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Abstract
The recent chromosome-based genome assembly and the newly developed 70K single nucleotide polymorphism 
(SNP) array for American mink (Neogale vison) facilitate the identification of genetic variants underlying complex 
traits in this species. The objective of this study was to evaluate the association between consensus runs 
of homozygosity (ROH) with growth and feed efficiency traits in American mink. A subsample of two mink 
populations (n = 2,986) were genotyped using the Affymetrix Mink 70K SNP array. The identified ROH segments 
were included simultaneously, concatenated into consensus regions, and the ROH-based association studies were 
carried out with linear mixed models considering a genomic relationship matrix for 11 growth and feed efficiency 
traits implemented in ASReml-R version 4. In total, 298,313 ROH were identified across all individuals, with an 
average length and coverage of 4.16 Mb and 414.8 Mb, respectively. After merging ROH segments, 196 consensus 
ROH regions were detected and used for genome-wide ROH-based association analysis. Thirteen consensus ROH 
regions were significantly (P < 0.01) associated with growth and feed efficiency traits. Several candidate genes 
within the significant regions are known for their involvement in growth and body size development, including 
MEF2A, ADAMTS17, POU3F2, and TYRO3. In addition, we found ten consensus ROH regions, defined as ROH islands, 
with frequencies over 80% of the population. These islands harbored 12 annotated genes, some of which were 
related to immune system processes such as DTX3L, PARP9, PARP14, CD86, and HCLS1. This is the first study to 
explore the associations between homozygous regions with growth and feed efficiency traits in American mink. 
Our findings shed the light on the effects of homozygosity in the mink genome on growth and feed efficiency 
traits, that can be utilized in developing a sustainable breeding program for mink.
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Introduction
American mink breeding is entering the genomic era 
through the availability of a high-quality chromo-
some-based genome assembly [1] and a genome-wide 
single-nucleotide polymorphisms (SNPs) array. Such 
technologies have paved the way for the precise identifi-
cation of homozygous segments in livestock species [2]. 
Runs of homozygosity (ROH) are homozygous regions, 
which are composed of two identical haplotypes inher-
ited from a common ancestor [3]. Characteristics of ROH 
in a population can be used as an indicator for estimation 
of inbreeding level in different species, such as cattle [4, 
5], pigs [6, 7], chicken [8, 9], sheep [10, 11], goat [12, 13], 
and buffalo [14, 15].

Groups of several ROH within a specific region of the 
genome in a population are known as ROH islands [16]. 
It was reported that the analysis of ROH islands might 
reveal genomic regions under selection pressure, which 
in turn helps to identify candidate genes associated with 
traits of economic interest [17, 18]. Furthermore, sev-
eral studies have suggested the feasibility of performing 
association analyses using ROH to detect homozygous 
genomic regions associated with complex traits in live-
stock [19]. Sanglard et al. [20] identified several regions 
of ROH significantly associated with antibody response 
to porcine reproductive and respiratory syndrome virus 
vaccination in pigs. In cattle, substantial numbers of 
ROH regions are reported to be associated with milk 
yield [21, 22], fertility [23, 24], and production traits [25], 
suggesting a complementary role of ROH in elucidating 
the genetic mechanisms underlying economically impor-
tant traits.

Feed cost is the largest expense for mink production 
systems, and thereby, improving feed efficiency holds 
significant potential for increasing the profitability of 
mink farming through strategic breeding programs [26]. 
Several studies have reported moderate to high heritabil-
ity for growth [27, 28] and feed efficiency traits [26, 29, 
30] in American mink, which highlighted a substantial 
genetic basis and presented opportunities for improve-
ment by genetic and genomic breeding programs.

To the best of our knowledge, there is no study that 
examined homozygous segments in the American mink 
genome and their potential association with growth and 
feed efficiency traits. Therefore, the main objectives of 
this study were to (1) reveal the distribution and pattern 
of ROH within the genome of American mink; (2) iden-
tify highly frequent consensus ROH (ROH islands) and 
investigate the candidate genes within these regions; and 
(3) assess their associations with growth and feed effi-
ciency traits.

