
RESEARCH ARTICLE Open Access
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analyses yields novel genetic and structural
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Abstract

Background: Intellectual Disability (ID) is among the most common global disorders, yet etiology is unknown in
~30% of patients despite clinical assessment. Whole genome sequencing (WGS) is able to interrogate the entire
genome, providing potential to diagnose idiopathic patients.

Methods: We conducted WGS on eight children with idiopathic ID and brain structural defects, and their normal
parents; carrying out an extensive data analyses, using standard and discovery approaches.

Results: We verified de novo pathogenic single nucleotide variants (SNV) in ARID1B c.1595delG and PHF6 c.820C > T,
potentially causative de novo two base indels in SQSTM1 c.115_116delinsTA and UPF1 c.1576_1577delinsA, and de novo
SNVs in CACNB3 c.1289G > A, and SPRY4 c.508 T > A, of uncertain significance. We report results from a large secondary
control study of 2081 exomes probing the pathogenicity of the above genes. We analyzed structural variation
by four different algorithms including de novo genome assembly. We confirmed a likely contributory 165 kb
de novo heterozygous 1q43 microdeletion missed by clinical microarray. The de novo assembly resulted in
unmasking hidden genome instability that was missed by standard re-alignment based algorithms. We also
interrogated regulatory sequence variation for known and hypothesized ID genes and present useful
strategies for WGS data analyses for non-coding variation.

Conclusion: This study provides an extensive analysis of WGS in the context of ID, providing genetic and
structural insights into ID and yielding diagnoses.

Keywords: Intellectual Disability, Whole genome sequencing, ARID1B, PHF6, SPRY4, CACNB3, SQSTM1, UPF1,
1q43 microdeletion, Genome assembly

Background
Intellectual Disability (ID) affects 1–3% of the global
population. A significant proportion of ID is caused by
genetic defects, yet despite extensive testing including by
clinical chromosomal microarray (CMA), ~30% of cases
remain idiopathic [1].

Genome-wide sequencing can identify previously un-
known genes causative for ID. Whole exome sequencing
(WES) is limited by poor ability or inability to detect
non-coding and structural variation, and capturing less
than 100% of the exome [2]. In contrast, whole genome
sequencing (WGS) offers a comprehensive screen of a
variety of DNA variation types. Current evidence
suggests WGS is able to detect coding variants in 42% of
cases missed by WES [2].
We report comprehensive WGS analyses for eight

patients with ID and brain malformations, whose family
history suggested a de novo mutation. Despite a diagnostic
odyssey, including genome-wide clinical and research
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CMA, they were idiopathic. WGS was conducted on trios
composed of the affected child and both unaffected par-
ents (average 34X coverage), and data was analyzed using
both alignment and assembly approaches to detect all pos-
sible causative genetic changes- single nucleotide variants
(SNVs and indels), copy number variants (CNVs) and
structural variants (SVs) (Fig. 1). We validated our findings
using WES data from an independent positive control
cohort of 2081 patients with ID and other neurocognitive
phenotypes, and a negative control WGS cohort of 2535
normal subjects. In addition we probed molecular themes
indicated by our discovery cohort findings in the positive
control cohort, leveraging its large size. We also con-
ducted a screen for de novo variants in possible regulatory
sequences of known and hypothesized pathogenic genes.

Methods
Subjects
Patients were enrolled from the British Columbia Children’s
and Women’s Hospital Provincial Medical Genetics
Program after obtaining informed consent. This study is
approved by the British Columbia Children’s and Women’s
hospital research ethics boards. All patients presented with
ID (moderate to severe) and brain morphological defects

detected by MRI or CT scan. Patients had no family history
of ID, and all were products of normal pregnancies with no
reported teratogenic exposures as ascertained by clinical
assessment by board certified Medical Genetics specialists
at the recruiting facility. Saliva samples were collected and
DNA extracted using DNA Genotek® collection kits,
reagents and protocols from child, father and mother.

Methods
WGS methods, variant calling protocols, verification
methods, and secondary control study methods including
bootstrap analysis, are summarized below and detailed in
Additional file 1. Briefly; DNA was extracted using DNA-
Genotek® extraction kits. Paired-end WGS libraries were
prepared using Illumina’s PCR-free protocol (TruSeq
DNA Sample prep kit -Illumina Catalogue Number FC-
121-1002). Sequencing was by IlluminaHiSeq 2500 plat-
form (v3 chemistry) generating 100 bp paired-end reads,
using three lanes per sample (34X average coverage across
all samples). Alignment and variant calling was by Cana-
da’s Michael Smith Genome Science Center standard
pipelines (Additional file 1, reference genome - hg19).
Variants were identified and filtered as follows, briefly;

