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Abstract

Background: Lately, biomarker discovery has become one of the most significant research issues in the biomedical
field. Owing to the presence of high-throughput technologies, genomic data, such as microarray data and RNA-seq,
have become widely available. Many kinds of feature selection techniques have been applied to retrieve significant
biomarkers from these kinds of data. However, they tend to be noisy with high-dimensional features and consist of
a small number of samples; thus, conventional feature selection approaches might be problematic in terms of
reproducibility.

Results: In this article, we propose a stable feature selection method for high-dimensional datasets. We apply an
ensemble L1-norm support vector machine to efficiently reduce irrelevant features, considering the stability of
features. We define the stability score for each feature by aggregating the ensemble results, and utilize backward
feature elimination on a purified feature set based on this score; therefore, it is possible to acquire an optimal set of
features for performance without the need to set a specific threshold. The proposed methodology is evaluated by
classifying the binary stage of renal clear cell carcinoma with RNA-seq data.

Conclusion: A comparison with established algorithms, i.e., a fast correlation-based filter, random forest, and an
ensemble version of an L2-norm support vector machine-based recursive feature elimination, enabled us to prove
the superior performance of our method in terms of classification as well as stability in general. It is also shown that
the proposed approach performs moderately on high-dimensional datasets consisting of a very large number of
features and a smaller number of samples. The proposed approach is expected to be applicable to many other
researches aimed at biomarker discovery.

Background
Biomarker discovery has become one of the most signifi-
cant research objectives in recent years. Because bio-
marker discovery is typically modeled to determine the
most discriminating features for classification, it can be
described as a feature selection problem regarding class
from the point of view of machine learning [1–3]. Fea-
ture selection is the step that involves identification of

the most salient features for learning [4] and enables the
performance of the classifier to be enhanced by eliminat-
ing irrelevant features that cause inaccurate prediction
or over-fitting problems. In addition, the time required
for learning is reduced as feature selection serves to
lower the dimensionality. Although classification without
a feature selection process may improve the classifica-
tion performance, a large number of features would
complicate interpretation of the result. In short, feature
selection not only enhances the classification perform-
ance, it also improves the understanding and analysis of
the data. The emergence of new high-throughput tech-
nologies has made genomic data, such as microarray
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data and RNA-seq, widely available for biomarker
discovery. However, the distinct characteristics of
biomedical data, which often contain far more fea-
tures than the number of samples, mean that con-
ventional feature selection approaches might be
problematic, especially with regard to reproducibility;
small changes in the dataset could lead to large
changes in the feature selection result, which should
not be considered as important biomarkers. Feature
selection in the biomedical field should consider the
stability of features, as well as the influence on the
classification performance. Some researchers have
suggested the ensemble feature selection based on
instance perturbation to address this problem [5–7].
This study proved that the stability of selected fea-
tures was significantly improved by performing fea-
ture selection on slightly different datasets and
aggregating their results. Furthermore, research that
combines lasso regression with resampling was intro-
duced [8, 9]. The L1-norm of lasso regression tends
to force the solution to be sparse, and it shows high
efficiency for feature selection in regression
problems.
In this paper, we propose a stable feature selection

method based on the L1-norm support vector ma-
chine (SVM). The basic concept of L1-norm SVM is
similar to that of lasso regression, but it is tailored
for classification tasks, which is the model for many
biomarker discoveries. L1-norm SVM efficiently re-
duces the number of irrelevant or redundant features
to fewer than the number of samples; thus, it is ap-
propriate for biomedical high-dimensional data. As
our methods are applied over instance perturbation
steps, the stability issue, which is one of the most
critical problems of L1-norm can also be managed.
Furthermore, the optimal subset of selected features
was detected by applying backward feature elimin-
ation to our own ranking criteria. By eliminating fea-
tures one by one based on our ranking criteria
generated by the L1-norm SVM, a cross-validated
classification score is calculated, and a subset of fea-
tures that maximizes classifier performance is
acquired.
The proposed method is tested for the classification of

renal clear cell carcinoma stage classification. We used
an RNA-seq gene expression dataset of renal clear cell
carcinoma samples from the cancer genome atlas
(TCGA) for our study. We compared our approach with
three established feature selection methods, namely a
fast correlation-based filter (FCBF) [10], random forest
[11], and an ensemble version of support vector
machine-based recursive feature elimination (SVM-RFE)
[6, 12], from the point of view of classification perform-
ance and the stability of selected features. The

experiment showed that our method has considerable
classification performance and stability.

