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Abstract

Background: Next generation sequencing (NGS) technologies are indispensable for molecular biology research, but data
analysis represents the bottleneck in their application. Users need to be familiar with computer terminal commands, the
Linux environment, and various software tools and scripts. Analysis workflows have to be optimized and experimentally
validated to extract biologically meaningful data. Moreover, as larger datasets are being generated, their analysis requires
use of high-performance servers.

Results: To address these needs, we developed CANEapp (application for Comprehensive automated Analysis of
Next-generation sequencing Experiments), a unique suite that combines a Graphical User Interface (GUI) and an
automated server-side analysis pipeline that is platform-independent, making it suitable for any server architecture.
The GUI runs on a PC or Mac and seamlessly connects to the server to provide full GUI control of RNA-sequencing
(RNA-seq) project analysis. The server-side analysis pipeline contains a framework that is implemented on a Linux
server through completely automated installation of software components and reference files. Analysis with
CANEapp is also fully automated and performs differential gene expression analysis and novel noncoding RNA
discovery through alternative workflows (Cuffdiff and R packages edgeR and DESeq2). We compared CANEapp
to other similar tools, and it significantly improves on previous developments. We experimentally validated
CANEapp’s performance by applying it to data derived from different experimental paradigms and confirming
the results with quantitative real-time PCR (qRT-PCR). CANEapp adapts to any server architecture by effectively
using available resources and thus handles large amounts of data efficiently. CANEapp performance has
been experimentally validated on various biological datasets. CANEapp is available free of charge at
http://psychiatry.med.miami.edu/research/laboratory-of-translational-rna-genomics/CANE-app.

Conclusions: We believe that CANEapp will serve both biologists with no computational experience and
bioinformaticians as a simple, timesaving but accurate and powerful tool to analyze large RNA-seq datasets and will
provide foundations for future development of integrated and automated high-throughput genomics data analysis
tools. Due to its inherently standardized pipeline and combination of automated analysis and platform-independence,
CANEapp is an ideal for large-scale collaborative RNA-seq projects between different institutions and research groups.
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Background
Rapid development of next-generation sequencing tech-
nologies has revolutionized fields of genetics and mo-
lecular biology [1]. These tools have enabled unbiased
and comprehensive insight into novel mutations and
changes in transcriptional and epigenetic processes as-
sociated both with normal cellular functioning and dis-
ease states. Next-generation RNA sequencing allows
direct [2] or indirect sequencing of RNA and provides
quantitative and qualitative information of all RNA spe-
cies in a sample [3, 4]. RNA-seq is a powerful technique
that can be applied to obtain genome-wide estimates of
relative gene, exon or transcript expression; and to dis-
cover previously unannotated transcriptional features,
such as novel splice junctions and gene isoforms [5],
novel gene loci [6] and fused transcripts [7–10]. RNA-
seq data analysis consists of a number of consecutive
steps, such as raw data preprocessing, short reads align-
ment, transcript reconstruction, abundance estimation,
filtering of low abundance and spurious elements, dif-
ferential expression testing, annotation of transcrip-
tional elements based on previous annotations and
downstream analysis such as coding potential calcula-
tion to identify novel noncoding RNAs. Numerous
tools, computational and statistical approaches have
been developed for these analysis steps, but there has
been little agreement in the field on what combination
of tools to use for each particular experimental goal
[11, 12]. More importantly a user-friendly, streamlined
and flexible analysis pipeline combining a plethora of
bioinformatics tools and techniques is missing. Some
efforts have been directed toward developing an ana-
lysis pipeline or a suite of tools that combines various
bioinformatics instruments into a RNA-seq analysis
toolkit. However, cumbersome installation, lack of user
interface, limited automation and inability to use high-
performance server architectures are just a few of the
most common drawbacks of the currently available
pipelines. Moreover, none of the existing software suits
have been validated on real biological datasets and with
alternative techniques, which leaves their robustness
and accuracy untested.
Here, we developed CANEapp (application for Com-

prehensive automated Analysis of Next-generation se-
quencing Experiments), an analysis suite consisting of a
Java graphical user interface and an automated bio-
informatics pipeline (http://psychiatry.med.miami.edu/
research/laboratory-of-translational-rna-genomics/CANE-
app). CANEapp is a windows-based installation-free,
point and click application that can be launched on any
PC or Mac. CANEapp is able to operate on a variety of
server infrastructures, including Amazon Cloud and
high-performance computational clusters. Analysis with
CANEapp is fully automated and scales depending on

the amount of resources available, thus making it suit-
able for analysis of large datasets. CANEapp performs
differential gene expression analysis and discovery of novel
long noncoding RNA with a combination of established
analysis tools and alternative workflows, which allows for
comprehensive analysis of data in alternative ways in a
single run. Additionally, it formats the data into ready-to-
view files and provides automated primer design for qRT-
PCR validation.

Implementation
CANEapp’s Graphical User Interface is implemented on
Mac or Windows and requires Java version 7 or above.
The computational pipeline is implemented on Linux and
has been tested on Ubuntu, CentOS, RedHat, Fedora and
Amazon Cloud Linux and requires Python version 2.6 or
2.7. The prerequisite libraries for software installation are
installed automatically if the user has root access. Other-
wise the prerequisites are compiled in a single shell script
that is included with the package and needs to be run by
the administrator.