putative SNVs were identified using SAMtools mpileup

Fig. 1 Schematic of complete study design. Abbreviations: CNV = copy number variant; SV = structural variant; SNV = single nucleotide variant;
DDD = Deciphering Developmental Disabilities study; UPP = Ubiquitin Proteolysis Pathway; IGV = Integrated Genome Viewer; DGV = Database of
Genome Variation
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version 0.1.17 run on each sample separately. Relatedness
was tested for each trio by comparing SNP concordance
between child, mother and father using vcftools-0.1.14 [3]
(Additional file 2: Table S1). De novo variants were selected
by intersecting the child’s SNVs with that of each parent,
and selecting variants only present in the child and not in
either parent. For variants in the coding region, we selected
de novo missense, nonsense and splicing variants, i.e., func-
tional variants. We next selected rare variants by excluding
alleles with minor allele frequency >1% in dbSNPv135 (ex-
cluding disease associated variants), Exome Variant Server,
Exome Aggregation Consortium (ExAC), and in-house da-
tabases of >7430 exomes, and >3000 genomes (at Canada’s
Michael Smith Genome Sciences Center and the British
Columbia Children’s Hospital Research Center, available
via open-source access [4]). We then used pathway enrich-
ment analyses to prioritize de novo rare variants; selecting
SNVs in genes enriched in pathways involved in brain de-
velopment and function conducted using QIAGENs In-
genuity® Pathway Analysis (IPA), DAVID (https://david-
d.ncifcrf.gov/ 6.7) and Panther (http://pantherdb.org/). For
those variants passing the pathway enrichment screen,
pathogenicity predictions and conservation scores were an-
notated using SIFT [5], PhyloP [6], PolyPhen [7], Muta-
tionTaster [8] and CADD [9] scores. These steps yielded de
novo, functional, rare variants, that are highly conserved
and predicted to be damaging and in biologically relevant
pathways. In addition to the above prioritization, the rare
functional variants were subsequently also screened under
a series of additional genetic models (e.g. compound het-
erozygous, de novo heterozygous, homozygous recessive,
hemizygous recessive), and manually checked for align-
ment quality with Integrated Genomic Viewer (IGV,
https://www.broadinstitute.org/software/igv). SNVs that
were highly conserved and were predicted to be damaging
by at least one pathogenicity prediction software, were se-
lected for verification by Sanger sequencing in the child,
mother and father.
CNV analyses was conducted using FREEC [10], CNA-

seq [11], DELLY [12] and ABySS [13]. The first three
algorithms align reads to the reference genome while
ABySS uses de novo assembly to reconstruct the patient’s
genome. SV analyses was conducted using only DELLY
and ABySS. First, de novo CNVs/SVs were identified by
comparing the child’s data to that of either parent (Add-
itional file 1). De novo CNVs from each algorithm were fil-
tered by manual assessment of local read configuration on
IGV, and genuine ones were prioritized based on func-
tional relevance of the included/CNV-affected genes. SVs,
i.e., translocations and inversions, were filtered by either
IGV read visualization and then by using QC metrics spe-
cific to each algorithm; QC metrics generated by the pro-
gram were used for DELLY, and checking of BLAT scores
for breakpoint-junction contigs and number of supporting

reads were used for ABySS. Candidate CNVs/SVs that
were selected from the above filtering were verified using
an independent method as detailed below.
All de novo variants, i.e., SNVs, CNVs and SVs, were

verified by Sanger sequencing of PCR-captured amplicons
of the affected sequence, either bearing the SNV or
spanning the breakpoint junction (in the case of CNVs
and SVs) in the trio, with forward and reverse primers
(Additional file 3: Table S2). All verified candidate SNVs
were subjected to genotype-phenotype correlations assess-
ment as per the guidelines of the American College of
Medical Genetics (ACMG) [14].
Secondary control study - WES data from the UK10K

project [15] for 2081 patients with neurofunctional pheno-
types (available clinical data for the projects that comprise
this cohort is found in Additional file 4: Table S3), and
WGS data from 2535 normal individuals from the 1000
Genomes project [16]; a publicly available repository of
variation in healthy individuals, was obtained. ‘Possibly
damaging SNVs’ (PDSs), were extracted from these data-
sets (as detailed in Additional file 1 and Additional file 5:
Figure S2), and a gene-wise PDS burden for all genes in
the human genome was determined in both the positive
and negative control cohorts. Subsequently the gene-wise
PDS burden only in our candidate genes was compared
between the positive and negative control cohorts. We
further bootstrapped the positive control cohort to deter-
mine if the PDS burden in our six candidate genes could
be due to random sampling. Finally, we tested to see what
functional pathways genes with PDS in the positive con-
trol cohort were involved in, and conducted a Kyoto
Encyclopedia of Genes and Genomes (KEGG [17]) path-
way enrichment analyses, testing which of the total 57
functional pathways from KEGG were most enriched for
genes bearing PDS in this large dataset.
Regulatory region variation – For our regulatory region

analysis we selected ‘high confidence’ de novo SNVs
defined as having a mapping quality > 30 and read depth ≥
10 and ≤ 100, and ‘high confidence’ de novo CNVs defined
as those that were detected by two or more CNV detec-
tion algorithms. We then intersected both the de novo
high confidence SNVs and CNVs with six non-coding se-
quence annotation datasets. Results from the above, i.e.,
de novo high confidence SNVs and CNVs with involve-
ment in putative regulatory regions, were then intersected
with candidate gene lists and appropriate flanking
sequence (Additional file 1) to determine their possible as-
sociation to a candidate known or hypothesized ID gene.