Results
Datasets
The RNA-seq gene expression data of renal clear cell
carcinoma was obtained from Broad GDAC Firehose,
which is one of the genome data analysis centers of the
TCGA project [13]. Level 3 RNAseqV2 datasets of kid-
ney renal clear cell carcinoma (KIRC) was used for ex-
periments. We only took into account tumor-matched
normal samples. The vectors of RNA-seq by expectation
maximization (RSEM) [14] that are normalized by z-
score were used as an estimate for the gene expression
level. We discarded genes and samples that contain in-
valid or null values. The pathogenic stage information of
renal clear cell carcinoma samples is retrieved from
TCGA clinical dataset biotab files and set as the class
label of gene expression data. Basically the stage is di-
vided into four stages, i.e., stages I, II, III, and IV by
TNM stage groupings, which take into account the size
of the tumor, the lymph nodes involved and distant me-
tastasis [15]. We took into account only two stages, i.e.,
stage I and stage IV, as renal clear cell carcinoma of
stage I involves local tumors that only exist in the kid-
ney, whereas tumors at stage IV have grown into other
tissues outside the kidney or have spread widely to other
lymph nodes; thus, the use of these stages could be a sig-
nificant clue for tumor advance and tumor metastasis.
Samples of which the stage information is not clear were
not included in the test. After the filtering steps, our
dataset consisted of 352 samples, of which 268 and 84
were stage I and stage IV samples, respectively. Each
sample consists of the RSEM vector for 20199 genes.
Although cross-validation is one of the most popular

methods for classification tests on a biological dataset, it
tends to produce a dataset-dependent result especially
with a small sample size [16]. Moreover, as the resam-
pling step is part of the compared and proposed ap-
proach, a classification test on cross-validation might
not hold significant meaning. Hence, the classification
performance should be evaluated by an independent
data test. We ensured that the test remained independ-
ent of the dataset by randomly divided the original data-
set into a training set (80%) and a test set (20%). The
training set consisted of 214 and 67 stage I and stage IV
samples, respectively, whereas the test set contained 54
and 17 samples, respectively. Only the training dataset
was utilized for the cross-validation test. The stability
test was performed by randomly generating 20 subsets
from the original dataset, each of which contained 80%
of the whole samples. The FCBF feature selection test
was implemented by using weka 3.7.13 [17], and the
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other experiments were all implemented with Python,
using the library scikit-learn 0.17 [18].

Feature selection
Data perturbation was achieved by producing 1000 boot-
strap samples containing 80% of the data from the train-
ing set. Then feature selection was performed by first
calculating the regularization parameter C of L1-norm
SVM by grid search, using 10-fold cross-validation on
each bootstrap sample of training data. We determined
the best value in the range of C∈{10−5, 10−4, …, 103,
104}. Because our dataset contains bias in class propor-
tions, simply considering accuracy as a performance esti-
mator is not appropriate. Instead, we regard the area
under the curve (AUC) as the main criterion for per-
forming experiments. Thus, the value of C resulting in
the best AUC score was selected for each bootstrap
sample.
Then L1-norm SVM was applied to 1000 bootstrap

samples to filter those genes whose coefficients are 0.
We calculate and record the 10-fold cross-validation
score of reduced feature sets at this point to choose opti-
mal feature sets for each bootstrap in the later step.
These steps are repeated several times until no more fea-
ture reduction is available. The remaining genes were
aggregated to one gene set and ranked by the number of
bootstrap samples that finally remained.
Subsequently, as a revising step, backward feature

elimination is performed to find the optimal feature sub-
set of which the classification performance is the best.