Results
CANEapp: flexible and user-friendly multiplatform
framework for integrated transcriptome analysis
CANEapp is an installation-free analysis framework
(Fig. 1a) that allows the user to design, manage and
monitor RNA-seq analysis experiments on a personal
computer. CANEapp takes advantage of a Java-based
graphical user interface to implement our Python-based
automated RNA-seq analysis pipeline on a Linux server
to perform resource-demanding analysis.
Framework of CANEapp is highly flexible and can be

implemented on a variety of server types, including
standard Linux servers, Linux servers that use IBM
Platform LSF Session Scheduler and Amazon Cloud
servers. CANEapp was tested on a number of Linux
operation systems, including Ubuntu, CentOS, RedHat
Enterprise, Fedora, as well as Amazon Cloud Linux
and a CentOS server utilizing IBM Platform LSF Ses-
sion Scheduler.
The only component that the user needs in order to

utilize CANEapp is the GUI (Fig. 1b). The GUI was writ-
ten in Java with help of NetBeans Integrated Develop-
ment Environment and JavaFX Scene Builder. Scene
Builder was utilized to design most of the GUI’s graph-
ical components, whereas the working scripts were
written using NetBeans. Java Secure Channel (JSch) pro-
tocols served as the foundation for establishing connec-
tion with the server, data upload to the server and data
download from the server to the local machine.
The GUI allows easy step-by-step design of RNA-seq

analysis projects, set up of analysis configuration, data
transfer, project management and status monitoring
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(Fig. 1c). GUI seamlessly interacts with the server to
engage the analysis pipeline that is in essence a “black
box”, hidden from the user but containing the compo-
nents to perform all the required steps of the analysis.
The “black box” model insures that user does not have
to directly interact with the server or any of the soft-
ware at any stage of the analysis. This makes CANEapp
immediately accessible to any user with little to zero
background in bioinformatics or computational science.
Moreover, all project configurations are automatically
stored in the GUI’s memory, which allows management
of running projects on different servers and instant ac-
cess to project design and settings. Automation saves
both computational and hands-on time considerably
and removes a requirement of detailed knowledge of
computational tools; and together with a point and
click interface, CANEapp will allow users without bio-
informatics background to perform RNA-seq analysis.

Automated scalable RNA-seq analysis pipeline for accurate
and comprehensive transcriptome analysis
Once the project has been designed and analysis set-
tings have been specified, server address and credentials
need to be provided in order to submit the project. The
GUI will connect to the server and copy the pipeline
components and raw data files together with the project
design and settings. After the data transfer is com-
pleted, a notification window will appear and analysis
will be initiated on the server side through the compu-
tational pipeline. Once the analysis is initiated GUI can
be closed and reopened at any time to check the status
of the particular project.
The analysis pipeline was written in Python and con-

sists of several interacting scripts to perform automated
analysis of RNA-seq experiments. The pipeline also gen-
erates a status file that is used to communicate with the
GUI and keep track of the progress of each project. The

Fig. 1 CANEapp and the graphical user interface. a General structure of CANEapp. The Java application component is the only user-accessible
component and operates on a personal computer to provide a point and click interface to configure RNA-seq analysis. The interface either establishes a
connection with an Amazon Cloud instance (1) created using the preconfigured CANEapp Amazon Machine Image (AMI) or with a Unix server, in which
case server-side pipeline components are automatically transferred to the server through the GUI. After configuring a project, the GUI communicates with
the server side to transfer raw data files and options file and initiate the analysis. b Design of the CANEapp’s graphical user interface. c CANEapp GUI’s
capabilities and project design steps. The Manage Projects tab allows creating, deleting or loading projects from a file. Additionally, user can see the status
of the selected project on this tab. The next two tabs allow adding experimental groups and samples. On the Add Samples tab the user can specify the
library preparation that has been used before sequencing and define such parameters as single or paired-end sequencing, strand selection and adapter
sequences. The Analysis Settings tab is used to set up parameters of separate analysis steps, such as alignment, reconstruction and differential expression
analysis. Finally, the last tab is used to specify server address and user credentials and initiate the analysis on the server side
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GUI evokes the main pipeline script after the raw data
files have been transferred to the server. Then the main
script guides the construction of analysis framework if it
has not been performed before and evokes child pro-
cesses that perform parallel analysis of samples using
other pipeline scripts and software tools. The pipeline
automatically passes the analysis settings specified in the
GUI to the appropriate pipeline script or software tool.
The main script monitors resource usage and comple-
tion of analysis of individual samples. After all samples
are analyzed, the main script evokes a series of second-
ary scripts to combine the data and perform filtering
and differential gene expression analysis. Finally, the data
is formatted into an easy-to-view format and can be
downloaded to the local machine through the GUI.
The pipeline consists of several modules, the first of

which is the installation module (Fig. 2a). This module
will download and install all the required software
(Table 1), as well as the reference genome and tran-
scriptome files from ENSEMBL, according to the spe-
cies and assembly specified for the project. The
installation module will also build indexes for TopHat
[13] and STAR [14] alignment and will prepare the
reference annotation for gene classification and coding
potential calculation.
The next pipeline module engaged after the installa-

tion module is the parallel alignment and reconstruction
module (Fig. 2b), which will first perform optional pre-
processing of reads. Accepted raw data format is FASTQ
or FASTQ files compressed as bz2, tar, gz, tar.gz ar-
chives, as well as those saved in the NIH Short Sequence
Archive (SRA) format. This step incudes optional extrac-
tion of archived files or files in the SRA format and li-
brary adapter trimming with our custom Python script
in order to remove adapter sequences and improve read
alignment and to calculate mean and standard deviation
of the insert sizes based on supplied mean and standard
deviation of fragment length and library adaptor length.
The module will then proceed to perform alignment of
RNA-seq reads using TopHat or STAR. TopHat and
STAR are used with default parameters, but the user has
the ability to specify custom parameters in the GUI
when designing the project.
Aligned reads will be further used to perform ab initio