Results
De novo SNVs identified by objective molecular
pathway-based filtration
Genes with functional rare de novo SNVs were screened
using three pathway analyses programs (IPA, DAVID
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and Panther) in order to refine candidates involved in
brain development and function; IPA returned 17 candi-
date genes, DAVID returned 23, and Panther returned 9.
A total of 23 unique genes involved in brain development
and function were yielded by the combined analyses (i.e.,
found by at least one of the programs). From these, highly
conserved and predicted damaging SNVs (11 SNVs in 11
genes in six patients) were Sanger tested, and six SNVs in
six genes in five children were confirmed as heterozygous
de novo (Table 1); ARID1B [MIM:614556] NM_017519:
c.1595delG (p.G532fs), PHF6[MIM:300414] NM_
001015877:c.820C > T (p.R274X), SPRY4 [MIM:607984]
NM_001127496:c.508 T >A (p.C170S), CACNB3[MIM:
601958] NM_0012069:c.1289G >A (p.R430Q), SQSTM1
[MIM:601530] NM_03900: c.115_116delinsTA (p.A39fr*#)
and UPF1 [MIM:601430] NM_002911:c.1576_1577delin-
sAA (p.A526N). The latter two were found in a single pa-
tient while the rest each appeared in a separate patient. As
best practice, we also screened our de novo rare functional
variants for location within published known [2] and can-
didate ID genes [18], however no new findings were
yielded. Except ARID1B and PHF6, the other genes are
novel for ID. Table 1 provides variant classification as per
the ACMG variant interpretation guidelines [14]
(Additional file 6: Table S4 for detailed classification
of variants) and our interpretation of their causative effect.
Brief genotype-phenotype correlations are given below;

ARID1B c.1595delG (p.G532fs) in Patient 43
This single base deletion in exon 2 of the known ID
gene ARID1B causes a frame-shift leading to predicted
loss of function (LoF, Additional file 5: Figure S1). Our
patient presents with ID, autism, absence of corpus cal-
losum, absence of speech, feeding difficulties and failure
to thrive (Table 1). Haploinsufficiency of ARID1B was
reported to cause corpus callosum abnormalities, ID,
speech impairment and autism [19], suggesting the
ARID1B LoF is causative and sufficient in this case.

PHF6 c.820C > T (p.R274*) in Patient 58
PHF6 encodes the plant homeodomain finger protein 6.
The nonsense variant in PHF6 is located in the ePHD2
domain in which causative de novo truncating and
missense variants for Börjeson-Forssman-Lehmann
syndrome (BFLS) [MIM:301900] [20], and Coffin-Siris
syndrome (CSS) [MIM:135900] [21] are known. De novo
truncating and other mutations in PHF6 are reported to
cause a distinct syndrome in girls [22] and reported for
a female specific form of BFLS [23]. Roles for PHF6 are
reported in the chromatin remodeling SWI/SNF
complex [24], and in the NuRD epigenetic regulatory
complex where it acts as a possible regulator for the lat-
ter in neurogenesis [25]. RNAi knock down of PHF6
profoundly impairs neuronal migration in vivo [26], thus

leading to formation of white matter heterotopias. In
keeping with this, this patient reports pachygyria, which
results from abnormal migration of neurons in the
developing brain. She also presents with an unusual
asymmetrical growth phenotype that was reported in the
one patient with the female specific BFLS [23]. These
data indicate the variant is a good candidate in this case.

SPRY4 c.508 T > A (p.C170S) in Patient 59
SPRY4 encodes a specific inhibitor of the mitogen-activated
protein kinase family. Spry4 is expressed in the mouse
developing brain [27], and is essential for the normal mor-
phogenesis and cytoarchitecture of the cerebellum [28].
Morphogenic changes in axon growth have been shown
when the protein is down regulated both in vivo and in
vitro [29]. In zebrafish, spry4 is a principal regulator of
mid-brain development [30], and mediates hindbrain pat-
terning [31]. These data support the notion that the SPRY4
missense variant may contribute to the brain morphological
phenotype in this patient. Spry4 expression plays a role in
Xenopus limb bud development [32], of note as our patient
reports short and crowded toes.

CACNB3 c.1289G > A (p.R430Q) in Patient 45
CACNB3 encodes a regulatory subunit of a voltage-
dependent calcium channel (VDCC). Mice lacking Cacnb3
presented visual impairment [33], high pain threshold [34],
and behavioral phenotypes [34], all of which features are
seen in this patient. Mutations in other members of VDCC
subunit encoding genes are known to cause neurological
disease, including epilepsy [35] present in our patient. This
variant is found in eight of 60,165 individuals in the ExAC
database, where its non-absence disqualifies likely patho-
genicity as per ACMG criteria, despite being de novo and
deleterious by multiple lines of computational evidence.
Neither does it meet criteria to be a benign variant, and
therefore is of uncertain significance.