Again, we used the AUC score as the main criterion for
the classification performance. SVM is selected as a clas-
sifier, and 10-fold cross-validation is applied for the test.
The grid-search method is also applied to set the
regularization parameter C and γ in the range of C∈{10
−5, 10−4, …, 109, 1010} and γ∈{10−9, 10−8, …, 102, 103},
respectively.
Then the mean AUC score obtained from the cross-

validation test is calculated. The score is recursively cal-
culated by reducing the genes one by one, starting from
the full gene sets, until a subset consisting of only one
gene is tested. Figure 1 demonstrates the alteration of
the mean AUC score by the backward feature
elimination.
The performance of our model was compared with

three well-known feature selection methods, i.e., FCBF,
random forest, and an ensemble version of SVM-RFE.
FCBF is a feature selection method that is used to re-
move irrelevant features based on symmetric uncer-
tainty. Although the stability was not considered in
FCBF, we selected it as a comparison target because this
feature selection algorithm was adapted from a previous
study that classified stage progression of renal clear cell
carcinoma based on the RNA-seq dataset [19]. Random
forest is a method based on decision trees, and fre-
quently has been used for both feature selection and
classification. Random forest deals with the stability
issue by bootstrap aggregation (bagging) included in the
algorithm. SVM-RFE is a feature selection method that
recursively eliminates the features whose weight

Fig. 1 Backward feature elimination for optimal subset. Backward feature elimination is performed based on our ranking criteria. SVM with an RBF
kernel is used as a classifier for calculating the cross-validation score. The X- and Y-axes denote the size of the feature subset and the 10-fold
cross-validation AUC score, respectively. The red circle indicates the number of features with the highest AUC score in our experiment, which is
177 features with AUC = 0.996
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magnitudes of L2-norm SVM are the smallest [12], and
it has been proven to deliver superior performance in
many recent studies. However, SVM-RFE is problematic
in terms of stability when applied to a single dataset;
thus, some previous researchers have tried to use the en-
semble version of SVM-RFE based on instance perturb-
ation to address this problem. [6, 20] For the ensemble
SVM-RFE in our comparison experiment, the fraction
ratio for elimination in each step was set to 20%, and a
linear aggregation method that sums the rank over all
bootstraps was used as [6]. The number of bootstraps
was set to 1000, and regularization parameter C is opti-
mized in the same way as our method. As random forest
and SVM-RFE provides only the ranking list of all fea-
tures, we applied backward feature elimination method
to find the optimal subset of features, similar to our
method. The 10-fold cross-validation score is calculated
by the classifier while adding features one by one, based
on the feature rankings. Then the optimal feature set
which maximizes the cross-validation score is acquired.
The random forest classifier and SVM classifier with the
radial basis function (RBF) kernel were used as classifiers
for the random forest and the ensemble SVM-RFE,
respectively.

Classification performance test
A cross-validation test as well as an independent dataset
test is conducted for evaluation of classification perform-
ance. As described in the subsection on datasets, the
data that was included in the independent test set was
not used for the feature selection process at all. Only the
training set was used for the cross-validation test. Four
popular classification methods, i.e., adaptive boosting
(AdaBoost), logistic regression, random forest, and SVM
with an RBF kernel were used for performance evalu-
ation. Gene selection was performed by FCBF, random

forest, ensemble SVM-RFE, and our method before the
classification tests. Figure 2 demonstrates the number of
genes and selected by each method. As random forest
selects far more genes than other methods, an additional
test with 180 genes is conducted using random forest,
which is similar to the number of genes we used in the
ensemble SVM-RFE method and our method. Then we
assessed four performance measures, i.e., the accuracy,
f1 score, Matthews correlation coefficient (MCC), and
area under the curve (AUC) for each classifier. Tables 1
and 2 compare the classification performance of the ap-
proaches for the independent data test and cross-
validation test, respectively. As seen in the tables, our al-
gorithm shows the overall best performance for most
classifiers among most performance indices, both in the
cross-validation test and independent dataset test. Espe-
cially, our method with the SVM classifier demonstrated
the best performance among all.

