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Transcriptional events co-regulated by hypoxia
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Abstract

Background: Hypoxia and temperature stress are two major adverse environmental conditions often encountered
by fishes. The interaction between hypoxia and temperature stresses has been well documented and oxygen is
considered to be the limiting factor for the thermal tolerance of fish. Although both high and low temperature

stresses can impair the cardiovascular function and the cross-resistance between hypoxia and heat stress has been
found, it is not clear whether hypoxia acclimation can protect fish from cold injury.

Results: Pre-acclimation of 96-hpf zebrafish larvae to mild hypoxia (5% O2) significantly improved their resistance
to lethal hypoxia (2.5% O2) and increased the survival rate of zebrafish larvae after lethal cold (10°C) exposure.
However, pre-acclimation of 96-hpf larvae to cold (18°C) decreased their tolerance to lethal hypoxia although their
ability to endure lethal cold increased. RNA-seq analysis identified 132 up-regulated and 41 down-regulated genes
upon mild hypoxia exposure. Gene ontology enrichment analyses revealed that genes up-regulated by hypoxia
are primarily involved in oxygen transport, oxidation-reduction process, hemoglobin biosynthetic process, erythrocyte

confirmed.

development and cellular iron ion homeostasis. Hypoxia-inhibited genes are enriched in inorganic anion transport,
sodium ion transport, very long-chain fatty acid biosynthetic process and cytidine deamination. A comparison with
the dataset of cold-regulated gene expression identified 23 genes co-induced by hypoxia and cold and these

genes are mainly associated with oxidation-reduction process, oxygen transport, hemopoiesis, hemoglobin

biosynthetic process and cellular iron ion homeostasis. The alleviation of lipid peroxidation damage by both
cold- and hypoxia-acclimation upon lethal cold stress suggests the association of these genes with cold resistance.
Furthermore, the alternative promoter of hmbsb gene specifically activated by hypoxia and cold was identified and

Conclusions: Acclimation responses to mild hypoxia and cold stress were found in zebrafish larvae and pre-acclimation
to hypoxia significantly improved the tolerance of larvae to lethal cold stress. RNA-seq and bioinformatics analyses
revealed the biological processes associated with hypoxia acclimation. Transcriptional events co-induced by hypoxia
and cold may represent the molecular basis underlying the protection of hypoxia-acclimation against cold injury.
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Background

The concentration of dissolved oxygen (DO) and
temperature are the most important environmental
variables that affect the overall biological processes of
fishes. Temperature limits the rates of cellular biochemical
reactions and dictates all aspects of fish life, including me-
tabolism, development, growth, reproduction and behav-
ior [1]. Adverse effects and even death can be caused
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when water temperature falls outside the species-specific
thermal tolerance range [1,2]. Molecular oxygen is used
by all eukaryotic cells as the terminal electron acceptor in
aerobic energy production and the presence of adequate
oxygen is essential to the survival of nearly all vertebrates
[3]. Oxygen deficiency can impair cellular energy gener-
ation, induce the formation of reactive oxygen species
(ROS) and lead to cell damage and apoptosis [4-7]. In
water environments, hypoxia (DO <2 mg/L) often occurs
due to the inherent properties of water and the rapid fluc-
tuations in the pattern of oxygen production and con-
sumption [8,9]. Exposure of fish to hypoxia can suppress
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development, reduce growth, disturb endocrine function,
impair reproductive performance, and cause mass mortal-
ity for wild populations [9,10].

Due to the importance of oxygen and temperature to
their life, fishes have evolved versatile mechanisms to ac-
climate oxygen deficiency and temperature variations in
their habitats [11]. Pre-acclimation of fishes to moderate
hypoxia or thermal stress can activate the acclimation
pathways and increase the tolerance to lethal hypoxia or
thermal stress [12-14], respectively. The rationale of
hypoxia acclimation in fish is to increase oxygen uptake
and reduce oxygen demands. Upon hypoxia, fishes
usually skim the surface water containing more oxygen,
increase ventilation volume to absorb more oxygen, or
reduce motility to spare oxygen consumption [15,16].
Except for behavioral actions, extensive physiological
and biochemical modifications such as gill modifications
to increase surface area [17], increases in heart rate and
hemoglobin content [18,19], alterations in the structure
or activity of specific ion channels [20], and activation of
anaerobic ATP production via glycolysis [21], are also in-
volved in the process of hypoxia acclimation. The acclima-
tion of fish to thermal stresses was considered to be a
process of “biochemical restructuration” [22], including
synthesizing temperature specific isoenzymes [22], increas-
ing the content of membrane lipid and the degree of fatty
acid unsaturation [23], recruiting different muscle fiber
types [24], generating molecular chaperones [25], and
changing mitochondrial densities and their properties [26].