SQSTM1c.115_116delinsTA (p.A39*), UPF1 c.1576_1577delinsAA
(p.A526N) and a 1q43(1:243282457–243447771, hg19) deletion
CNV in Patient 51
The patient is severely affected, with significant ID and
several major congenital anomalies (Table 1). The het-
erozygous indel formed by two adjacent SNVs in
SQSTM1 causes a stop-gain. SQSTM1 encodes p62, a
regulatory factor in Nuclear Factor kappa-B (NF-kB) sig-
naling, NF-E2-related factor 2 (NRF2) activation,
ubiquitin-mediated authophagy, and transcription [36].
The SNV is located in the PB1domain, mutations of
which cause Paget Disease of Bone (PDB) and Fronto-
temporal Dementia and/or Amyotrophic Lateral Scler-
osis (FTLD/ALS) [MIM:607485,612069] [36]; both
neurodegenerative conditions that include morpho-
logical brain changes. The adjacent SNVs in UPF1,
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together cause a likely pathogenic missense amino acid
change (Table 1 and Additional file 5: Figure S1). UPF1
has an essential role in nonsense-mediated mRNA
decay [37]. Interestingly, UPF1 has been shown to re-
markably reduce ALS-associated neuronal toxicity in
vitro [38] and to protect against motor dysfunction
and forelimb paralysis in a rat model for ALS [39]. It
is plausible haploinsufficiency of SQSTM1 may have
caused neurofunctional defects, which the haploinsuf-
ficiency of UPF1 may have exacerbated. In this re-
gard, it is notable that at 19 years of age, patient 51
presents significant motor deficits, being wheelchair
bound, indicative of a possible early onset of ALS.
While scoliosis and hearing loss, both among the
presentation for PDS is already seen in her. These
data support the notion that the SNVs in both genes
maybe contributory toward her presentation.
We further verified a de novo ~165 kb heterozygous

deletion that spans CEP170 [MIM:613023] in whole

and SDCCAG8 [MIM:613524] in part (Fig. 2a and c)
in this patient. CEP170 encodes a component of the
centrosome [40]. SDCCAG8 is also involved in
centrosome function [41], DNA damage response
signaling [42] and neuronal migration [41]. Both
genes are suggested as candidates for corpus callosum
abnormalities via 1q43 microdeletion [43], however
this has been contested [44] (Fig. 2c). Our patient
presents partial phenotypic overlap with microdeletion
1q34 index cases. The demonstrated roles for
SDCCAG8 in DNA-mismatch repair, and for both
genes in cell cycle progression, supports the notion
this CNV may be contributory. Notably, the haploin-
sufficiency of a DNA-mismatch repair gene could lead
to the high mutation burden detected in this child
(above SNVs, and vide section ‘Genome Assembly
Indels’). We also confirmed at least one maternally
inherited balanced translocation (vide section on
CNV/SVs), which is unlikely to be contributory.

Fig. 2 Details of CNV analyses. a IGV images for heterozygous deletion CNV in patient 51, showing proximal and distal breakpoint. The CNV involves
whole of CEP170 and part of SDCAAG8 genes. Top, middle and bottom panels are child’s .bam file, mother’s .bam file and father .bam file respectively.
Read-depth coverage shows CNV is de novo (red ovals). b Cartoon of breakpoint junction seuqence showing a 24 bp chromosome 16 (green box) and
107 bp chromosome 5 sequence (yellow box) inserted between the proximal and distal breakpoints on chromosome 1q43. Yellow shaded segment
shows sequnce microhomology- this 14 bp seuqence (TTGGGAGTAGAGGG) is found at chromosome 5:40,069,598-40,069,612 and at chromosome
1:243,447,747-243,447,761, hg19). Sanger sequence trace images are overlaid confirming the CNV breakpoint. Grey arrows denote PCR forward and
reverse primers. N denotes DNA repeat sequence. c Genomic interval involved in the de novo CNV detected in patient 51- ucsc genome browser
(hg19). Red highlighted box shows region involved in the deletion in our patient. Yellow boxes show critical region for 1q43-44 sydrome defined by
Nagamani et al. Green box shows critical region as defined by Perlman et al. N.B, Nagamani et al. also highlight ZBTB18 (old name ZNG238) in their
critical region
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Mutation burden assessment in large secondary positive and
negative control cohorts support candidacy of novel genes
We investigated the candidacy of the above verified genes
by assessment for incidence of damaging mutation in large
positive and negative cohorts with comparable NGS
data. We looked for ‘potentially damaging SNVs’
(PDSs) (Additional file 5: Figure S2 gives an example
per patient PDS mutation burden) in our candidate
genes, from WES of 2081 patients with neurodevelop-
mental and neurocognitive phenotypes from the
UK10K cohort [15] (Additional file 4: Table S3 and
Additional file 5: Figure S3) and compared that to in-
cidence in WGS from 2535 healthy people from the
1000 Genomes project [16].
We first screened for the exact variant detected in our