[15] reconstruction of transcripts using Cufflinks [16],
which allows identification of novel, previously unanno-
tated transcriptome features, such as novel long noncod-
ing RNAs. As with TopHat and STAR, the user can
specify parameters for Cufflinks in the GUI. Importantly,
the alignment and reconstruction module includes a
real-time resource monitor that keeps track of the
amount of available memory and cores to protect the
system from memory or processor overload and ensure
optimal resource usage for the fastest performance.

Once all the individual samples have been processed,
aligned and reconstructed, the data is passed to the tran-
script filtering and classification module (Fig. 2c). The
module will first combine transcripts from individual
samples using Cuffcompare before performing optional
transcript filtering described in detail below and in
Fig. 3a. Transcript filtering is performed using our cus-
tom scripts and in general improves the accuracy of
abundance estimation and detection of novel transcripts
by removing spurious transcripts such as intronic and
pre-mRNA species. The transcripts are then classified
into annotated and unannotated transcripts. Annotated
transcripts are further assigned a gene biotype according
to the ENSEMBL reference, whereas the protein-coding
potential of the unannotated transcripts is predicted
using Coding-NonCoding Index (CNCI) software [17]
and further sub classified into novel noncoding RNAs
and potentially novel protein-coding genes.
The final step of the analysis is differential gene expres-

sion analysis, which is performed by Cuffdiff [18], or by
the R packages edgeR [19] and DESeq2 [20] using HTSeq
[21] to count reads prior to processing the data in R. The
user can select to either perform analysis with one of the
three workflows for differential gene expression analysis
(Cufflinks, edgeR and DESeq2) or to run all three of them
in parallel. The results of the entire analysis are formatted
to create a single tab-delimited file for each differential
gene expression analysis method containing expression
values, fold changes, statistics and metadata such as gene
classification and chromosomal location (Fig. 2d).
The filtered and annotated Gene Transfer File (GTF) as

well as aligned reads for individual samples serves as the
input for Cuffdiff and HTSeq. Cuffdiff performs differen-
tial gene expression analysis and generates normalized
abundance estimates, fold changes of gene expression, as
well as p and FDR-corrected p values. For analysis with R
packages, individual count files generated with HTSeq are
combined into one count file, which is supplied to edgeR
and DESeq2 together with the parameters defined by the
user in the GUI. Cuffdiff, edgeR and DESeq2 output files,
together with the GTF files are processed by the pipeline
scripts to generate unified data tables containing informa-
tion on the gene id, name, biotype, read count and abun-
dance (for Cuffdiff) in each sample and group; as well as
fold change of expression between groups and p and FDR
values. Separate GTF files containing only the differen-
tially expressed genes are also generated. Data tables can
be opened in excel to easily interpret the results and rank
genes depending on the project goals. GTF files can be
displayed in a third-party software such as Integrated
Genome Viewer [22] to visualize gene and transcripts
structures and genomic locations. The final results files
can be easily downloaded through the GUI as soon as the
analysis is completed.
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After the analysis is finished, qRT-PCR validation
primers for specific genes can be designed through the
GUI’s Primer Design tab. We automated design of
primers for validating sequencing results with qRT-
PCR. Our primer design tool searches for a common
spliced junction that exists in all isoforms of a gene. In
case there are no common junctions the program looks
for an exonic region overlapping all the isoforms. After

that, Samtools is used to extract the nucleotide se-
quence of the exons spanning the junction or the ex-
onic region where primers will be designed. Finally, the
sequences are supplied to Primer 3 software that de-
signs the primers.
All the intermediate files are stored on the server and

can be retrieved by the user through the terminal in case
they are required for any downstream applications.

Fig. 2 Server-side RNA-seq analysis pipeline. a Installation and configuration. First the GUI transfers the pipeline scripts to the server or utilizes
pre-installed scripts if Amazon Cloud instance is being used. Then the pipeline detects installed software and downloads and installs all the analysis tools
required for the workflow using an update file on our website which is linked to the current version of CANEapp. After that the pipeline downloads
required reference files from ENSEMBL. Reference indexes for STAR and TopHat, as well as gene classification files are prepared in the next step. b Parallel
alignment and reconstruction module. Samples are analyzed in parallel; first the reads go through an optional trimming step and are aligned to the
genome with either TopHat or STAR. Aligned reads are used to reconstruct transcripts with Cufflinks. This module includes a resource monitor that
optimally distributes available resources between subprocesses. c Transcript filtering and classification module. ENSEMBL reference is used to classify
genes generated from combining transcript files from all samples. Then the transcripts are filtered to remove potentially spurious single-exon transcripts,
and unannotated transcripts and loci are analyzed to predict their ability to code for proteins. d Gene expression and results formatting module. Cuffdiff,
edgeR and DESeq2 are used to quantify gene expression and identify differentially expression genes. The pipeline converts output files into
fully annotated tab-delimited files, as well as GTF files containing differentially expressed genes. The module also contains primer design scripts that
automate primer design for qRT-PCR validation of gene expression
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Comparison of CANEapp to other applications for RNA-seq
data analysis
In order to comprehensively compare CANEapp to previ-
ously developed and published applications aiming to sim-
plify RNA-seq analysis by providing a graphical user
interface, we considered a number of features and con-
trasted them between the software packages (Table 2). The
compared features included: 1- The ability to perform au-
tomated analysis of multiple samples and groups through a
complete pipeline without the need to perform analysis of