Materials and methods
Animals and traits
Mink were humanely euthanized using carbon monoxide 
sourced from a compressed gas cylinder, adhering to the 
protocols outlined in the Canada Mink Breeders Asso-
ciation’s Code of Practice for the Care and Handling of 
Farmed Mink (ISBN 978-1-988793-24-5) (https://www.
nfacc.ca/codes-of-practice/farmed-mink). The procedure 
involved maintaining a minimum of 4% carbon monoxide 
concentration within the chamber to ensure a swift and 
irreversible onset of unconsciousness, leading to a quick 
and relatively painless death for the mink. Confirmation 
of the mink’s death was conducted through a thorough 
check for the cessation of vital signs, which included no 
movement, the absence of heartbeat and respiration, 
pupils that were fixed and dilated, and a lack of reflexive 
responses.

A detailed description of the phenotypic data used in 
this study can be found in Davoudi et al. [26]. Briefly, a 
total of 2,288 American mink with growth and feed 
efficiency records were available. These traits were col-
lected according to Davoudi et al. [26]: final body weight 
(FBW), final body length (FBL), harvest weight (HW), 
harvest length (HL), daily feed intake (DFI), average daily 
gain (ADG), feed conversion ratio (FCR), Kleiber ratio 
(KR), residual feed intake (RFI), residual gain (RG), and 
residual intake and gain (RIG). Descriptive statistics for 
growth and feed efficiency in American mink are shown 
in Additional file 1: Table S1.

SNP genotyping and quality control
All mink were genotyped using the Affymetrix Mink 70K 
SNP array (Neogen, Lincoln, Nebraska, United States). 
Genotypes were pruned by PLINK 1.9 software based 
on the proportion of missing genotypes (> 0.95), indi-
vidual call rate (> 0.90), and Hardy-Weinberg equilibrium 
(P > 10e-6). In addition, SNPs located on sex chromo-
somes were removed, resulting in a final data set of 
49,268 SNPs for further analyses.

Assessment of runs of homozygosity
We used PLINK 1.9 software [31] to identify homozygous 
segments across autosomes of each individual’s genome. 
The ROH were discovered based on the sliding window 
approach with the following parameters: (1) sliding win-
dow of 50 SNPs across the genome; (2) a minimum ROH 
length of 1,000 kb; (3) the minimum SNP density was set 
to 50  kb/SNP; (4) maximum gap between consecutive 
homozygous SNPs was 1,000  kb; (5) only one heterozy-
gous and one missing genotype were allowed; and (6) a 
minimum of 57 consecutive SNPs were included in an 
ROH, which was determined according to the formula 
proposed by Lencz et al. [32], to control the false positive 
rate of the identified ROH:

https://www.nfacc.ca/codes-of-practice/farmed-mink
https://www.nfacc.ca/codes-of-practice/farmed-mink
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Theminimal number of SNPs in anROH =

loge
α

nans

loge(1− het)

,where α  is the percentage of false positive ROH (set to 
0.05), ns  is the number of genotyped SNPs per individ-
ual, na  is the number of individuals, and het  is the pro-
portion of heterozygosity across all SNPs.

Consensus regions and ROH islands
The ‘homozyg-group’ function of the PLINK 1.9 software 
[31] was applied to merge the individual ROH into dif-
ferent ROH groups in a pool containing the overlapping 
regions between all the individual ROH in the group i.e. 
the consensus homozygous region [25, 33]. We retained 
the consensus ROH with a minimum of five SNPs and a 
frequency of more than 5% for association analyses. In 
addition, to investigate the genomic regions with a high 
frequency of ROH in the population (ROH islands), a 
threshold of higher than 80% was defined for consensus 
ROH [34]. The overlapped genes within ROH islands 
were annotated from the American mink reference 
genome annotation file [1] through the ‘intersect’ func-
tion in Bedtools version 2.30.0 [35].