discovery cohort, and did not find any case of an exact
match. We then conducted a gene-wise PDS screen and
observed that incidence for PDS in ARID1B, SPRY4,
CACNB3, SQSTM1 and UPF1 were significantly enriched
in the positive versus negative control cohorts (Fig. 3a).
There was no significance for PHF6; however, the two
PDS found in 4616 people was insufficient for meaningful
statistical assessment. The extremely high PDS burden in
the positive control cohort for SQSTM1 and UPF1 is note-
worthy, as these genes have previously not been reported

for ID to our knowledge, and further, the indels in both
are found in the same patient in our cohort.
While we do not have access to clinical data to con-

duct a classical genotype-phenotype correlation between
cases in the positive control cohort and our patients
who have the same gene affected, the large number of
such cases in the positive control cohort also impedes
such a study within the scope of this work. We therefore
assessed if our findings could be due to random chance
effect, by bootstrapping the UK10K cohort for PDS in
six randomly selected genes each, a thousand times. We
found from the bootstrap analysis that the mean and
median gene-wise variant frequency for our six candi-
date genes was greater than that of the corresponding
distribution, indicating that our findings were not likely
due to chance (Fig. 3b & c). These data are consistent
with an association of at least five of our candidate genes
with neurodevelopmental abnormalities.

Novel candidate genes converge unto the ubiquitin
proteasome pathway, which also bears significant
mutation burden in 2081 positive control WES samples
We investigated molecular links between our pathogenic
and candidate genes; focused IPA and STRING pathway
analyses revealed that all six connected to the ubiquitin

a b

c

Fig. 3 Validation study. a showing incidence for potentially damaging SNVs (PDSs) in both the positive control (UK10K) and negative control
(1000G) control cohorts. * denotes statistical signficance (at p < 0.05, Fisher’s exact test) b and c Results of bootstrap analyses for PDSs in 6
randomly selected genes. Red vertical bar shows the mean and median result for PDSs in our 6 candidate genes
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proteasome degradation pathway (UPP) (Additional file 5:
Figure S4) which has important roles in the structural de-
velopment and function of the brain [45, 46]. We assessed
the relative importance of this pathway and found the
UPP was among significantly enriched pathways for PDS
when compared with all KEGG pathway categories (n =
55) (Additional file 7: Table S5), in the UK10K patient co-
hort (p = 0.031), substantiating the importance of the UPP
pathway in brain development.

Mendelian inheritance and N of 1 analyses provides
additional candidate variants
In addition to our in-silico refinement and test for candi-
date de novo SNVs above, we also conducted a classical
series of N of 1 studies for these eight patients; manually
assessing the possible candidacy of variants selected by all
possible Mendelian inheritance patterns (Additional file 8:
Table S6). Compound heterozygous missense mutations
were identified in LRP2 [MIM:600073], causative of the
autosomal recessive Donnai Barrow syndrome [MIM:
222448] in patient 42. Absence of the corpus callosum,
reported in our patient, presents in Donnai Barrow syn-
drome. Compound heterozygous mutations were identified
in AP4E1 [MIM:607244] causative of autosomal recessive
spastic paraplegia type 51, in patient 59. This patient
reported a seizure at 12 years of age, however does not
exhibit the severe neurological phenotypes nor the shy
demeanour reported for a possible syndromic form of ID
[47, 48] caused by defects in adaptor protein complex-4, of
which AP4E1 encodes one of the four subunits. A missense
SCN3A [MIM:182391] SNV (p.Leu209Pro/c.626 T >C) in
patient 45 was selected due to SCN3A association to epi-
lepsy [49] (a phenotype presented by our patient), and the
predicted deleterious effect of the variant, and was Sanger
verified as de novo. Functional studies are underway to
further investigate the role of SCN3A in epilepsy.

Extensive copy number variant (CNV) and structural
variant (SV) analyses identifies likely causative CNV
missed by clinical CMA, and balanced benign
translocation
We conducted both alignment-based (FREEC, CNAseq,
DELLY) and de novo assembly-based (ABySS) CNV/SV
analyses. CNVs, i.e., duplications (gains) and deletions
(losses) were identified by all four platforms, while SVs,
i.e. translocations and inversions, were identified by
DELLY and ABySS (Table 2). An average of 58 de novo
gain CNVs and 128 de novo loss CNVs across all eight
patients were detected. However, only 46 CNVs were
called by over one platform, and none were called by
more than two (Fig. 4), with the majority of each
algorithm’s findings being unique. We carried out exten-
sive visual in silico curation for all CNVs, and selected
three to verify of which, only the previously discussed

1q43 loss CNV, Sanger verified as de novo- it was de-
tected by FREEC and CNAseq, and is clearly visible on
IGV (Fig. 2a). Breakpoint junction sequence reveals a
complex architecture (Fig. 2b).
Similar to our CNV results, SV results from DELLY and

ABySS were divergent (Table 2). Only one translocation
(between chromosome 19 and 1) in patient 41, was called
by both, and there was no concordance among inversions.
Upon extensive manual in silico curation we selected 10
translocations and 1 inversion to verify (Additional file 9:
Table S7), but none verified as de novo. Sanger verification
for these lesions was challenging as breakpoints mapped
to repeat-masked regions, nevertheless one translocation
verified as maternally inherited; a chromosome X-2
(92696685:225020555, hg19) translocation not causing
any gene-disruption, in patient 51. The breakpoint junc-
tion shows a single base addition (Fig. 6a).