Numerous studies have focused on the molecular
mechanisms underlying the acclimation responses to en-
vironmental stressors including hypoxia and temperature
fluctuations in the last decade. Hypoxia-regulated gene
expression in the embryos and adult tissues of zebrafish
(Danio rerio) [27-30], goby (Gillichthys mirabilis) [31],
medaka (Oryzias latipes) [32] and Xiphophorus macu-
latus has been characterized with microarrays [33].
Transcriptional responses to thermal stresses in spe-
cies such as zebrafish [34], common carp (Cyprinus
carpio) [35], channel catfish (Ictalurus punctatus) [36],
annual killifish (Austrofundulus limnaeus) [37], coral
reef fish (Pomacentrus moluccensis) [38], rainbow trout
(Oncorhynchus mykiss) [39] and Antarctic plunderfish
(Harpagifer antarcticus) [40] have been investigated
using microarray as well. Very recently, RNA-seq was
applied to explore the transcriptional responses of fish
to hypoxia and thermal stress at the whole genome
level [12,41,42]. These studies have demonstrated that
hypoxia and thermal stresses can induce profound
changes in gene expression profiles. Although the mas-
ter factors responsible for mediating temperature
stress-regulated gene expression remain unknown, hyp-
oxia-inducible factor-1 (HIF-1) was revealed to be the key
regulator for hypoxia-induced genes [43].
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Effects of hypoxia and thermal stresses on fishes are
often examined separately, but an increasing body of
evidence indicates the interaction between temperature
and oxygen on organismal performance [44]. Exposure
of fish to both low and high temperature stresses can
impair cardiovascular functions and decrease circula-
tory oxygen concentration, thus induce tissue hypoxia
in spite of ample oxygen supply from the environment
[45]. Therefore, oxygen was considered to be the limiting
factor for thermal tolerance of fish due to restrictions
in cardiovascular performance at extreme temperatures
[45-47]. Thermal limitation in fish was interpreted as
being caused first by limited oxygen supply capacity
and second by transition to anaerobic metabolism [48].
Accordingly, acclimation of channel catfish to hypoxia
can enhance the tolerance to acute heat stress through
improving cardiovascular performance [19,49]. Further-
more, exposure of zoarcid fish (Zoarces viviparus) [50]
and crucian carp (Carassius carassius) [51] to cold stress
induced the expression and DNA binding activity of HIF-1,
suggesting the activation of hypoxia-induced pathways by
cold stress. However, it remains unclear whether fish can
develop a cross-resistance to hypoxia and cold and how
multiple-stress responses are co-regulated.

Zebrafish is a good model to study the mechanisms of
environmental acclimation and acclimation to both hyp-
oxia and cold has been previously reported in this
species [12,13]. Recently, RNA-seq gradually substituted
the microarray approach in exploring transcriptional re-
sponses of organisms to environmental stressors due to
its high sensitivity and accuracy, digital expression and
the ability to distinguish transcript isoforms [52]. Except
for detecting transcript abundance, RNA-seq identifies
alternative splicing and alternative promoter usage events
at the same time and provides a more holistic view of the
transcriptome [52]. Although hypoxia-regulated gene ex-
pression has been extensively investigated in zebrafish, it
remains to be characterized by RNA-seq. In this study, we
investigated the effect of hypoxia acclimation on cold tol-
erance and vice versa in zebrafish larvae, characterized the
transcriptional responses to hypoxia at the whole-genome
level using RNA-seq, and made a comparison of hypoxia-
and cold-induced transcriptomes.

Results

Hypoxia acclimation increased the cold resistance of
zebrafish larvae

To investigate the cross-resistance between hypoxia and
cold stress, zebrafish larvae pre-acclimated to mild hyp-
oxia or cold were exposed to lethal hypoxia and cold,
respectively (Figure 1A). Zebrafish larvae exposed to 5%
02 for 24 h demonstrated smaller intestine lumen, lar-
ger yolk sac and smaller body length when compared to
the control larvae maintained in air (Additional file 1),
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Figure 1 Pre-acclimation to hypoxia increased the cold resistance of zebrafish larvae. (A) Flowchart of stressor exposure. Zebrafish embryos were
incubated in air at 28°C from fertilization to 96 hpf and then pre-acclimated to hypoxia or cold for 24 h. Sample collection for RNA-seq and lethal
hypoxia and cold exposure were performed at 120 hpf. (B and C) Survival rates of zebrafish larvae after lethal cold (B) and hypoxia (C). Data was
shown as mean + standard deviation (n = 5). Different letters above the error bars indicate significant difference (p < 0.05) between treatment
groups. (D and E) Photographs of zebrafish larvae after lethal cold (D) and hypoxia (E) challenge. Dead fish displayed an obvious body curvature.

demonstrating an obvious effect of hypoxia exposure. As
shown in Figure 1B and C, both hypoxia and cold accli-
mation enhanced the resistance of zebrafish larvae to
the lethal level of the same stressor, indicating the
activation of protective mechanisms upon mild hypoxia
and cold. Moreover, hypoxia acclimation significantly in-
creased the survival rate of zebrafish larvae after lethal
cold exposure (Figure 1B and D), suggesting hypoxia-
inducible signaling pathways in zebrafish larvae are in-
volved in the development of cold resistance. However,
pre-exposure to cold significantly decreased the survival
rate of larvae upon lethal hypoxia exposure (Figure 1C
and E) and no mortality was observed when the pre-cold
acclimated larvae were suddenly transferred to 28°C
incubation in an additional experiment (data not shown).
Therefore, instead of enhancing resistance, cold-acclimation
sensitized the larvae to hypoxia stress.

Hypoxia-regulated gene expression

In order to disclose the molecular basis underlying the
protective effect of hypoxia acclimation on zebrafish lar-
vae against lethal cold stress, gene expression in larvae
acclimated to 5% O2 for 24 h was characterized with
RNA-seq. The low quality reads were filtered and the
remaining clean reads were then mapped to the zebrafish
genomic sequence. The statistics for read pre-processing
and mapping were displayed in Table 1. The total number
of raw read pairs ranged from 19.80 to 30.53 million and
about 96% of the raw reads passed the quality threshold.
About 91% of the clean reads were mapped to the genomic
sequence by Tophat and the number of reads mapped to
splice junctions was quite similar among different samples
(from 5.22 to 5.26 million). Finally, 75.51 - 77.95% of the
alignment was unique in the genome. These results suggest
the high quality of our sequencing datasets.
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Table 1 Statistics for read filtering and mapping
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Sample name Control1 Control2 Control3 Hypoxia Hypoxia Hypoxia
Total reads (M) 19.80x2 24.72x2 19.48x2 30.53x2 26.85x2 28.45x2
Good reads (M) 38.05 47.76 37.62 58.76 51.94 5491
9% Good reads 96.09 96.61 96.58 96.24 96.72 96.52
Processed reads (M) 37.52 4722 37.18 57.94 51.36 5444
Mapped reads (M) 3446 42.89 33.99 53.08 47.28 50.00
% Mapped (M) 91.84 90.33 91.42 91,61 92.06 91.84
Total alignment (M) 43.68 53.52 43.79 684 5895 62.26
Total potential splices (M) 522 5.25 522 5.26 524 524