each sample at each step of the pipeline. 2- Automated in-
stallation of the application and its components without
cumbersome command line installation procedures. 3- The
possibility to utilize the software on different operation sys-
tems and server architectures, including the cloud. 4- The
availability of alternative analysis workflows. 5- The ability
to efficiently use computational resources and adapt to the
amount of data being analyzed to be suitable for analysis of
large datasets and efficient allow implementation on high-
performance systems. We compared CANEapp to six other

Table 1 List of software packages and scripts used in CANEapp

Software name Function CANE module

SRA tools FASTQ extraction from the SRA file format Alignment and reconstruction

TopHat Read alignment Alignment and reconstruction

STAR Read alignment Alignment and reconstruction

Cufflinks Ab initio transcript reconstruction Alignment and reconstruction

Cuffcompare Merging transcripts Transcript filtering and classification

Samtools Nucleotide sequence extraction Transcript filtering and classification

CNCI Coding potential prediction Transcript filtering and classification

Cuffdiff Differential expression testing Gene expression and results formatting

HTSeq Counting reads in loci Gene expression and results formatting

edgeR (R package) Differential expression testing Gene expression and results formatting

DESeq2 (R package) Differential expression testing Gene expression and results formatting

Primer 3 Primer sequence retrieval Primer design

Fig. 3 Validation of gene expression changes estimated with CANEapp with quantitative real-time PCR. a RNA-seq analysis of hippocampi of
Alzheimer’s disease patients and controls. Hippocampal tissue from 4 AD patients and 4 control individuals was used to extract total RNA and
perform ribodepletion and strand-specific library preparation. Single-end RNA sequencing was performed on Illumina HiSeq 2000. Fold changes of
expression for 2 downregulated and 4 upregulated genes measured with real-time PCR was compared with expression values generated by CANEapp.
b RNA-seq of developing mouse cortex. Tissue from 4 embryonic day 17 and 3 adult mouse cortical samples was processed to extract polyA-selected
RNA and generate paired-end unidirectional sequencing data with Illumina Genome Analyzer IIx. Gene expression estimates of 4 downregulated and
4 upregulated genes were compared between CANEapp and real-time PCR. c Fold changes of gene expression for RNA-seq of liver of rats treated with
two DNA-damage compounds. The data was produced by paired-end sequencing of polyA-selected RNA on Illumina HiSeq 2000. Fold changes of
expression for 2 downregulated and 4 upregulated genes were compared between CANEapp and real-time PCR. R2-coefficient of determination
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published applications for RNA-seq analysis we are aware
of. Only free softwares were included in this list.
As can be seen from Table 2, CANEapp possesses all

of the abovementioned features, which makes it a
powerful, but easy-to-use tool for comprehensive RNA-
seq data analysis that can be ported to a variety of ser-
ver architectures and applied to large datasets without
the need for step-by-step analysis or concerns about
sufficiency of computational resources (which is han-
dled by the CANEapp’s resource monitor). Although
some previously developed and published tools have
some of these features, none combine them in one
package, which limits their performance and scope of
application. For instance, Galaxy offers a number of
next-generation sequencing data analysis tools that can
be operated through a graphical user interface. How-
ever, Galaxy does not offer automation of the analysis,
and every step has to be performed manually. More-
over, the scale and speed of analysis through Galaxy
server is limited, and if it is to be installed on a local
server or cloud it requires installation by a person with
computer science skills. Other tools such as RNA Com-
pass offer automation of analysis and work on the cloud
in addition to local servers but again, it requires cum-
bersome installation and lacks other important features
highlighted in the Table 2.
Overall, we believe that CANEapp presents significant

improvements over previously developed user-friendly ap-
plications for RNA-seq analysis and will offer biologists a
powerful analysis framework that can be easily ported to

their favorite system and used without the need to manu-
ally perform any of the installation or analysis steps.

CANEapp functionality on various Linux server architectures
and its performance and accuracy in identifying differentially
expressed genes from real datasets
In order to test CANEapp performance and accuracy in
estimating gene expression changes in different biological
systems and experimental paradigms, we used publically
available RNA-seq data from three published studies
(Table 3) together with qRT-PCR validation of gene ex-
pression changes for several genes for each study. We uti-
lized qRT-PCR data for all the genes validated in each
corresponding study; these genes were selected by the au-
thors to either represent a range of fold changes of gene
expression or were chosen based on their biological sig-
nificance. RNA-seq data for testing performance of
CANEapp were downloaded from the NIH Short Se-
quence Archive (SRA) as SRA files and were used directly
as input files for CANEapp.
The datasets included RNA-seq of hippocampi of Alz-

heimer’s disease patients and controls (4 AD vs 4 controls)
[23], RNA-seq of developing mouse cortex (4 embryonic
cortical samples vs 3 adult) [24], and RNA-seq of rat liver
from the SEQC Toxicogenomics Study for chemical treat-
ment with two chemical compounds causing DNA damage
(N-Nitrosodimethylamine, NIT and Aflatoxin B1, AFL, N =
3 for each treatment group, compared to a corresponding
control group, N = 3 and 4) [25]. The human dataset was
generated by sequencing RNA depleted of ribosomal RNAs,