Genome assembly yields small insertions/deletions
(indels) missed by genome re-alignment
In contrast to the re-alignment based algorithms, ABySS
[13] identified over 700 potential de novo indels (max-
imum size 100 bp), via genome assembly. Forty three
indels were refined as likely true positives with a func-
tional importance, due to having at least seven spanning
reads, and producing a protein coding change; the major-
ity being in patient 51. For consistency, we conducted a
pathway analyses for the indel-bearing genes, and a man-
ual curation, in order to select candidates for verification
as we had done for our SNVs. This resulted in 14 indels
that were Sanger tested (Additional file 1); however one
was false positive, five were inherited, and eight did not
pass PCR quality checks (Additional file 9: Table S7),
indicating location to repeated DNA sequence, thus
hampering any ability to amplify the region for
Sanger sequencing.

Gene regulatory region variation identified in known and
hypothesized ID genes
We investigated gene regulatory sequence variation
which we term ‘de novo variants in possible regulatory
regions’ (DVPRRs). We filtered the DVPRR for poten-
tially pathogenic changes using two approaches: by
screening for involvement in known ID genes, and on
the basis of our hypothesized involvement of the UPP.
An average ~30,000 de novo SNVs were found

across our eight patients in the non-coding genome
(Fig. 5a). Of these, an average 2909 located to tran-
scription factor binding sites, an average 514 to puta-
tive gene promoters, an average 191 of those located
to promoters were also located to transcription factor
binding site regions, an average 210 located to regions
annotated as enhancers by the FANTOM consortium
[50], an average 263 belonged to 5′ or 3′ UTR

Zahir et al. BMC Genomics  (2017) 18:403 Page 9 of 16



regions and an average 58 located to highly conserved
ultra-sensitive regions [51] – we considered these to
be DVPRR and therefore there were an average 3763
DVPRR across all eight patients (Fig. 5a). We then
intersected DVPRRs with 995 genes known to cause
developmental delay (‘DDD genes’) [52] in a disease
gene screen approach, and with the total 137 genes of
the UPP (KEGG), − as our candidate genes converged
upon the UPP - in a hypothesis-driven approach. As
a final step for enhancers and ultra-sensitive regions,
we further selected DVPRR where it, and the candi-
date gene (DDD genes or UPP genes), were located
within the same topological domain [53], postulating
that their physical proximity would imply that the
regulatory region in question did in fact impact the
targeted gene. In summary we found an average of 56
and 11 DVPRR per patient in our gene-screen and

hypothesis driven approach respectively, by these
filtrations combined (Additional file 10: Table S8)
(Fig. 5a). We also interrogated high-confidence CNVs
in the same manner, but only found association to
SDCCAG8, a known ID gene present in the
previously discussed 1q43 microdeletion (Fig. 5b and
Additional file 10: Table S8).

Occurrence of de novo SNVs in non-coding RNAs (ncRNA)
We found an average of 241 high confidence de novo
SNVs that located to sequence annotated as ncRNA
across all eight patients. A majority of these (average
195) fall within introns while an average 39 are ex-
onic, an average 0.25 are predicted in splice junction
sequence and average 5 and 2 are located to 3′ and
5′ UTR respectively.

Table 2 Number of copy number variants and structural variants identified

Patient
#

FREEC CNAseq DELLY ABySS

Gains Losses Gains Losses Gains Losses Inv Trans Gains Losses Inv Trans

42 10 29 8 11 0 0 0 1 4 11 1 8

55 8 22 17 7 0 0 0 2 0 5 1 2

58 8 18 5 8 0 2 0 1 2 10 2 1

41 14 13 13 16 10 60 16 19 4 23 0 4

59 8 18 7 10 0 2 0 2 4 17 2 11

43 14 18 5 5 0 3 0 0 16 25 1 5

51 6 19 13 11 0 0 0 0 30 113 5 21

45 9 12 11 9 1 1 0 1 5 14 2 7

Totals 77 149 79 77 11 68 16 26 65 218 14 59

Fig. 4 Venn driagram showing CNVs found by each algorithm (G = gain, L = loss)
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Discussion
Selection of candidate SNVs: comparison of strategies
An effective strategy is essential to select causative
SNVs from NGS data. Standard filtration approaches
(e.g., variant quality, mapping quality, minimum read
depth, and functional variants that are not common
polymorphisms) yield potential de novo variants that
then must be careful sifted for likely true candidates.
In keeping with others [54], we found an average of 6
+/− 2 candidate unverified de novo SNVs (Additional
file 8: Table S6), and it was necessary to implement
an effective prioritization approach for verification.
Discovery WGS and WES studies published to date

have used a large sample size [2], detailed pedigree
information [55], or well characterized rare syndromes