% Reads mapped to junction 15.15 1224 15.36 991 11.08 1048
Unique mapping (M) 33.35 41.72 33.54 51.65 4549 48.24
% Unique mapping 76.35 77.95 76.59 7551 7717 7748

After read mapping, gene expression was calculated
using Cufflinks and the abundances of genes were
expressed as FPKM (Fragments per kilobase of tran-
script per million fragments mapped) [53]. As shown
in Figure 2A and B, most of the genes were of low and
medium abundance according to their FPKM values
and no obvious difference was found in the abundance
distribution curve between the control and hypoxia-
acclimated samples, suggesting a smaller effect of hypoxia
on gene expression when compared to cold stress [12].
The correlation between the abundance of genes under
control and hypoxia is displayed in Figure 2C. Genes with
a fold change>1.5 and a g-value <0.05 were considered
to be differentially expressed. The number of up- and
down-regulated genes was 132 and 41, respectively
(Additional file 2).

The most prominent hypoxia-induced gene was hbz
(hemoglobin zeta), followed by ponzr4 (plac8 onzin related
protein 4), egln3 (egl nine homolog 3), hpx (hemopexin),
ponzr3 (plac8 onzin related protein 3), #bm (hemoglobin,

mu), alas2 (aminolevulinate, delta-, synthetase 2), hbbe2
(hemoglobin beta embryonic-2), ankrd37 (ankyrin repeat
domain 37), p4halb (prolyl 4-hydroxylase, alpha polypep-
tide I b) and two uncharacterized genes si:dkey-202 122.6
and loc100537766. These genes were up-regulated more
than 5-fold by hypoxia (Additional file 2). The gene most
highly inhibited by hypoxia was hela (hatching enzyme
la), the expression of which was reduced 51-fold by
hypoxia. The expression of genes including /ifrb (leukemia
inhibitory factor receptor alpha b), clcal (chloride channel
accessory 1) loc100537819 and si:ch73-362 ml14.3 was
inhibited 3-fold upon hypoxia (Additional file 2).

Validation of RNA-seq data with qPCR

The qPCR assays were performed to validate the RNA-seq
results. To identify internal reference genes appropriate
for hypoxia exposure, two commonly used reference genes
(actb1 and rpli3a) and seven genes (ada, smarcel, erp44,
ube2el, gnblb, rbxl and yipf3) demonstrating consider-
able expression stability after hypoxia treatment were
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Figure 2 Gene expression regulated by hypoxia. (A and B) Distribution of FPKM values for genes expressed in the control (A) and hypoxia-
acclimated (B) zebrafish larvae. The red interpolation line denotes a bimodal distribution of the frequency of FPKM. (C) Correlation of gene ex-
pression between the control and hypoxia-treated group. The up- and down-regulated genes were shown in red and blue, respectively. Genes
not regulated by hypoxia treatment were shown in green.
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selected as candidates (Additional file 3). The relative ex-
pression of these genes was detected by qPCR and their
expression stability upon hypoxia exposure was analyzed
using geNorm [54] and Normfinder [55], respectively.
Both geNorm and Normfinder revealed that smarceland
erp44 are the most stable genes (Additional file 4). There-
fore, the geometric average of their expression was used as
normalization factor for the analysis of hypoxia-related
qPCR data.

The expression of 18 genes (two transcripts of hmbsb
were analyzed separately) was selected to be detected by
qPCR to validate the RNA-seq data. As shown in Table 2
and Figure 3, results from qPCR agreed very well with
those of RNA-seq for both up- and down-regulated
genes. A Spearman bivariate correlation analysis revealed
that the data of RNA-seq and qPCR was significantly cor-
related (p < 0.01, correlation coefficient = 0.888), indicating
the reliability of RNA-seq data.

Functional classification of hypoxia-regulated genes

GO enrichment analyses indicated that the most
enriched biological processes for hypoxia-induced genes
include oxygen transport, oxidation-reduction process,
hemoglobin biosynthetic process, erythrocyte development,
cellular iron ion homeostasis, protoporphyrinogen IX
biosynthetic process and peptidyl-pyrromethane cofactor
linkage (Figure 4 and Additional file 5). These enriched

Table 2 Validation of RNA-seq data with qPCR

Gene Fold change

symbol RNA-seq qPCR
hmbsb-P1 1.2 14
hmbsb-P2 58 48
ak3 16 2.7
cpox 2.8 33
hiflan 22 36
ncoa4 1.6 1.7
osgnl 1.8 34
hbm 83 6.1
hephl1 1.9 19
mb 33 23
steap3 35 35
p4halb 5.1 6.8
tfria 2.1 26
urod 24 30
fads2 -23 -20
mep1b -24 -24
elov2 -18 -19
slc34a2a -1.7 -28
slc13a2 -1.7 24
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Figure 3 gPCR Validation of RNA-seq data. Expression of genes
detected by RNA-seq was plotted against that of gPCR. The reference
line indicates the linear correlation between the results of RNA-seq
and gPCR.

processes are tightly associated with oxygen uptake and
delivery, which is consistent with the demand to enhance
oxygen uptake and delivery efficiency upon hypoxia.
Hypoxia-inhibited genes are mainly involved in inorganic
anion transport, sodium ion transport, very long-chain
fatty acid biosynthetic process, glycolysis and cytidine de-
amination (Additional file 6).