Stability test
We carried out the stability test by creating 20 random
subsamples from the original dataset, which is constructed
with 80% of the data. The stability test was performed by
using the Tanimoto distance T. Here, we also tested our
method without bagging for the comparison. Figures 3
and 4 demonstrate the mean and standard deviation of
the Tanimoto distance for each method, respectively. As
we see in the figures, our method generally demonstrates
high stability among all the methods. The ensemble SVM-
RFE shows the similar performance as our method. How-
ever, L1-norm SVM without instance perturbation shows
remarkably lower scores than other methods, which
proves the significance of the ensemble selection for L1-
norm-based methods. FCBF also displays a relatively lower
stability score than other methods as it does not take into
account the stability issue, although it shows the least

Fig. 2 Number of genes selected by each method. The figure shows the number of genes selected by each feature selection method, i.e., FCBF,
random forest, ensemble SVM-RFE and our method
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variance, since it selects almost the same number of fea-
tures within subsamples.

Discussion and Conclusion
In this paper, we present a novel feature selection
method based on L1-norm SVM over data perturbation

efficient for biomarker discovery. The nature of the L1-
norm that leads to a sparse solution provides a fairly ef-
ficient way for feature selection for high-dimensional
data. L1-norm SVM is also suitable for biomarker selec-
tion, as it delivers high performance in classification,
and is applicable to diverse situations. However, the use

Table 1 Classification performance test with the independent dataset

Classifier Performance measure FCBF Random forest
(766)

Random forest
(180)

Ensemble SVM-RFE Our method

AdaBoost Accuracy 0.789 0.845 0.859 0.887 0.901

F1-score 0.545 0.593 0.667 0.75 0.774

MCC 0.408 0.532 0.588 0.68 0.717

AUC 0.7 0.717 0.766 0.825 0.834

Logistic regression Accuracy 0.789 0.789 0.817 0.845 0.845

F1-score 0.651 0.595 0.667 0.718 0.732

MCC 0.533 0.456 0.552 0.623 0.646

AUC 0.801 0.74 0.799 0.838 0.858

Random forest Accuracy 0.817 0.817 0.803 0.831 0.845

F1-score 0.48 0.48 0.462 0.5 0.56

MCC 0.426 0.426 0.381 0.479 0.531

AUC 0.658 0.658 0.649 0.667 0.697

SVM Accuracy 0.803 0.831 0.859 0.831 0.901

F1-score 0.632 0.571 0.583 0.684 0.811

MCC 0.504 0.489 0.589 0.577 0.749

AUC 0.77 0.708 0.706 0.808 0.895

The performance score is calculated on the independent dataset. The items that obtained the best score are highlighted in bold text. The numbers below the
random forest classifier denote the number of genes selected for the performance test

Table 2 Classification performance test with cross-validation

Classifier Performance measure FCBF Random forest
(766)

Random forest
(180)