Association analyses between consensus ROH and 
phenotypes
According to the model described by Sanglard et al. [20], 
we evaluated the association between consensus ROH 
with growth and feed efficiency traits using the linear 
model as follows:

	 y = µ +Xb + Zu + e,

where y  is the vector of phenotypic observation, µ  is the 
grand mean, b  is the vector of fixed effects, X  and Z  
are the incidence matrices that relate the fixed and ran-
dom effects with the dependent variable, respectively; 
u  is the vector of random animal genetic effects and e 
is the vector of random residual effects. The random 
effects u  and e  were distributed as: u ∼ N(0,Gσ2

u) and 
e ∼ N(0, Iσ2

e) , where σ2
u  and σ2

e  are the additive genetic 
and residual variances, respectively, G is the genomic 

relationship matrix, which was constructed by ASRge-
nomics package [36] using the VanRaden Eq. [37], andI
is an identity matrix. The consensus ROH (n=196) were 
simultaneously fitted in the model as categorical fixed 
effects, coding as “yes” if the individual contained the 
ROH segment, or “no” otherwise. The other fixed effects, 
as described by [26], were farm (two farms), sex (male 
and female), color type (dark, demi, mahogany, pastel, 
and stardust), row-year (year: 2018 and 2019; row: 1, 
4, 5, 7, 8, and 11). We included color type in our analy-
ses because it significantly impacts growth parameters 
in American mink, likely due to the pleiotropic effects 
of genes controlling both feed efficiency and color type 
[26]. The age of animals (in days; with a minimum and 
maximum of 184 and 229, respectively) was included as 
a covariate in the model. The fixed effects and covariate 
were statistically tested (P < 0.01) using univariate mod-
els in ASReml 4.0 [38]. The associations between each 
consensus ROH and studied traits were tested through 
linear mixed model analysis in ASReml 4.0 [38] with a 
statistical significance level (P < 0.01).

Results
Assessment of runs of homozygosity
A total of 298,313 runs of homozygosity (ROH) were 
identified in the entire mink population studied. Detailed 
information on detected ROH in all individuals is pro-
vided in Additional file 1: Table S2. The results showed 
that the average number of ROH segments per individual 
was 99.90, spanning from 30 to 134, respectively, and the 
length of ROH segments ranged from 1.02 to 55.44 Mb, 
with an average of 4.16 Mb (Table 1). We classified ROH 
segments into five different length categories, includ-
ing 1–2  Mb, 2–4  Mb, 4–8  Mb, 8–16  Mb, and > 16  Mb 
(Fig. 1A). The majority of detected ROH were classified 
as 2–4 Mb, representing 46.99% of all ROH (n = 140,178), 
followed by the length of 4–8 Mb and 1–2 Mb with 26.3% 
(n = 78,451) and 17.42% (n = 51,967), respectively. The 
percentage of ROH segments higher than 16  Mb was 
only 1.08% of all detected ROH (n = 3,236). The distribu-
tion of ROH lengths across the genome is represented in 
Fig. 1B. The largest ROH was located on chromosome 1 
(55.44  Mb with 1563 SNPs), and the shortest ROH was 
identified on chromosome 3 (1.02  Mb with 79 SNPs). 
Further, the number of ROH segments varied across 
chromosomes, ranging from the lowest in chromosome 
9 (n = 5,728) to the highest in chromosome 1 (n = 52,311). 
As shown in Fig. 1C, the total length of the genome cov-
ered by ROH among individuals ranged from 84.78  Mb 
to 683.16 Mb, with an average of 414.81 Mb.

Consensus regions and ROH islands
To provide the shared homozygous regions for the asso-
ciation analyses, initially, 6,980 consensus groups were 

Table 1  Descriptive statistics of runs of homozygosity (ROH) 
number and length by ROH length class
Class Number Percentage 

(%)
Average 
size (Mb)

Stan-
dard De-
viation 
(Mb)

1–2 Mb 51,967 17.42 1.59 0.28
2-4 Mb 140,178 46.99 2.89 0.56
4–8 Mb 78,451 26.3 5.44 1.14
8–16 Mb 24,481 8.21 10.49 2.02
> 16 Mb 3,236 1.08 21.03 4.87
Total 298,313 100 4.16 3.12
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formed using ‘–homozyg-group’ function in PLINK 1.9 
software, of which a total of 196 consensus ROH fulfilled 
the criteria of presenting in more than 5% of individu-
als with a minimum of five SNPs (Additional file 1: Table 
S3). The chromosomal distribution map of identified 
ROH across mink autosomes and consensus ROH shared 
among individuals is shown in Fig. 2.