Genes co-regulated by hypoxia and cold stress

The protection of hypoxia-acclimation against adverse
effects elicited by lethal cold prompts us to characterize
the transcriptional events co-regulated by hypoxia and
cold. A comparison with our previous cold-regulated
gene expression dataset [12] identified 23 genes that
were induced by both hypoxia and cold (Table 3). The
expression of six genes induced by both hypoxia and
cold exposure were investigated using qPCR to validate
the co-regulation. As shown in Figure 5, the expression
of hephll (hephaestin-like 1), mb (myoglobin), tfrla
(transferrin receptor la), urod (uroporphyrinogen de-
carboxylase) and steap3 (STEAP family member 3,
metalloreductase) was up-regulated upon both hypoxia
and cold. A search for the function annotation in the
gene ontology database (http://geneontology.org/) indi-
cates that these co-regulated genes are mainly involved in
oxidation-reduction process, oxygen transport, hemopoiesis,
hemoglobin biosynthetic process and cellular iron ion
homeostasis (Table 3), suggesting that the activation of
these processes are associated with the hypoxia-induced
protection against cold stress.

Alternative promoter usage of hmbsb upon hypoxia

and cold

Except for differential gene expression, alternative pro-
moter usage of hmbsb (hydroxymethylbilane synthase b)
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Figure 4 GO enrichment analysis of genes up-regulated by hypoxia. The size of circles is proportional to the number of genes associated with
the GO term. The arrows represent the relationship between parent—child terms. The color scale indicates corrected p-value of enrichment analysis.

upon hypoxia was identified by Cufflinks. Dataset com-
parison demonstrated that promoter transition of hmbsb
was also induced by cold stress. Due to the significance
of alternative promoter usage in transcriptome diversity,
we analyzed this event in detail and confirmed it using
5" RACE. Hmbsb is involved in the biosynthetic process
of tetrapyrrole, a source material of heme biosynthesis.
Alternative promoter usage of hmbsb results in alterna-
tive first exons that are spliced to the common second
exon and the start codon is present within the alternative
first exon (Figure 6A). The corresponding transcripts of
alternative promoters (P1 and P2) were designated as
hmbsb-P1 and hmbsb-P2, respectively. The read coverage
of the first exon for hmbsb-P2 was obviously higher in
hypoxia and cold-treated samples than that of control
(Figure 6A). The alternative promoter usage of hmbsb
results in different N-terminus of encoded peptides
(Figure 6B). Hmbsb-P1 is the main transcript under
control condition; however, the main transcript was
changed to hmbsb-P2 when exposed to hypoxia and
cold (Figure 6C).

The 5'RACE assay based on RNA adaptor ligation
was performed to analyze the 5° ends of hmbsb
cDNAs. Electrophoresis identified two bands for the
control and one band for both hypoxia- and cold-
treated samples (Figure 6D). The resulted PCR frag-
ments of different samples were cloned and sequenced.
A total of seven transcription start sites (TSSs) were

identified for the two alternative promoters. TSS1 to
TSS5 is determined by P1 and TSS6 and TSS7 belong
to P2 (Figure 7). Consistent with Figure 6D, all clones
from the control sample represented transcripts driven
by P1 (initiated from TSS2 or TSS5) and the transcript
of TSS2 is 74 base pairs longer than that of TSS5. P2
was hypoxia- and cold-specific and most of the clones
from the hypoxia-treated sample were transcripts
driven by P2 (4/5) and the ratio of P1/P2 for clones de-
rived from the cold-treated sample was 3/6 (Figure 7).
These results indicate that the alternative promoter P2
of hmbsb gene is specifically activated by hypoxia and
cold and the activating effect of hypoxia is stronger
than that of cold.

Cold and hypoxia pre-acclimation alleviated lipid
peroxidation damage

Since most of the cold and hypoxia co-regulated genes
are involved in improving cellular oxygen availability
and oxidation-reduction process, we performed lipid
peroxidation assays to test whether cold or hypoxia-
acclimation can alleviate oxidation damage upon lethal
cold exposure. The results indicate that exposure to mild
cold or low oxygen stress has no effect on the content of
malondialdehyde (MDA), the product of lipid peroxida-
tion (Figure 8). After the exposure of larvae to lethal
cold for 12 h, the MDA concentration of cold- and
hypoxia-acclimated samples was significantly lower than
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Table 3 Genes co-induced by hypoxia and cold
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Genes Fold change Biological process
Hypoxia Cold
cyp46al 2.54 530 Oxidation-reduction process
hephl1 1.88 252 Oxidation-reduction process
sqrd! 1.66 2.19 Oxidation-reduction process
bbox1 1.60 1.64 Oxidation-reduction process, carnitine biosynthetic process
cox/az2 1.60 1.63 Oxidation-reduction process, proton transport, ion transmembrane transport
cox6bl 1.90 151 Oxidation-reduction process, proton transport, ion transmembrane transport
mb 332 1.98 Oxygen transport,vasculogenesis
hbae3 2.88 162 Oxygen transport
tspo 1.53 1.58 Hemopoiesis, primitive erythrocyte differentiation
tfria 2.19 163 Hemoglobin biosynthetic process, hemopoiesis, erythrocyte differentiation
tfrib 1.76 2.28 Hemoglobin biosynthetic process, cellular iron ion homeostasis, proteolysis
hmbsa 1.94 1.96 Heme biosynthesis, tetrapyrrole biosynthetic process
urod 246 1.75 Heme biosynthetic process, protoporphyrinogen IX biosynthetic process
steap3 349 2.19 Transferrin transport, cellular iron ion homeostasis, protein secretion
slciéal 161 1.85 Monocarboxylic acid transport, organic anion transport
abcb10 161 1.96 Transmembrane transport, ATP catabolic process
actalb 1.59 1.92 Embryonic heart tube development
klf4b 1.57 1.53 Hatching gland development, erythrocyte differentiation, hemopoiesis
ncoa4 1.64 161 Positive regulation of transcription, DNA-dependent
enola 1.51 1.59 Glycolysis/Gluconeogenesis
2g9c:161979 1.71 6.10 No data
zgc:113232 1.79 283 No data
znf292b 1.50 1.77 No data