Table 2 Comparison of CANEapp with previously developed tools for RNA-seq analysis

Note: the green checkmark signifies presence of a feature in a software tool, the red cross means absence of the feature
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whereas mouse and rat RNA-seq data were derived from
sequencing of polyA-selected RNA. All three datasets were
generated using different library preparation techniques.
RNA in human and rat experiments was sequenced on the
Illumina HiSeq 2000 machine, whereas mouse RNA-seq
data was produced by sequencing RNA on Illumina GA-IIx
sequencer. This diversity of experimental paradigms, organ-
isms, RNA preparation, library generation and sequencing
techniques allowed us to comprehensively assess the ro-
bustness of our analysis tool.
To analyze these datasets, raw data were downloaded

from SRA and CANEapp was used to perform analysis on
a High-Performance Computing cluster Pegasus2 at the
University of Miami and Amazon Elastic Cloud 2 (EC2).
In order to comprehensively test the functionality of
CANEapp on various Linux architectures, Amazon Ma-
chine Images containing distributions of CentOS, Ubuntu
and RedHat Linux, as well as Amazon Linux, were used to
create instances running these different Linux platforms.
All three datasets were analyzed on these instances and
the Pegasus2 system using solely the CANEapp applica-
tion to perform analysis. After completion of the analysis,
the generation of functional software binaries from source,
as well as reference files, intermediary analysis files and
final result files were validated to assure the stability of the
pipeline independent of the server architecture.
Raw data were uploaded through CANEapp by selecting

the “Upload From Computer” option, and STAR aligner
was selected to perform alignment to the latest genome as-
sembly available. For the rest of CANEapp options, the de-
fault settings were used. Real-time PCR results for
candidate genes from each analyzed dataset were either re-
trieved from supplementary material for the original publi-
cation or received from the authors upon request. Once
the analysis was completed, data was downloaded from the
server through the GUI, and fold changes in gene expres-
sion between experimental groups generated either by
Cuffdiff, edgeR using Generalized Linear Model (GLM) or
exact test approaches, or DESeq2 were compared with
qRT-PCR results for the same gene. For all three datasets,
we found perfect correspondence between the direction of

gene expression changes estimated from RNA-seq data an-
alyzed with CANEapp using 4 different approaches for dif-
ferential gene expression analysis and qRT-PCR. All the
genes upregulated in RNA-seq were upregulated in qRT-
PCR data, and the same was true for downregulated genes
(Fig. 3, Table 4). For the human RNA-seq data from hippo-
campi of Alzheimer’s disease patients and controls, we

Table 3 Description of datasets used to validate CANEapp performance to estimate differential gene expression

Name Organism Experimental groups N of samples RNA selection
protocol

Library
preparation

Single or
paired-end

GEO

Transcriptomic changes
in hippocampi of Alzheimer’s
disease patients

Homo sapiens Alzheimer’s disease vs
age- and sex-matched
neurologically normal
controls

4 vs 4 Ribo-depletion Illumina
directional
small RNA prep

single GSE67333

Transcriptomic changes
in embryonic and adult
mouse cortex

Mus musculus E17 cortex vs adult cortex 4 vs 3 Poly-A selection Illumina
mRNA-Seq
prep

paired GSE39866

SEQC Rat liver
toxicogenomics study

Rattus norvegicus N-Nitrosodimethylamine,
Aflatoxin B1 vs Vehicle
treatments

3 vs 3 Poly-A selection Illumina TruSeq
RNA

paired GSE55347

3 vs 4

Table 4 Fold changes of gene expression in three datasets
reanalyzed by CANEapp and compared to qRT-PCR results