The ROH islands were determined as regions where 
the consensus ROH was presented in more than 80% 
of animals, with the aim of pinpointing the genes they 
encompass. The implementation of this approach 
resulted in the detection of ten ROH islands spanning 
14 autosomes, most of which were located on chromo-
some six with seven ROH islands. These specific regions 
harbored 12 annotated genes, some with known effects 
on immune systems processes such as DTX3L, PARP9, 
PARP14, CD86, and HCLS1 (Table 2). Notably, the three 
ROH islands on other chromosomes did not contain any 
known annotated genes.

Association analyses between consensus ROH and 
phenotypes
The association analysis revealed 13 consensus regions 
that were significantly (P < 0.01) associated with growth 
and feed efficiency traits, of which four ROH affected 
more than one trait. The physical position of significant 
consensus ROH across the mink autosomes is shown in 
Fig. 3. The frequency of the associated consensus regions 
ranged from 6.6 to 81.9% across all individuals. The aver-
age length of significant consensus ROH was 147.46 kb, 
ranging from 8.62 to 327.85 kb. Chromosome one exhib-
ited the highest number of significant regions (n = 5), fol-
lowed by two significant regions on chromosome 13, and 
one significant region on chromosomes 2, 4, 5, 8, and 9. 
Detailed information regarding the consensus ROH sig-
nificantly associated (P < 0.01) with the studied traits, 
along with their annotated candidate genes can be found 
in Table 3.

Fig. 1  Characteristics of runs of homozygosity in American mink: (A) Frequency distribution of the average number of ROH in different length classes 
(Mb) in each chromosome; (B) Length distribution of ROH; (C) Relationship between ROH number per animal and total length of the genome covered 
by them. Each point represents one individual
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Discussion
In this study, the mean number of ROH per individual 
was 99.9, which was in agreement with Karimi et al. [1] 
who reported an average of 102 per animal using whole-
genome sequencing data of 100 American mink. Yet, 
both studies reported higher numbers of ROH counts 
compared to the study of Karimi et al. [39], which iden-
tified 82 ROH segments per individual solely based on 
scaffolds. This discrepancy indicates that the recent chro-
mosome-based reference genome in American mink has 
facilitated our capacity to detect homozygous segments. 
The distribution of detected ROH revealed that approxi-
mately more than 90% of ROH were shorter than 8 Mb, 

which was consistent with the results reported in other 
species, such as cattle [17, 40], pigs [7, 41], chicken [42, 
43], sheep [44, 45], and buffalo [14, 46]. It is well-estab-
lished that the large ROH (~ 10  Mb) represents recent 
inbreeding (up to five generations ago), whereas short 
ROH (~ 1  Mb) indicates more distant ancestral effects 
(up to 50 generations ago) [47, 48]. Considering the pre-
dominant of ROH with a length of 1 to 8 Mb, it is rea-
sonable to hypothesize that the inbreeding events in 
American mink occurred approximately 5 to 50 genera-
tions ago. This timeline corresponds with the findings of 
Hu et al. (2023), who reported the rapid decline in the 

Fig. 2  Chromosome ideograms showing the position of identified ROH and consensus ROH shared between individuals. The color scale within each 
chromosome represents the number of identified ROH, changing the gradient with more ROH detected in an area. The position of consensus ROH is 
marked with the green triangle next to the chromosome
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effective population size in American mink from 5 to 50 
generations ago.