that of the control (Figure 8). This is consistent with the
protective effect of cold- and hypoxia-acclimation
against lethal cold stress.

Discussion

Oxygen and temperature are the most important envir-
onmental factors for the life of fishes and both hypoxia
and temperature stress can cause deleterious effects on
the organismal performance. Due to the importance of
these factors, fishes have developed acclimation mecha-
nisms to survive the daily and seasonal fluctuations in
oxygen concentration or temperature in their habitats
during the process of evolution. The interdependence
between oxygen availability and thermal resistance has
been well documented in fishes, i.e. exposure of fish to
both low and high temperature stresses can induce
tissue hypoxia through impairing the cardiovascular
function and oxygen will subsequently limit the thermal
tolerance of fish [45-47]. Although the protection of
hypoxia acclimation against the adverse effect of heat
stress has been reported [19,49], it is not clear whether
there is a cross-resistance between hypoxia and cold
stress. In this study, pre-acclimation of zebrafish larvae

to mild hypoxia significantly increased the survival rates
after lethal cold exposure, indicating the roles of
hypoxia-inducible pathways in the establishment of cold
resistance in fish. However, pre-acclimation to mild cold
significantly reduced the survival rate of zebrafish larvae
upon lethal hypoxia exposure. This is consistent with a
previous study in mammal that cold acclimation de-
creased the hypoxia resistance of rats [56]. The increased
incidence of fatty changes in the striated muscle and the
marked depletion of liver glycogen of cold-acclimated
rats upon low oxygen may be responsible for the hypoxia-
susceptibility [56].

To investigate the molecular mechanisms underlying
the protection of hypoxia-acclimation against cold stress,
gene expression in hypoxia-acclimated zebrafish larvae
was characterized using RNA-seq and compared with
that of cold-acclimated samples. Although hypoxia-
elicited gene expression in zebrafish has been explored
by microarray in several previous studies [27-30], RNA-
seq characterization may give new information due to its
advantages over microarray. A total of 173 genes were
found to be regulated by hypoxia in 96-hpf zebrafish lar-
vae, including 132 up-regulated and 41 down-regulated
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Figure 5 Genes co-induced by hypoxia and cold. The expression of genes in zebrafish larvae after hypoxia and cold pre-acclimation was charac-
terized using qPCR. Data was shown as mean + standard deviation (n = 3). Significant differences between control and hypoxia or cold exposed
samples were demonstrated using asterisks. “*" p < 0.05, “**" p <0.01 and “***" p < 0.001.

genes. A large part of these genes were not found to be
regulated by hypoxia in previous microarray studies. The
number of genes influenced by hypoxia in this study is
markedly smaller than that of cold-regulated genes [12],
but is quite similar with the previous studies characteriz-
ing hypoxia-regulated gene expression using microarray
[27,28]. This is consistent with the partial protection of
hypoxia-acclimation against cold stress. It is possible
that more complicated mechanisms are involved in the
development of cold tolerance in fish.

Most of the hypoxia-induced genes identified in this
study are involved in biosynthesis of the source material
of hemoglobin, hematopoiesis and oxidation-reduction
processes. Hemoglobin genes including hbz, hbm, hbael
(hemoglobin alpha embryonic-1), hbae3 (hemoglobin
alpha embryonic-3), hbbel.1 and hbbe2 were among
the most prominent gene families induced by hypoxia
(Additional file 2). Although &bz was the most highly
up-regulated gene under hypoxia, hbae3, hbbe2 and
hbbel.1 were the most abundant hemoglobin genes in
both control and hypoxia-treated samples. However,
hemoglobin genes were not found to be up-regulated
in 24-hpf zebrafish embryos exposed to hypoxia [27].
Genes involved in erythrocyte differentiation such as

alas2 (aminolevulinate, delta-, synthetase 2), tfria
(transferrin receptor 1a), slc4ala (solute carrier family
4, anion exchanger, member la) and gatala (GATA
binding protein la) were also highly induced by hyp-
oxia. ALAS2 encodes 5-aminolevulinate synthase, the
rate-controlling enzyme of erythroid heme synthesis;
mutations of this gene are the causative of the X-linked
sideroblastic anemia in human [57]. Transferrin recep-
tor TRF1 plays a crucial role in cellular iron uptake
and is previously reported to be induced by hypoxia in
human cell lines [58]. Anion exchanger SLC4A1 func-
tions as a transporter that mediates anion exchange
across the cell membrane and as a structural protein,
which is required for normal flexibility and stability of
the erythrocyte membrane via the interactions of its
cytoplasmic domain with cytoskeletal proteins [59].
Hematopoietic transcription factor GATA1 is indis-
pensible for the maturation of erythrocytes [60]. The
up-regulation of these genes underlies the increased
resistance of zebrafish larvae to lethal hypoxia during
the acclimation process.