Gene Name Cuffdiff edgeR_GML edgeR_et DESeq2 QRT-PCR

Alzheimer’s disease dataset

SERPINE1 1.41 1.71 1.54 0.98 1.66

TAC1 −1.77 −1.65 −1.85 −1.56 −0.42

ID2 0.98 1.07 0.88 −0.73 1.17

GRM2 0.86 0.98 0.78 0.63 0.44

LINC01314 −0.25 −1.19 −1.38 −1.05 −0.50

RP11-87E22.2 3.63 2.01 1.85 1.31 2.30

Mouse cortex dataset

Vax1 −2.12 −2.02 −1.74 −1.71 −3.18

Caly 1.93 1.79 2.08 2.09 2.10

Igf2bp1 −9.40 −8.72 −8.45 −8.16 −5.61

Draxin −5.98 −5.26 −4.98 −4.94 −6.80

Nrp1 −2.17 −2.22 −1.94 −1.92 −2.46

Ttr 11.04 11.18 11.46 11.28 11.63

Mobp 12.44 12.08 12.36 12.24 12.69

Wipf1 2.22 1.74 2.02 2.03 1.71

Rat liver dataset

Bax-AFL 1.78 1.86 1.75 1.96 2.62

Cdkn1a-AFL 4.19 4.28 3.30 8.00 23.50

Myc-AFL 0.97 1.03 0.82 0.99 2.10

Met-AFL −1.02 −0.94 −0.88 −0.89 −1.90

Bax-NIT 1.62 1.22 1.19 1.25 1.98

Cdkn1a-NIT 3.22 2.82 2.56 3.05 8.07

Figf-NIT 4.18 3.76 3.51 3.72 10.27

Fzd4-NIT −0.30 −0.70 −0.69 −0.73 −2.07
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have compared fold changes in gene expression for 6 genes
(4 upregulated and 2 downregulated) (Fig. 3a). The R
squared correlation coefficient between the fold
changes in RNA-seq and qRT-PCR for these 6 genes
is 0.84 for Cuffdiff, 0.88 for both analysis approaches
with edgeR (Generalized Linear Model or exact test)
and 0.68 for DESeq2; indicating accuracy and robust-
ness of CANEapp performance on real biological
RNA-seq data regardless of the analysis approach
used. Analysis of gene expression changes in mouse
embryonic versus adult cortex with CANEapp and
their comparison with qRT-PCR results produced a
similar result (Fig. 3b). For the 8 genes validated with
qRT-PCR (4 upregulated and 4 downregulated), R
squared coefficient between RNA-seq and qRT-PCR
data was 0.96 for Cuffdiff and edgeR and 0.97 for
DESeq2. In the case of the rat liver toxicology experi-
ment expression of all 8 tested genes (6 upregulated
and 2 downregulated) was also successfully validated
with qRT-PCR (Fig. 3c). The R squared coefficient be-
tween RNA-seq and qRT-PCR data was 0.98 for Cuff-
diff, 0.73 for edgeR using GLM, 0.79 for edgeR using
exact test and 0.67 for DESeq2. In all three datasets and
with all 4 approaches to differential gene expression
analysis, correlation of fold changes produced from
RNA-seq by CANEapp and qRT-PCR was statistically
significant (p < 0.05) using two-tailed T test.
It is important to note that depending on the tool

used to perform differential expression analysis and the
dataset it was implemented on the correlation between
RNA-seq and qRT-PCR expression estimates varied sig-
nificantly. In particular, we observed an equally good
performance of Cuffdiff, edgeR and DESeq2 on the
mouse cortex dataset, whereas in case of human hippo-
campus and rat liver datasets Cuffdiff performed better
than any of the R packages. One possible explanation is
that since Cuffdiff utilizes an approach to model count
distribution that is conceptually different from of edgeR
and DESeq2, it might perform better at modeling read
distribution in all three datasets, whereas edgeR and
DESeq2 does not model rat and human datasets as
adequately.
Therefore, CANEapp demonstrates excellent perform-

ance in estimating gene expression changes in a variety
of experimental designs and using RNA-seq data pro-
duced with different experimental and sequencing proto-
cols, as well as alternative analysis approaches. This
indicates that CANEapp is not only user-friendly and
adaptable to different computational platforms, but it is
also a robust and accurate tool to perform differential
gene expression analysis. Moreover, the ability to per-
form analysis of differential gene expression with alter-
native tools in parallel makes CANEapp useful for
performing benchmarking experiments.

Discovery of novel long noncoding RNAs using CANEapp
and their experimental validation
It is becoming more and more evident that the ability
to extend analysis of transcriptomes beyond expression
changes in annotated gene loci and transcripts is indis-
pensable to elucidating normal cellular processes and
pathological states [26–30]. For instance, a recent study
analyzing thousands of RNA-seq datasets from normal
tissues and cancers have annotated ~50,000 novel long
noncoding RNA transcripts and have implicated these
transcripts as important markers of cancer subtypes and
normal tissues types [31]. Therefore, a true cutting-edge
RNA-seq analysis package must include the functionality
to perform accurate discovery of novel transcripts.
CANEapp peroforms ab initio assembly of transcripts that
is not dependent on previous transcriptome annotations
and allows discovery of unannotated transcripts [4, 15]. It
includes a workflow (Fig. 4a) that filters single-exon tran-
scripts that potentially originate from transcriptional noise
or sequencing artifacts, filters out lowly expressed loci and
classifies novel loci into noncoding RNA or potential
novel protein-coding genes.
In order to experimentally validate the expression of

predicted novel long noncoding RNAs from the human
and mouse datasets, we used CANEapp’s primer design
feature to design exon-junction spanning primers (Table 5)
and performed RT-qPCR experiments on RNA extracted
either from human hippocampus or mouse cortex. Ex-
pression validation of novel lncRNAs identified in mouse
cortex and human hippocampus was performed by SYBR
Green-based qRT-PCR analysis. 1 μg of mouse cortex and
human hippocampus RNA were converted to cDNA using
the high capacity cDNA synthesis kit from Life Technolo-
gies. 1 μl of diluted cDNA was used for SYBR Green-
based real time PCR analysis. Expression of each gene was
normalized to Ct value of beta actin. Amplification specifi-
city was assessed by the presence of a single peak in the
melting curve analysis and by checking the size of the
amplified products on 2 % agarose gel electrophoresis.
Overall we designed primers for 20 novel long noncod-

