in fiber elong-
ation. GhPEL38 At and GhPEL53 Dt showed expres-
sion levels at the secondary wall thickening stage that
were different from those in the other 5 GhPELs,
which is probably related to their different roles in
secondary wall thickening in fiber. A study of PtPLs
revealed that a PtPLI-18 overexpression line exhib-
ited much thinner secondary walls than control
plants, which indicated that PELs could regulate the
structure of secondary walls as well as primary cell
walls [17]. All of these results indicated that these
genes played a substantial role in fiber elongation and
influence the quality of fiber in upland cotton.



Sun et al. BMC Genomics (2018) 19:661

Auxin is involved in acid-mediated changes in the cell
wall, inducing the expansins and pectinases, leading to
cell wall loosening and organ initiation [21, 50]. Previous
reports have revealed that PEL genes take part in path-
way responses to auxin to regulate cell elongation and
differentiation and other plant developmental processes
[18, 19, 24]. According to our analysis of cis-elements,
all of the GhPELs contained at least one of the six
auxin-responsive cis-elements (Additional file 8: Table
S6). Therefore, we randomly chose 16 GhPELs to inves-
tigate the response to IAA treatment. All of these genes
showed a response to IAA treatment, primarily at 6 h
and 12 h (Fig. 8). Among these genes, GhPEL30_At,
GhPEL38 At and GhPEL48 Dt also participate in the
development of fiber, and GHPEL62_Dt is involved in an-
ther development, especially at the meiosis stage. Previ-
ous studies have shown that auxin regulates the
development of fiber elongation and the anther at early
and late stages [51-53]. Our results revealed that
GhPELs likely regulate plant growth and development by
responding to the IAA signal.

Previous studies have shown that PEL genes play sig-
nificant roles in different plant development processes,
mainly by changing the cell wall composition and struc-
ture [1, 5]. PEL and pectin methylesterases can alter the
cell wall composition, cell wall structure and cell wall
loosening by regulating the content and status of
methyl-esterified and de-esterified HG [54], thereby af-
fecting plant morphology [1] fruit firmness, pathogen re-
sistance [14], anther development [36] and fiber
elongation [16]. Moreover, auxin participates in molding
the cell wall and could regulate PEL enzyme activity
[24]. According to our gene expression analysis, GHPELs
showed diverse gene expression features in different tis-
sues. In particular, we analyzed the expression of
GhPELs in anther and fiber development and in re-
sponse to IAA treatment and inferred that they played
roles in these processes likely by altering cell wall com-
position, cell wall structure and cell wall loosening.
However, the regulatory networks and functions of the
GhPELs require further studies.

Conclusions

We performed a genome-wide analysis of the PEL gene
family in G. raimondii, G. arboreum, and G. hirsutum.
According to analyses of phylogeny, chromosomal loca-
tion and gene duplication events, PEL genes were di-
vided into 5 subfamilies, and it could be inferred that
PEL gene expansion occurred due to gene duplication.
All of the GhPELs exhibited the conserved Pec_lyase_C
domain, and diverse gene structures were observed
among them. The analysis of expression revealed that
the GhPELs showed different expression features in dif-
ferent organs and developmental stages and could
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respond to IAA treatment. These results indicated that
PELs played important roles in plant growth and devel-
opment, especially in anther and fiber development and
the auxin signaling pathway. The results of our study
provide a fundamental basis for further research on the
functions of PEL genes in cotton.

Methods

Identification of PELs in cotton

The conserved Pec_lyase_C (Pfam00544) domain was
downloaded from Pfam (http://pfam.xfam. org) [55] and
used to search against predicted proteins of G. raimondii
(JGI_v2.1), G. arboreum (BGI_v2.0) and G. hirsutum
acc. TM-1 (NAUNBI_v1.1) from the CottonGen website
(https://www.cottongen.org/icgi/home), using HMMER
3.0 [56]. We also searched the Arabidopsis genome
(TAIR 10, http://www.arabidopsis.org) using the
Pec_lyase_C domain. The E-value threshold for the
HMMER search was set at le - 10 to obtain possible
PEL proteins. Then, the normal mode of the SMART
database (http://smart.embl-heidelberg.de/) was used to
confirm every putative GhPEL protein with a Pec_lya-
se_C domain [57]. Only the sequences containing a
conserved Pec_lyase_C domain were employed for fur-
ther analysis.

The theoretical molecular weight (Mw), isoelectric point
(pI), grand average of hydropathicity (GRAVY) and sub-
cellular localization of the predicted GhPELs were pre-
dicted using ExPASy (http://cn.expasy.org/tools) and the
CELLO v2.5 server (http://cello.life. nctu.edu.tw/) [58, 59].

Sequence alignment and phylogenetic analysis

Multiple alignment of all the predicted PEL protein
sequences from the three Gossypium species, Arabidop-
sis, Corchorus olitorius, Theobroma cacao, Oryza sativa
and Populus genomes was performed using ClustalX 2.0
[60]. An unrooted phylogenetic tree was generated using
the neighbor-joining (NJ) method and the amino acid
p-distance model in MEGA 6.0 [61]. Bootstrap
resamplings (1000) were used to assess the reliability of
interior branches.