HIF-1 is the critical regulator for hypoxia response
and plays key roles in cellular hypoxia acclimation [61].
The activity of HIF-1 is tightly regulated by the egl-9
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family hypoxia-inducible factors (Egln) and the hypoxia-
inducible factor 1 alpha subunit inhibitor (Hiflan). Egln
genes encode proline hydroxylases (PHD) which mediate
proteosomal degradation of HIFla under normoxic
oxygen conditions [62]. Egln genes were reported to be
regulated by HIF-1 and suggested to be a negative
feedback regulatory mechanism for limiting accumula-
tion of HIFla in hypoxia [63]. Like Egln members,
Hiflan (also known as factor inhibiting HIF, FIH) hydrox-
ylates a conserved asparaginyl residue within HIF1a when
oxygen is available, and thus prevents the recruitment of
co-activators and suppresses the activity [64]. Because the
activities of both Egln members and Hiflan are oxygen-
dependent, HIFla is stabilized under hypoxia and dimer-
izes with HIF1p to form active HIF-1. Zebrafish has four
hifla genes, including hiflaa, hiflab, hiflal and hiflal2,
but hiflal2 was the only one up-regulated by hypoxia in
this study (Additional file 2). However, hiflaa, hiflab and
hiflal were slightly but significantly induced by cold in
our previous study (data not shown). It is interesting that
all HIFla-suppressing genes, including egln genes and
hiflan were induced by hypoxia (Additional file 2) but
none of them was up-regulated by cold stress. It is pos-
sible that the stress response of hypoxia under 18°C is
weaker than that of 5% oxygen and therefore the negative
regulatory mechanism is not activated.

The protective effects of hypoxia acclimation against
cold stress in zebrafish larvae prompts us to explore the
mechanisms activated under both hypoxia and cold.
Genes co-induced by hypoxia and cold are mainly in-
volved in oxidation-reduction processes, hemoglobin
biosynthetic process and oxygen transport. Cold-induced
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oxidative stress was widely found in insects [65], fishes
[50] and mammals like rat [66], suggesting that estab-
lishment of defense systems against oxidative damage
would be a common task for cold acclimation in ani-
mals. Among the genes co-induced by hypoxia and cold,
SQRDL (sulfide quinone reductase-like) functions to
catalyze the conversion of sulfide to persulfides, thereby
decreasing toxic concentrations of sulfide accumulated
upon hypoxia/ischemia [67]. HEPHL1 (Hephaestin-like 1)
is an analog of ceruloplasmin that functions as a multicop-
per ferroxidase to convert Fe2" to less toxic Fe3" and aids
in counteracting the deleterious effects of iron/ROS-medi-
ated oxidative damage [68]. Cyp46al (cytochrome P450,
family 46, subfamily A, polypeptide 1) is the cholesterol
24-hydroxylase which catalyzes the oxidation of choles-
terol into 24S-hydroxycholesterol to facilitate the efflux of
cholesterol across the blood—brain barrier [69]. Since the
content of cholesterol is negatively related to the fluidity
of cell membrane [70], elimination of cholesterol from
cells may be necessary for the increment of membrane flu-
idity at low temperature. Myoglobin is important for intra-
cellular oxygen transportation upon oxygen scarcity and
was reported to be up-regulated by hypoxia in various
carp tissues [71,72]. Up-regulation of mb by cold stress
further suggests that improving oxygen supply is an im-
portant aspect of cold acclimation. Furthermore, genes
involved in oxygen transport, iron homeostasis and
hemoglobin biosynthetic process such as hbae3, tfrla,
frlb, urod (uroporphyrinogen decarboxylase) and
steap3 (STEAP family member 3, metalloreductase)
were up-regulated upon both hypoxia and cold. Nearly
all these co-regulated genes are involved in improving cel-
lular oxygen availability and oxidation-reduction process.
Furthermore, the results of lipid peroxidation assays
demonstrated that both cold and hypoxia pre-acclimation
alleviate oxidation damage caused by lethal cold stress,
suggesting the association of these genes with cold accli-
mation. However, the increase in the abundance of tran-
scripts under cold stress is not necessarily resulted from
activated transcription since the turnover of RNA can be
affected by temperature. The post-transcriptional regula-
tion mechanisms reducing mRNA decay may contribute
to the up-regulation of certain genes as well.

In addition to co-induced genes, we identified and
confirmed the alternative promoter usage of hmbsb
under hypoxia and cold. Alternative promoter usage is a
versatile mechanism to create diversity and flexibility in
the regulation of gene expression besides alternative
splicing. Messenger RNA molecules derived from alter-
native promoters may differ in the level of transcription
initiation, stability and translation efficiency. Alternative
promoters can have different tissue specificity, react
differently to environmental signals and lead to the
generation of protein isoforms differing at the amino
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terminus [73]. Subsequently, a different amino terminus
can lead to alterations in protein levels, functions, or
subcellular distribution [73]. Zebrafish hmbsb gene is
involved in the tetrapyrrole biosynthetic process and is
specifically expressed in blood [74]. Alternative pro-
moter usage of zebrafish hmbsb gene leads to peptides
differing in the initial ten amino acids. Promoter transi-
tion was also found for human HMBS (hydroxymethyl-
bilane synthase) gene: the housekeeping promoter is
active in all cells and the alternative promoter is present
only in erythroid cells [75]. Although the alternative
promoter of human HMBS gene is associated with
tissue specificity, the biological significance and mecha-
nisms underlying the hypoxia/cold-inducibility of the
alternative promoter of zebrafish hmbsb gene remains
to be characterized.