ing RNAs, 10 for each dataset. 10 of those were antisense
RNAs and 10 were long intergenic noncoding RNAs. We
could accurately detect expression of 15 (75 %) out of 20
predicted transcripts, as is evident from the gel electro-
phoresis image of real-time PCR reaction products (Fig. 4b).
Therefore, our novel RNA prediction workflow and primer
design software were accurate and robust in two different
datasets; since we used only one primer set per transcript,
using a second set of primers would probably increase the
rate of successfully detected transcripts. Novel long non-
coding RNAs identified with CANEapp span a wide range
of expression levels (Fig. 4c), suggesting that the software is
accurate in detecting both lowly and highly expressed
transcripts.
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Discussion
We have developed CANEapp, the first fully automated
RNA-seq analysis tool that combines user-friendly graph-
ical interface with the ability to utilize the computational
power of high-performance servers. CANEapp can be run
from Windows or Mac machines and it automatically
connects to the server to transfer raw data and install the
components of the analysis pipeline. Thus, CANEapp
does not require use of a terminal to communicate with
the server and can be used by simply downloading and
unpacking the point and click interface. CANEapp in-
cludes an intuitive step-by-step experiment design suite
and allows seamless monitoring of multiple projects ana-
lyzed on different servers. In addition, it stores all the in-
formation associated with individual projects, allowing

immediate access to previous analysis settings. Due to
these unique features CANEapp is immediately accessible
for any user with no bioinformatics or computer science
expertise and thus mitigates the need of involving bio-
informatics experts in analysis of RNA-seq experiments.
RNA-seq analysis can be particularly challenging in case
of analyzing multiple groups and samples, and the work-
flow requires optimization and experimental validation to
perform robustly in varying experimental and technical
conditions. In addition to providing a user-friendly
suite to design and monitor RNA-seq analysis projects,
CANEapp includes a fully automated, robust and ex-
perimentally tested computational pipeline to perform
differential gene expression and novel noncoding RNA
analysis. The pipeline contains alternative analysis tools

Fig. 4 Detection and of novel long noncoding RNAs by CANEapp and their validation by real-time PCR. a Filtering strategies and protein-coding
potential prediction. (Right) CANEapp preserves any transcripts that contain a splice junction (a) or single-exon transcripts expressed in a majority of
samples (c), whereas single-exon transcripts detected in a minority of samples are filtered out (b). (Center) Loci that have insufficient read coverage are
not considered for differential expression testing. (Left) In order to differentiate between novel noncoding RNAs and potential protein-coding genes,
each isoform from a novel locus is tested for presence of a significant open reading frame. Loci that contain at least one isoform with an open reading
frame are not considered novel noncoding RNA. b Gel electrophoresis image of PCR amplification products for experimentally validated novel long
noncoding RNAs. 5 novel antisense RNAs and 3 long intergenic noncoding RNAs (lincRNAs) predicted from the human RNA-seq dataset analysis were
amplified with real-time PCR. For mouse cortex dataset, real-time PCR was performed on RNA extracted from adult mouse cortex. 3 antisense RNAs
and 5 lincRNAs were successfully validated. c and d Novel long noncoding RNAs span a wide range of expression levels in human and mouse tissues.
Relative expression of validated long noncoding RNAs was calculated by normalizing it to the Ct value of the endogenous control beta-actin
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for read alignment (TopHat and STAR) and differential
gene expression testing (Cuffdiff, edgeR and DESeq2),
allowing the user to perform a customizable analysis or
even to compare performance of several tools in a sin-
gle run of CANEapp. We have tested the performance
of the pipeline by analyzing three RNA-seq datasets from
three species: human, mouse and rat. The test datasets
consisted of RNA-seq experiments with different technical
sample preparation and sequencing protocols: polyA
enriched versus ribodepleted RNA, directional versus uni-
directional library preparation, single versus paired-end
sequencing. CANEapp has produced extremely accurate
estimates of differential gene expression in all three data-
sets as was validated independently with qRT-PCR. This

indicates robustness of CANEapp performance with vary-
ing experimental designs and technical sample preparation
protocols. In addition, we noticed that Cuffdiff performed
equally well on all the three datasets, whereas edgeR and
DESeq2 performed worse on the rat and human datasets
when compared to qRT-PCR. This result is in line with the
observations in the paper describing Cuffdiff2 tool [5] and
is contrary to what has been reported elsewhere [32]. Even
though comparing performances of different differential
expression analysis tools is outside the scope of this paper,
we would like to point out a potential use of CANEapp as
an easy way to compare performance of Cuffdiff, edgeR
and DESeq2 as it allows to implement these tools simul-
taneously in a single run.
With the evolution of sequencing technologies and bio-

informatics tools to analyze RNA-seq data more and more
long noncoding RNAs are being discovered. The number
of known lncRNAs only in human has exceeded that of
protein-coding genes and is still growing [31, 33, 34], po-
tentially because of high tissue and dynamic specificity of
these transcripts [35–37]. Therefore, it is crucial to be able
to perform discovery of novel noncoding RNAs in order
to gain a comprehensive view of the transcriptome of a
particular tissue or cell type. CANEapp includes a compu-
tational workflow to accurately assemble and predict
novel, previously unannotated noncoding RNAs. We were
able to experimentally validate expression of 15/20 (75 %)
of the novel noncoding RNAs in human and mouse tis-
sues, which correlates with previous reports on accuracy
of prediction of novel spliced junctions based on RNA-seq
and indicates that CANEapp is a robust and valuable tool
for novel noncoding RNA discovery.
Several software packages aiming to provide a user-

friendly means to analyze RNA-seq data have been de-
signed. We performed a comprehensive comparison of
CANEapp to six other packages for RNA-seq analysis and
analyzed several key features of these tools. We demon-
strate that CANEapp significantly improves on previously
developed tools in a number of ways. For instance, Myrna
[38] is a cloud-based pipeline that performs differential
gene expression analysis of RNA-seq data. Myrna has an
advantage of performing automated analysis in one step;
however, among its drawbacks are cumbersome installa-
tion, lack of user interface and limited functionality. Since
Myrna relies on an ungapped aligner it can only perform
analysis of annotated genes and is not able to analyze spli-
cing events or novel RNA species. The Galaxy Project [39]
is an open-source platform with a web interface allowing a
user to perform analysis of next-generation sequencing
data on a local cluster or Amazon Cloud. However, even
though Galaxy simplifies use of bioinformatics tools by
providing a web interface and removing the installation
step, it still lacks automation and requires a step-by-step
analysis of each individual sample; instead assuming that