[56] as study cohorts, leveraging the power of
numbers, inheritance pattern, and phenotypic com-
monality, respectively, as filtration strategies. In as
much as we did not have a large cohort, all of our
cases were sporadic, and none had a recognized
dysmorphic syndrome, we refined SNVs objectively,
by selecting genes known to be involved in brain
development pathways. We reasoned that this system-
atic approach would reduce subjective bias inherent
in an N of 1 genotype-phenotype correlation, and
thereby identified potential candidates. However a
subjective screen for SNVs yielded the likely dam-
aging variant in SCN3A, which was not stratified by
our objective approach –highlighting the limitation of
pathway analyses programs that depend on available

a

b

Fig. 5 Schematic of filtration pipeline for variants in non-coding regions. a Schematic for SNVs. b Schematic for CNVs. Abbeviations; SNV- single
nucleotide variant, TFBS – Transcription Factor Binding Site, FANTOM-Enhancer sequence as annotated by the Fantom consortium. UTR – untranslated
regions. DDD- Deciphering Development Disabilities. UPP – Ubiquitin proteosome degredation pathway. CN- copy number. Patient 42 had DVPRR in
the UTRs of two genes; CBL and UBE3B. Patient 59 had a DVPRR in the promoter of UBE3A, patient 43 had a DVPRR in the promoter of CUL4B, and
patient 42 had DVPRRs in the promoters of UBE3A, CUL4B and CUL7 (Additional file 10: Table S8)
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gene-functional annotations. Notably SCN3A was se-
lected by a team of biochemical geneticists specifically
with respect to the epilepsy presented by the child.
Thus a subjective approach may also miss results de-
tected from objective screening, as exemplified in this
case, where the two analyses were done by independ-
ent members and each did not report the result of
the other.

Interpreting detected variants; discovery study findings
further inform genetic complexity for ID
Variable expressivity and reduced penetrance are well
known in the pathogenicity of ID, and it is increasingly
recognized that a single mutation in a single gene may
only rarely explain the full phenotypic spectrum [1]. Our
results provide further indications of such complex her-
itability; in patient 51, the 1q43 deletion, and SNVs in
SQSTM1 and UPF1 may act in concert to produce the
complex and severe phenotype in this patient. While in
patient 58, we have identified both compound heterozy-
gous variants in the known ID gene AP4E1 that act in a
recessive model, as well as de novo variant in a novel
gene SPRY4, which has important functions in brain de-
velopment. De novo mutation is recognized to play an
important role particularly in the pathogenicity of ID
[57], and it is difficult to determine to what extent each
of these variants, if at all, contributes to disease burden
in this patient. The same is true for patient 45 in whom
de novo variants for two novel genes, CACNB3 and
SCN3A were identified. We note that patient 51 who
bears the most complex genotype, is the most severely
affected in our cohort, and in this case, clinical severity
does co-relate with number and complexity of genomic
alterations, suggesting that gradation of clinical severity
may provide useful toward assessing the contribution of
genomic alterations.
It is recognized that genes responsible for ID converge

onto common networks [1, 58]. The candidate genes we
identified converge onto the UPP, which is critically in-
volved in neurodegenerative disease [45] and has im-
portant roles in neurodevelopmental disorders [45, 46].
This observation is consistent with the notion that they
may be good candidates, and exemplifies the usefulness
of probing molecular links among novel findings.

Large secondary positive WES cohort analysis supports
novel findings
Novel SNV findings from NGS studies require rigor-
ous additional studies to support proof of pathogen-
icity [14]. In our case, several of our novel candidates
cause missense variation, whose effect is difficult to
model, as opposed to clear loss of function mutations
which are amenable to functional studies in model
organisms. Conversely we were unable to conduct

traditional genotype-phenotype correlations studies as
none of our patients had a recognizable syndrome to
match with other patients. Therefore, our approach of
using a large secondary positive control cohort,
despite the phenotypic spectrums not matching our
cases precisely, gave us sufficient ability to test the
predicted causality of our candidate genes and was
the best strategy available. We were hampered by the
lack of an optimal comparison negative control co-
hort. We used WGS data from the 1000 genomes
project, which we recognize is primarily comprised of
low coverage samples whose phenotypic spectrum is
poorly characterized (thus yielding likely false negative
data or conversely identifying variants in ‘normal’ in-
dividuals who are in fact affected), yet the similarity
of sample size between the two groups allowed us to
explore the PDS distribution for these genes reason-
ably, providing a useful contributory analysis toward
assessing their likely pathogenicity. Finally this large
cohort enabled us to further probe the convergence
of our candidate genes upon UPP, by assessing its
contribution versus other biological pathways.