Ensemble SVM-RFE Our method

AdaBoost Accuracy 0.872 0.882 0.85 0.886 0.889

F1-score 0.737 0.749 0.647 0.738 0.735

MCC 0.668 0.677 0.568 0.676 0.686

AUC 0.902 0.923 0.868 0.936 0.944

Logistic regression Accuracy 0.833 0.853 0.822 0.957 0.978

F1-score 0.704 0.722 0.664 0.915 0.958

MCC 0.609 0.636 0.566 0.894 0.947

AUC 0.904 0.893 0.853 0.994 0.997

Random forest Accuracy 0.871 0.84 0.844 0.83 0.833

F1-score 0.614 0.553 0.625 0.459 0.45

MCC 0.579 0.504 0.557 0.473 0.457

AUC 0.918 0.869 0.851 0.924 0.928

SVM Accuracy 0.879 0.854 0.84 0.95 0.968

F1-score 0.762 0.659 0.589 0.895 0.933

MCC 0.692 0.58 0.514 0.865 0.914

AUC 0.915 0.885 0.871 0.992 0.996

The mean performance score of 10-fold cross validation test is calculated. The items that obtained the best score are highlighted in bold text. The numbers below
the random forest classifier denote the number of genes selected for the performance test
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of L1-norm SVM on a single dataset has difficulty in de-
tecting closely correlated factors, which is common in
biomarker detecting. In addition, it may produce a result
that is subordinate to a certain dataset. In our experi-
ments, the stability of features could be improved as L1-
norm SVM is applied to a number of bootstrap samples,
considering instance perturbation. Instead of using the
general ranking criteria of SVM, we consider only the
number of bootstrap samples that selected the feature as
measure of the stability. By applying backward feature
elimination based on our own stability score, we could
determine an optimal subset of features that holds good

performance for classification. We applied our approach
to RNA-seq data of renal clear cell carcinoma to find
candidate biomarkers related to stage progress, which
might be closely associated with tumor advance and the
metastasis issue. Through comparison with established
feature selection methods, the performance of our algo-
rithm was proved in terms of classification performance
and stability.
The stability of feature selection is a significant issue

and its importance has been underestimated for a long
time; yet, many research efforts aimed at feature selec-
tion solely focused on the performance of the methods.

Fig. 3 Mean Tanimoto distance. The arithmetic mean of the Tanimoto distance on 20 random subsamples is calculated as a stability score. The
X-axis denotes the arithmetic mean of the Tanimoto distance of each method

Fig. 4 Standard deviation of Tanimoto distance. The standard deviation of the Tanimoto distance on 20 random subsamples is calculated. The
X-axis denotes the standard deviation of the Tanimoto distance of each method
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However, as we can see from the case of non-ensemble
methods in our experiment, feature selection algorithms
designed without considering stability might find many
different subsets of features, if the data changes even
slightly. This causes low reproducibility in high-
dimensional datasets, such as microarray data or RNA-
seq, and would make the result of the analysis less
meaningful. Thus, stable feature selection is an essential
issue in biomarker discovery. Of course, the perform-
ance of features should not be neglected because feature
stability does not guarantee true biomarker detection.
Although it is based on a simple idea, the proposed

approach was moderately successful on datasets consist-
ing of a very large number of features and relatively
much smaller samples. Our research proposes a general
process for binary classification problems on high-
dimensional data and we expect the proposed method to
be applicable to many other kinds of biomarker discov-
ery. However, although it generally demonstrated im-
proved performance compared to conventional ways, the
proposed method depends only on gene expression data.
Therefore, it would be necessary to integrate other data-
sets, e.g., pathways, gene interactions, and genomic vari-
ants as future work. In addition, as our method is not
able to produce a deterministic result, we would have to
consider more precise tuning of our model and its
parameters.

Methods
Ensemble L1-norm support vector machine
Support vector machine (SVM) has been an effective
and popular method in machine learning, including the
application of this method to biomedical problems [21].
Conventionally, SVM has been used for classification
task, but it can be also applied to feature selection by
considering the weights of the classifier [3]. In addition,
instead of using general L2-norm for SVM, applying L1-
norm which tends to produce sparse solutions, makes it
possible to considerably reduce the number of features
of a large feature set [22, 23]. The maximum number of
features selected by L1-norm SVM is bounded by the
number of samples [24]. Thus, in particular, it is suitable
for biomarker selection from RNA-seq data in our study,
which usually contains far more features than the num-
ber of samples. However, applying L1-norm SVM to a
single dataset might produce a result that is excessively
dependent on the sample set, which even causes uncer-
tainty of reproducibility on datasets that are only slightly
different. Moreover, the L1-norm is known to have diffi-
culties in selecting closely correlated factors, as it tends
to select only a single feature from among them and ig-
nore the rest [25]. These problems can be addressed by
applying L1-norm SVM to a perturbed dataset. Here, we

propose the ensemble L1-norm SVM feature selection,
combined with data perturbation to consider stability.
The flow of our stable L1-norm SVM algorithm can be

described as follows:

(1)Generate n random bootstrap samples, X1, X2, …,
Xn, using i% of data from the training dataset X.