Conclusions

Hypoxia acclimation increased the survival rate of zeb-
rafish larvae after lethal cold exposure, indicating that
hypoxia-inducible signaling pathways play important
roles in the establishment of fish cold resistance. Hypoxia
acclimation of zebrafish larvae is intimately associated
with biological processes including oxygen transport,
oxidation-reduction process, hemoglobin biosynthetic
process, erythrocyte development and cellular iron ion
homeostasis. Genes co-induced by hypoxia and cold
are mainly involved in oxidation-reduction process,
oxygen transport, hemopoiesis, hemoglobin biosynthetic
process and cellular iron ion homeostasis. An alternative
promoter of hmbsb is specifically activated by hypoxia and
cold. The transcriptional events co-regulated by hypoxia
and cold represent the molecular basis of hypoxia-
induced protection against cold stress.

Methods

Zebrafish larvae and hypoxia exposure

The animal protocol for this study was approved by the
Institutional Animal Care and Use Committee of Institute
of Hydrobiology (Approval ID: Y21304501). Maintenance
of adult zebrafish and embryos were performed as previ-
ously described [12,34]. Zebrafish larvae were placed in
60 mm dishes (50 larvae per dish) and were exposed to
hypoxia or cold stress at 96 hpf. To investigate the devel-
opment of cross-resistance to hypoxia and cold, zebrafish
larvae were first acclimated to 5% O2 at 28°C (pre-hyp-
oxia) or 18°C in air (pre-cold) for 24 h, the controls
were maintained in air at 28°C. After acclimation, larvae
were exposed to lethal oxygen (2.5% 02, 28°C) for 5 h
or lethal cold (10°C, in air) for 24 h (Figure 1A). Fish
with no heart beat and no response to touch were
considered as dead. No mortality was observed during
the acclimation process. Hypoxia acclimation and chal-
lenge were performed in a Ruskinn Invivo2 400 Hypoxia
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Workstation (Baker). Biochemical incubators (HWS-150,
Shanghai Jinghong) were used for temperature control.

Sequencing library construction and high-throughput
sequencing

Total RNA was extracted from hypoxia pre-acclimated
and control larvae at 120 hpf using TRIZOL reagent
from Invitrogen. All larvae in the same plate were com-
bined and treated as a sample for RNA extraction. The
content of RNA was measured using NanoDrop 8000
from Thermo Scientific and the quality of RNA samples
was assessed by agarose gel electrophoresis. The integ-
rity of RNA samples was confirmed using Agilent 2100
Bioanalyzer and 4 pg of total RNA was used for isolation
of mRNA. Sequencing libraries construction and high
throughput sequencing were performed together with
our previous study about cold-regulated transcriptome
[12]. Briefly, purified mRNA samples were fragmented
into small pieces and double-stranded cDNA was synthe-
sized using random hexamer primers. The synthesized
c¢DNA was subjected to end-repair, phosphorylation, 3’
adenylation, adapter ligation and PCR amplification.
Finally, sequencing libraries of 250 to 350 bp were con-
structed. Three independent biological replicates for
hypoxia-treated samples were used for library con-
struction. High-throughput sequencing was performed
by the Analytical & Testing Center at Institute of
Hydrobiology, Chinese Academy of Sciences (http://
www.ihb.ac.cn/fxcszx/). Multiplexed libraries were
sequenced for 36 bp at both ends using an Illumina
Genome Analyzer IIx platform according to the
standard Illumina protocols. The datasets have been
deposited in NCBI Sequence Read Archive (http://
www.ncbi.nlm.nih.gov/Traces/sra, SRA062881). Since
the RNA-seq datasets of this study and those of our
previous study [12] were generated at the same time,
the same controls were used to spare experimental
expenditures.

Bioinformatic analysis

Read filtering and trimming, paired reads extraction,
read mapping, transcript assembly, background estima-
tion and differential expression analysis were performed
as previously described [12]. Briefly, the preprocessed
reads were mapped to the genome sequence of zebrafish
(Zv9.69) using TopHat, the assembled transcripts were
merged with the reference annotation (Danio_rer-
i0.Zv9.69.gtf, downloaded from Ensembl) using cuff-
merge, and differential expression analysis was performed
using cuffdiff [53]. The abundance of gene transcripts was
expressed as FPKM (Fragments per kilobase of transcript
per million fragments mapped) [53]. Genes with a fold
change>1.5 and a q-value <0.05 were considered to be
differentially expressed. Calculation of mapping statistics,


http://www.ihb.ac.cn/fxcszx/
http://www.ihb.ac.cn/fxcszx/
http://www.ncbi.nlm.nih.gov/Traces/sra
http://www.ncbi.nlm.nih.gov/Traces/sra

Long et al. BMC Genomics (2015) 16:385

sorting and indexing of the read alignment files were
performed using SAMtools [76]. The mapping and
assembling results were viewed via IGVtools [77]. GO
(Gene ontology) enrichment analysis was performed
using BINGO [78], a plugin of Cytoscape [79].

Quantitative real-time PCR (qPCR)