Table 5 Primer sequences for validation of novel noncoding RNAs

Human Hippocampus

AS1 Left Primer: ACTGGAGAAGCACGGGGA

Right Primer: AAGTTCCACGTGGCTGGG

AS2 Left Primer: TCGAGCTGAGGACGTGGA

Right Primer: TTTCCTGCCTGGCTGGTG

AS3 Left Primer: TCCCTGTGTGTCTGCACC

Right Primer: CCCACACTCAGTTCTTCCCA

AS4 Left Primer: AGAGCGGTAGGGATACGCT

Right Primer: GCTGCTGATGGGTGGTCC

AS5 Left Primer: CCATGCCTAGCCTCAGGG

Right Primer: CTATGTGAGCTTGGGCAAGT

Linc1 Left Primer: CTGCCCTGTGGAGCATCC

Right Primer: CTCTGGCAAGGCGTTCCA

Linc2 Left Primer: CCTGGCACCGCAGCAA

Right Primer: GCTGTCCTAATGCTTCATCCA

Linc5 Left Primer: CAGGGCCCAGGATCCAGA

Right Primer: TGAATTACTGCCACGACCAAG

Mouse Cortex

AS1 Left Primer: GCCCAGGCTCTCCAGAGA

Right Primer: ATAGTCCCTCTCCCCGCC

AS3 Left Primer: ACGAAAGGGTGCCTTCCC

Right Primer: GCTTACTCCCGTCACCCC

AS5 Left Primer: TTCTTGGACAGCGACCCC

Right Primer: AGCGTCAGGAAATGGCCA

Linc1 Left Primer: TCAGGAGAAGCAGCGTGC

Right Primer: TCCTTCTCCAGATCTCAGGGT

Linc2 Left Primer: TGGTCATGAACTTGTTCCTGT

Right Primer: GCCTGGACTCCTATGCTCA

Linc4 Left Primer: CCAGGAACGGCTGAGACG

Right Primer: CTCACAGGCCAGCTGGAG

Linc5 Left Primer: GCTGCTCCGAGCTCAGTC

Right Primer: TTTGGAGCGGTCCTGCAG

Velmeshev et al. BMC Genomics  (2016) 17:49 Page 11 of 13



the end user has a deep knowledge of the tools used and
is able to construct analysis pipelines and select tools and
settings appropriate for individual experiments. RobiNA
package [40] is a Java-based tool that performs step-by-
step analysis of RNA-seq data to discover differentially
expressed genes. However, RobiNA is missing several im-
portant functionalities. It works on the local machine,
which means RobiNA ‘s performance is severely restricted
to the low performance of personal computers and it is
unable to operate on servers, engage high-performance
computing resources or cloud computing, all of which are
the most commonly used platforms in academia to
analyze next-generation sequencing data. Moreover, Ro-
biNA uses ungapped aligned Bowtie to align sequencing
reads, which means it is not capable of ab initio analysis
of RNA-seq data to discover novel spliced junctions, tran-
scripts and loci. Other packages such as RNA CoMPASS
[41] include additional functionalities such as gapped
alignment and ability to work on a server but still require
cumbersome installation and configuration that makes it
inaccessible to users without computer science skills. In
addition, RNA CoMPASS does not include a complete
analysis pipeline and is missing many important analysis
steps such as differential gene expression analysis, tran-
script annotation and long noncoding RNA discovery. We
believe that CANEapp improves on previously designed
packages in many aspects and presents a software that
combines user-friendly interface, automation of the
analysis, an optimized and experimentally validated
analysis pipeline, and ability to perform computation
on high-performance and cloud servers. CANEapp is a
truly user-friendly powerful tool that can be used with-
out any bioinformatics or computer science expertise to
perform comprehensive transcriptome analysis.

Conclusion
CANEapp potentially represents a novel platform for
integrating next-generation sequencing analysis pipe-
lines and tools into a user-friendly suite that can be im-
mediately accessed by scientists. One of the main
challenges of high-throughput biology is integrating
data from different sources and experiments. CANEapp
utilizes a standardized analysis pipeline and internally
generated experimental design templates and can be
run on any Linux architecture by a non-expert user.
The use of a standardized pipeline together with a pre-
defined software-generated design template that will in-
clude all specification of the biological experiment and
technical protocols can serve as a primer to develop a
standard way to analyze next-generation sequencing
data and high-throughput data in general. This will cre-
ate an opportunity to integrate data into global data-
bases for sharing and meta analyses. We believe that
CANEapp will not only benefit biologists in performing

their RNA-seq experiments, but will also inspire and pro-
vide bioinformaticians with code source material to de-
velop user-friendly analysis tools for various applications
in genomics analyses such as analysis of gene fusions,
RNA editing, circular RNA analysis and simultaneous ana-
lysis of the genome and transcriptome.
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