(2)Perform the cross-validation test on each bootstrap
sample for setting regularization parameter C.

(3)Apply L1-norm SVM to each bootstrap sample.
Then the weight vector w is calculated for each
feature.

(4)Eliminate features of which the coefficient w = 0 in
each bootstrap sample.

(5)Record the cross-validation score for each bootstrap
sample for step (7).

(6)Repeat step (2) ~ (5) until no more features of w = 0
available for any bootstrap.

(7)Select the optimal feature subsets for each bootstrap
sample, which maximize the cross-validation score
recorded in step (5).

(8)Produce the integrated feature set of size k by
aggregating all the remaining features in the
bootstrap samples.

(9)Convert X to the reduced dataset X’ that consists of
features in k. Here, the number of bootstrap samples
that selected the feature is considered as ‘stability
score’ S for each feature (1 ≤ S ≤ n).

For stable feature selection, we use bagging to gen-
erate n bootstrap samples from the training dataset
[26, 27]. There has been no solid rule for the optimal
value of n, and the related study shows that adjusting
n only marginally affects the classification perform-
ance or stability [6]. Hence, n can be set moderately,
though it is expected that slightly more converged re-
sult can be acquired by using larger value. After gen-
erating n bootstrap samples, the regularization
parameter of L1-norm SVM is optimized for each of
them. Unlike L2-norm SVM, the number of features
to be reduced is automatically selected by the
regularization parameter. The optimization problem
of L1-norm SVM could be described as follows:

min
w;b

jjwjj1 þ C
Xn
i¼1

max 0; 1−yi w
Txi þ b

� �� �2
: ð1Þ

Here, parameter C reflects a regularization parameter
that solves the trade-off problem between the training
error and the complexity of the model and ||w||1 de-
notes the L1-norm of the weight vector w. We apply a
linear kernel as a kernel function, as defined by
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k x; yð Þ ¼ xTy: ð2Þ
If the number of features is large, the linear kernel is

efficient because mapping data to high-dimensional
space usually does not improve the performance [28].
Hence, it is possible to acquire a comparable result at a
much lower cost. In addition, the linear kernel is less
prone to over-fitting than non-linear kernels, and the
only parameter that needs to be optimized is C. We find
the optimal value of C by applying a grid search using
10-fold cross-validation on the training dataset.
Next, L1-norm SVM is performed on each bootstrap

sample to derive the sparse feature sets. In this step, the
ranking criteria of SVM for each feature, i.e., the size of
the weight vector w is not taken into account; for all the
features of the coefficients w > 0, which means that fea-
tures that are selected by at least one bootstrap sample are
considered. After eliminating features whose coefficients
are 0, we calculate and record the cross-validation score
for each bootstrap sample. Similar to SVM-RFE, these
processes above are repeated until no more features could
be reduced by L1-norm SVM. However, reducing features
does not always yield improved classification performance;
sometimes the classification performance might decrease
by excessive filtering of features. Thus, we select the fea-
ture subsets that maximize the cross-validation scores as
optimal features for each bootstrap sample.
Then, the features that remain in all the bootstrap sam-

ples are aggregated. In the aggregation step, we only con-
sider the frequency of each feature in whole bootstraps
samples. It is plausible that the features remaining in more
number of bootstrap samples are possibly more stable.
Therefore, for each feature, we regard the number of
bootstrap samples that selected the feature as its ‘stability
score’. This score is valuable for regularization of the
number of features, e.g., ignore those features selected
from less than only 10% of bootstrap samples when there
is a need to reduce the features to less than the number of
samples, which commonly occurs in the biomedical field.
In this study, instead of setting a specific cutoff point, we
apply backward feature elimination based on the stability
score to select the optimal subset, which is described in
the next section. Finally, the dimension of the training
dataset is reduced to the number of features that remain
after the previous steps. As we have used the implementa-
tion of liblinear [29] for the feature selection, the time
complexity of the algorithm can be described as follows
O(nf · nb), where nf and nb denote the number of features
and bootstrap samples, respectively.