qPCR analysis was performed according to the MIQE
(Minimum information for publication of quantitative
real-time PCR experiments) guidelines. Total RNA sam-
ples were treated with RNase-free DNase I (Promega) to
eliminate contaminated genomic DNA before reverse
transcription. First-strand cDNA was synthesized from
4 ug of pretreated total RNA using random hexamer pri-
mer with the RevertAid™ First Strand cDNA Synthesis
Kit from Fermentas. The PCR primers were designed
using Primer Premier 6.0 software. The specificity of
candidate primers was checked using Primer-BLAST
(http://blast.ncbi.nlm.nih.gov/Blast.cgi) and the second-
ary structure of amplicons was assessed using the mfold
Web Server (http://mfold.rna.albany.edu/?q=mfold). qPCR
was performed in a CFX Connect™ Real-Time PCR De-
tection System (BioRad). The total volume of the reac-
tion system was 20 pL, including 10 pL of 2 x iTaqTM
Universal SYBER Green supermix (BioRad), 2 pmol of
each primer and 5 pL of 10 x diluted ¢cDNA template.
Three independent biological replicates of each treat-
ment were included in the analysis and all reactions
were carried out in duplicates. The qPCR amplification
program was 95°C for 1 min, followed by 40 cycles of
95°C for 10 sec, 59°C or 60°C for 30 sec (with plate read)
and 72°C for 10 sec. The melt curve of PCR product
was generated by denaturized at 95°C for 10 sec, heating
from 65°C to 95°C with 0.5°C increments and 5 sec
dwell time, and a plate read at each temperature. The
specificity of the reaction was confirmed by the observa-
tion of a single melt peak. The amplification cycle dis-
playing the first significant increase of the fluorescence
signal was defined as threshold cycle and used for quan-
tification (Cq).

The standard curve of primers was generated from the
Cq values of a series of templates 5 x diluted from the
mixture of all samples to be analyzed. The amplification
efficiency of primers was calculated from the slope of
corresponding standard curve. Information including
accession number of genes, amplification efficiency of
primers and the length of amplicons were listed in
Additional file 7. To identify suitable internal refer-
ences for qPCR data normalization, commonly utilized
reference (actbl), previously reported stable reference
(rpl13a) under hypoxia [80] and genes with smallest
expression variations detected using RNA-seq includ-
ing ada, smarcel, erp44, ube2el, gnblb, rbx1, yipf3
(Additional file 3) were selected as candidate references. A
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survey of the Gene ontology database indicated that these
genes belong to different functional classes. The stability
of these genes was measured using geNorm [54] and
Normfinder [55], respectively. Moreover, tpma and tnnt3b
were used as internal references for normalization of cold-
related qPCR data according to our previous study [34].
qPCR data analysis was performed according to Helle-
mans et al. [81]. Cq values were converted into relative
quantities (RQ) using the gene specific efficiency (E). The
geometric mean of RQ values for the selected internal ref-
erence genes was calculated and used as the normalization
factor (NF). The normalized relative quantity (NRQ) of
target genes was calculated by dividing RQ by NF.

5'RACE

5" RACE was performed to characterize the transcrip-
tional initiation sites using the 5'-Full RACE kit from
Takara according to manufacturer’s instruction. This kit
uses the decapping method to amplify the full length 5°
sequence of cDNAs. The total RNA samples were first
treated with CIAP (Calf intestine Alkaline Phosphatase)
to remove the naked phosphorus from incomplete RNA
fragments. The CIAP-treated samples were sequentially
subjected to decapping and 5° RNA adaptor ligation
using TAP (Tobacco Acid Pyrophosphatase) and T4 RNA
Ligase, respectively. Reverse transcription was conducted
using M-MLV reverse transcriptase and 9-mer random
primer. Finally, 5" ends of hmbsb cDNA were amplified
by nest PCR. Primer pairs including 5° RACE outer
primer/hmbsb-5"-R1 and 5" RACE inner primer/hmbsb-
5'-R2 were used for the first and second round PCR,
respectively. The sequence of primers was listed in add-
itional file 7. The PCR products were purified using the
Biospin Gel Extraction Kit from BioFlux and subcloned
into the pMD18-T vector from TaKaRa. The positive
clones were selected and subjected to DNA sequencing.

Lipid peroxidation assay

The content of lipid peroxidation product malondialde-
hyde (MDA) was measured using the MDA assay kit
from Beyotime Biotechnology according the manufac-
ture’s instruction. Larvae at 96 hpf were subjected to
mild cold or hypoxia treatment for 24 h. Pre-acclimated
larvae were then exposed to 10°C for 12 h. The death
rate after such treatment is less than 15%. Larvae in the
same plate were combined and homogenized in PBS
(pH 7.4) supplemented with 1 mM EDTA and 1 mM
PMSEF. The homogenates were centrifuged at 4°C, 1600 g
for 10 min and the supernatants were used for subsequent
analysis. The samples were added with thiobarbituric acid
(TBA) solution and the colormetric reaction was per-
formed at 100°C for 15 min. The absorbance was deter-
mined using a Spectramax M5 plate reader at 532 nm.
The protein concentration of samples was determined by
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the enhanced BCA protein assay kit from Beyotime
Biotechnology and used to normalize the MDA

concentration.

Statistical analysis

Statistical analysis was performed using SPSS 15.0 soft-
ware for windows. The significant difference in survival
rates and MDA concentrations between control and pre-
treated samples after lethal hypoxia or cold exposure was
analyzed by the Duncan’s multiple range test. The data of
gene expression was analyzed by the independent-samples
t-test. The correlation between the data of RNA-seq and

qPCR was analyzed by the Spearman’s rho test.

Additional files

Additional file 1: Exposure of zebrafish larvae to hypoxia inhibited
body growth. (A) Photograph of zebrafish larvae after low oxygen (5%
02) exposure. SL: standard length. Red and yellow lines indicate the size
of intestine lumen and yolk sac, respectively. (B) Body length of zebrafish
larvae. Different letters above the bars indicate significant difference

(p < 0.05) among treatment groups.

Additional file 2: Genes regulated by hypoxia.
Additional file 3: Expression of candidate reference genes.

Additional file 4: Identification of most stable reference genes. (A)
Average expression stability of candidate reference genes calculated
using geNorm. (B) Stability value of candidate reference genes analyzed
by Normfinder.

Additional file 5: Results of GO enrichment analysis.
Additional file 6: GO enrichment analysis of hypoxia-inhibited genes.
Additional file 7: Primers used for gPCR and 5'RACE.
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