WGS is able to detect structural variants below the
threshold of clinical CMA, and enables mechanistic
insights into CNV formation
By using WGS instead of WES, we were able to de-
tect a CNV below clinical CMA resolution, isolate it’s
breakpoints, and uncover a possible complex genomic
landscape in one patient. We wanted to conduct a
comprehensive screen for CNVs and other structural
variants to maximize sensitivity. Therefore we used
four approaches that are fundamentally different;
CNAseq and FREEC are sequence based copy-number
estimators that use categorically different algorithmic
approaches for background correction. DELLY is an
alignment based assembler, whilst ABySS is a de-novo
genome assembler. Since each algorithm was opti-
mized differently, it therefore yielded different results.
For example, CNAseq executes read-depth based bin-
ning, and hence aggregates results at telomeres and
centromeres where a larger number of reads re-align
due to pervasive repeat sequence (Additional file 5:
Figure S5). The verified CNV we detected was only
identified by DELLY and FREEC, but missed by the
other algorithms. Therefore, we caution against using
only one CNV detection algorithm as this would
reduce sensitivity. The breakpoint junction sequence
in the case of the confirmed 1q43 microdeletion is
consistent with the notion that it could be caused by
chromotripsis, a mechanism only recently reported in
the constitutional genome [59], further demonstrating
the utility of WGS data.
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WGS enabled a de novo genome assembly that unmasked
hidden genome complexity
ABySS de novo assembly identified a translocation
missed by DELLY, and also detected a higher than usual
number of putative indels in patient 51, who was found
to have a remarkably unstable genome masked by

standard genome re-alignment based analysis (Fig. 6b).
However, we experienced difficulty confirming these
events via Sanger sequencing, which was due, in part, to
the high degree of repeated sequence at breakpoint junc-
tions. Genome assembly is able to call events in repetitive
sequence better than alignment based algorithms [13],

Fig. 6 a Sanger sequencing verification of translocation in patient 51, with karyotype cartoon of balanced translocation. PCR amplicon trace file
shows sequence mapping across the chromosome X -2 translocation boundary. Zoomed-in view shows single base addition at breakpoint
jucntion. b Circos plot showing mutation burden for patient 51 called by ABySS genome assembly
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though conversely such events are harder to independ-
ently verify. We are among the first to use de novo assem-
bly to interrogate patients with ID, and our findings
suggest variation located to repeat enriched sequence is
currently under-ascertained in the constitutional genome.

WGS is able to interrogate regulatory genomic sequence
Meaningful interpretation of SNVs within regulatory
sequence is hampered by the sparsity of annotations for
the non-coding genome. We implemented two different
filtering strategies in order to identify non-coding SNVs
that could have a functional impact, and also used topo-
logical domain data to further refine good candidates.
Though we were able to reduce the number of candidate
DVPRR from an average >3700 to dozens in the case of
our gene-screen approach and a handful in the case of
our hypothesis driven approach, nonetheless without
further focused studies, meaningful interpretations are
precluded. In contrast, assessing the impact of CNV-
based DVPRR is theoretically less challenging, as it is
more straightforward to predict functional outcome for
a complete loss or gain of a possible regulatory se-
quence. In summary, though clinically relevant conclu-
sions for DVPRR will require a case-by-case analysis and
extensive follow-up functional studies, nevertheless we
note it is possible to stratify DVPRR in the context of
known causative genes for ID using WGS.

WGS versus WES
WGS yields a comprehensive screen of the genome as,
in addition to coding variation, it includes ability to in-
vestigate structural variation at a fine scale as discussed
above, and also variation in possible gene regulatory se-
quence as well as ‘non-coding genes’ such as ncRNAs
for which there is a paucity of information in the context
of neurodevelopmental disease. While we show strategic
stratification for DVPRR can yield results potentially
relevant to ID causation, much less is possible for
annotation of SNVs within ncRNA sequence, of which
we detect an average 241 across our samples. Neverthe-
less, initial screens such as ours, importantly generate
exploratory information for non-coding sequence
variation possible only by WGS.
We note that all the SNVs we identified as involved in

disease would have been possible to detect by WES. How-
ever, WGS yields a more complete view of possible patho-
genic variation in each child. This is exemplified in the case
of patient 51, for whom had only WES been performed,
while the SQSTM1 and UPF1 SNVs would likely have been
detected, the 1q43 microdeletion would not have been
identified. In the case of this patient, it is unclear what the
gene-effect size for each variant is. Conversely, in the case
of patient 43, for whom we detected the SNV in ARID1B,
we are more certain of the penetrance of this variant due to

the normal results for other causative variation in their gen-
ome (i.e., that they do not have any CNVs or SVs) from our
WGS data analyses. These data argue in favor of WGS over
WES for clinical use.

Conclusions
This is the first study to present extensive analyses of
WGS data in the context of ID, for causative SNV and
CNV/SV in both coding and non-coding sequence, and
the first to present results from de novo assembly of the
genome. In a heterogeneous group of eight children with
ID and morphological brain defects, we were able to
identify candidate causative variants, highlight neurode-
velopmental pathways, and unearth hidden genome
instability, demonstrating the efficacy of a discovery
approach to WGS analyses in the context of ID.
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