Backward feature elimination for optimal feature subset
selection
A stable L1-norm SVM provides an efficient solution for
eliminating and selecting features. However, there might

be a subset of which the performance exceeds that pro-
vided by using all the selected features. Therefore, an
additional process capable of extracting the particular
feature subset able to improve the classification perform-
ance is required. We utilize our stability score described
in the previous section, the number of bootstrap samples
that selected the feature. The stability score is aggre-
gated from multiple bootstrap samples, thereby man-
aging the stability issue that can be caused when using
only a single dataset. We apply backward feature elimin-
ation to find one optimal subset of features of which the
classification performance is best. We use SVM as classi-
fier in the experiment, but other classifiers can also be
applied. Here, as the number of features decreased con-
siderably as a result of previous feature selection step,
we apply the RBF kernel k(x, y), which generally per-
forms better than the linear kernel.

k x; yð Þ ¼ exp −γ x−yj j2� �
: ð3Þ

Again, a grid search using 10-fold cross-validation was
applied for optimizing the parameters of the RBF kernel,
C and γ. The classification score is calculated on each
fold of the cross-validation test and then aggregated. By
eliminating the feature of which the stability score is
lowest one by one, the classification score is calculated
on all shrunk subsets until the size of the subset reaches
1. Finally, the one feature subset that succeeds in maxi-
mizing the classification performance over the cross-
validation test is acquired. As the feature subset consists
of a certain number of features, we do not need an add-
itional process for setting the cutoff.

Performance evaluation
Conventionally, the performance of feature selection has
been evaluated by measuring the classification perform-
ance. However, the stability of selected features, which
refers to the reliability and reproducibility of features,
has also become a very important point recently. In-
stability of feature selection is mainly caused by a large
number of features associated with small samples in data
that complicate the proper reduction of features. These
characteristics are common for biomedical data such as
RNA-seq; therefore, a biomarker discovery study should
consider stability as well as classification performance.
Hence, we evaluated the performance of our method

by measuring the classification performance and their
stability. Because our feature selection procedure con-
tains a resampling step, we employ an independent
training and test set in addition to the cross-validation
test. We applied a well-known classification algorithm
after feature selection to evaluate the classification per-
formance. Statistical measures in the form of the accur-
acy, F1 score, Matthews correlation coefficient (MCC),
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and area under the curve (AUC) were measured to-
gether to evaluate the classification performance, as
follows:

Accuracy ¼ TP þ TN
TP þ TN þ FP þ FN ;

ð4Þ

F1 ¼ 2TP
2TP þ FP þ FN ;

ð5Þ

MCC ¼ TP⋅TNð Þ− FP⋅FNð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TP þ FPð Þ TP þ FNð Þ TN þ FPð Þ TN þ FNð Þp

;

ð6Þ

AUC ¼
Z 1

0
ROC xð Þdx: ð7Þ

Here, TP, TN, FP, FN, and ROC represent true positive,
true negative, false positive, false negative, and receiver
operating characteristic curve, respectively.
Then we tested the stability of selected features by cal-

culating the Tanimoto distance that has been applied in
several previous studies [30, 31]. The Tanimoto distance
is a statistical measure for calculating overlaps between
two sets of elements of arbitrary cardinality. The Tani-
moto distance T is calculated as follows:

T Si; ; Sj
� � ¼ 1−

Si þj jSj
�� ��−2jSi∩Sjj
Sij jþjSjj−jSi∩Sjj ; ð8Þ

where |Si| and |Sj| denote the number of elements in
sets Si and Sj, respectively. Here, the Tanimoto distance
Tn is obtained over multiple n sets of samples by calcu-
lating the arithmetic mean of T for each set of pairs, as
described below.

Tn Si; ; Sj
� � ¼ 2

n n−1ð Þ
X
i¼1n−1

Xn
j¼2

T Si; ; Sj
� �� �

: ð9Þ

The Tanimoto distance takes values between 0 and 1,
where 0 means that there is no overlap between the two
sets, and 1 that the two sets have identical elements.
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