PEL gene locations on cotton chromosomes and gene
duplication analysis

The physical chromosome locations of all PEL genes
were obtained from the genome sequence databases of
the three Gossypium species and visualized with MapIn-
spect  (http://www.plantbreeding.wur.nl/uk/ software-
mapinspect.html). The predicted PEL proteins of the
three cotton species were aligned with ClustalW2 at
EMBL-EBI (http://www.ebi.ac.uk/Tools/msa/clustalw2/).
Gene duplication was confirmed if the following condi-
tions were satisfied: (1) the coverage of the alignment
was >80% of the longer gene; (2) the identity of the
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aligned regions was > 80%; and (3) genes separated by
five or fewer gene loci with a distance of less than
100 kb on the same chromosome were considered to
represent a tandem duplication [62-64]. A diagram of
segmental duplication was drawn with Circos 0.69 [65].
Nonsynonymous (Ka) and synonymous substitution (Ks)
rates were calculated using DnaSp V5.0 software,
employing the full-length gene sequences of the segmen-
tal duplicated PEL gene pairs from the three cotton spe-
cies aligned by ClustalX 2.0 [66]. The Ka/Ks ratio was
assessed to determine the molecular evolutionary rates
of each gene pair. In general, Ka/Ks < 1 indicates purify-
ing selection; Ka/Ks =1 indicates neutral selection; and
Ka/Ks>1 indicates positive selection. The divergence
times of these gene pairs were estimated using the for-
mula “t = Ks/2r”, with r (2.6 x 10~ °) representing neutral
substitution [30, 67].

Multiple sequence alignments and conserved Pec_lyase_C
domain analysis

The GhPEL protein sequences were employed for mul-
tiple sequence alignments with ClustalX 2.0. SMART
was applied to determine the conserved Pec_lyase_C do-
mains. The SignalP 4.0 server (http://www.cbs.dtu.dk/
services/SignalP/) was used to predict potential signal
peptides within the GhPEL proteins (cutoff > 0.45) [68].

Gene structure and conserved motif analysis

The genomic sequences and positions of the exons
and introns of GhPELs were employed to visualize
PEL exon-intron structures on the Gene Structure
Display Server (GSDS) (http://gsds.cbi.pku.edu.cn/)
[69]. The MEME program was used to analyze the
conserved motifs of the GhPEL protein sequences
with the following parameters: site distribution, zero
or one occurrence per sequence; number of motifs, 6;
and motif width, 6-50 [70].

Analysis of cis-elements of upstream sequences
To determine the cis-elements of the predicted pro-
moters, the 2000 bp genomic DNA sequences upstream
of the initiation codon (ATG) of all GhPELs were
employed to search the PLACE database (http://
www.dna.affrc.go.jp/PLACE/signalscan.html).

Gene expression pattern analysis

The expression levels of GhHPELs in different tissues were
obtained from previously reported transcriptome data
[30]. The GhPELs with an FPKM >1 were used for
further expression analysis [71-73]. The expression
clusters were calculated using Mev4.6.2 software (http://
www.tm4.org/mev.html).
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Plant materials and treatments

Three G. hirsutum cultivars (TM-1, kenN 27-3 and
CCRI040029) were field grown in Anyang, Henan prov-
ince, China. The fibers were separated from the ovules
at 10, 15, 20 and 30 DPA. The anthers of CCRI040029
were harvested when the flower buds had grown to
5 mm, 7 mm and 10 mm and at anthesis [74].

TM-1 was also grown in a climate-controlled green-
house (light/dark cycle: 16 h at 28 °C/8 h at 22 °C) and
was employed to investigate the responses to IAA treat-
ment. Seedlings exhibiting third true leaves were sprayed
with 100 mM IAA and water as a control group. The
leaves of ten seedlings in each group were collected at
O0h,3h 6h,12 h, 24 h and 48 h after treatment. All
samples were immediately frozen in liquid nitrogen and
stored at — 80 °C.

RNA extraction and qRT-PCR analysis

Total RNA of collected samples was extracted using the
Tiangen RNAprep Pure Plant kit (Tiangen, China) ac-
cording to the manufacturer’s instructions. First-strand
c¢DNA was synthesized via reverse transcription of 1 pg
of total RNA using the PrimeScript RT Reagent kit
(Takara, Japan). Primer 5.0 software was used to design
the gene-specific primers for qRT-PCR (Additional file 9:
Table S7). The histone-3 gene (AF024716) was employed
as an internal reference control. The qRT-PCR experi-
ments were performed using SYBR Premix Ex Taq
(Takara) on an ABI 7500 real-time PCR system (Applied
Biosystems, USA) with three replicates. The details of
the protocol were as follows: (Step 1) initial denaturation
step of 30 s at 95 °C, (Step 2) 40 cycles of 5 s at 95 °C,
34 s at 60 °C and (Step 3) melting curve analysis. The
27°°“T method was used to calculated the relative
expression levels of GhHPELs [75]. T-tests were employed
for statistical analyses.
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signal peptide of GhPEL proteins. Left: Phylogenetic analysis of GhPEL
proteins using MEGA 6.0 via the neighbor-joining (NJ) method with 1,000
bootstrap replicates. Right: Conserved domains of GhPEL proteins. Light-blue
filled boxes represent the Pec_lyase_C domain, and green filled boxes
represent the signal peptide. (TIF 1224 kb)
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Additional file 7: Figure S2. Conserved amino acid sites of the GhPEL
proteins. Multiple alignment analysis of GhPEL proteins. The pink, blue,
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Ca**-binding sites, catalysis site and disulfide bond site, respectively.
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Additional file 9: Table S7. Primer pairs used in gRT-PCR analysis.
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