In recent years, the identification of ROH islands across 
the genome has gained popularity due to their capac-
ity to reveal selection footprint in livestock species [49]. 
The Aleutian disease, the most significant health concern 
for global mink farming, is an immune complex disease 
that causes autoimmune disorders in mink [50]. Despite 
efforts to detect and eliminate infected animals using 
various immunological tests, these strategies have largely 
failed due to the high persistence nature of Aleutian dis-
ease in the breeding environment [51, 52]. Intriguingly, 
our study uncovered several genes within ROH islands 
known to affect immune system processes, including 
DTX3L, PARP9, PARP14, CD86, and HCLS1. This implies 
that natural selection plausibly acts on immune-related 
genes in American mink.

The DTX3L gene, also known as BBAP (B-lymphoma 
and BAL-associated protein), plays regulatory func-
tions on DNA damage signaling, tumor cell growth, 
and IFN signaling and antiviral response [53–55]. Inter-
estingly, Hong et al. [56] reported that inhibiting the 
DTX3L gene restrained the cell invasion and secretion 
of inflammatory factors, suggesting its potential as a 
therapeutic target for rheumatoid arthritis, a complex 
autoimmune disease characterized by chronic syno-
vitis of the joints in humans. The PARP9 and PARP14 
genes, located within the ROH island on chromosome 6 
(121,883,426:122,139,161 bp), belong to the PARP super-
family that regulate diverse biological processes such as 
DNA damage repair, cellular stress response, and anti-
viral innate immunity [57]. Research has demonstrated 
that PARP9 gene, highly expressed in glioma, is cor-
related with checkpoint molecules involved in inflam-
matory and immune responses [58]. Moreover, study 
has shown that knockdown of PARP9 gene in human or 
mouse dendritic cells and macrophages resulted in sub-
stantial reduction of type I IFN production (IFN-α and 
IFN-β), highlighting its critical role in the antiviral immu-
nity system [59]. Similarly, PARP14 knockout has shown 
therapeutic effects on tumors and allergic inflammation 
through mediating T-cell differentiation and action of 
cytokines [60, 61]. Other genes of interest were CD86 
and HCLS1 located within two different ROH islands 
on chromosome six (122,500,609:122,510,002  bp and 
122,908,246:122,958,392  bp, respectively). Several lines 
of evidence indicated that CD86, which is one of the 
essential co-stimulatory molecules expressed on antigen 
presenting cells, plays a regulatory role in the immune 
response by mediating the activation of T-cells, B-lym-
phocytes, and macrophages [62, 63]. It was indicated that 
the HCLS1 gene, which is expressed only in cells with 
lymphohematopoietic origin, plays a functional role in 
the regulation of T-cell immune synapses [64].Ta
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It is well-documented that American mink is one of 
the most highly susceptible non-human species to severe 
acute respiratory syndrome coronavirus-2 (SARS-CoV-2) 
infection, leading to massive culls of many millions of 
mink across the world [65–67]. Intriguingly, most of the 
aforementioned genes, one way or another, have been 
reported to be associated with SARS-CoV-2, the virus 
that causes coronavirus disease-2019 (COVID-19). It 
was indicated that in SARS-CoV-2 infection, the activa-
tion of macrodomain-sensitive ADP-ribosylation sig-
nal is mediated by PARP9/DTX3L complex, suggesting 
their critical role in interferon-mediated antiviral defence 

[68]. Similarly, it was reported that the PARP14 gene is 
essential for the optimal IFN expression, supporting the 
suggestion that PARP14 is involved in antiviral immune 
response in CoV-infected cells [69]. Several studies have 
shown that the expression of CD86 on monocytes and 
dendritic cells was substantially decreased in patients 
with severe COVID-19 [70–73]. These findings merit 
further exploration of the functional role of the ROH 
islands-harbored genes revealed in the current study on 
the Aleutian mink disease virus and COVID-19 infection 
in American mink.

Fig. 3  Physical position of significant consensus ROH across the mink autosomes. FBL: Final body length, ADG: Average daily gain, RG: Residual gain, HW: 
Harvest weight, KR: Kleiber ratio, FBW: Final body weight, RIG: Residual intake and gain, RFI: Residual feed intake, DFI: Daily feed intake
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In the present study, gene discovery performed 
on the 13 consensus regions that were significantly 
(P < 0.01) associated with growth and feed efficiency 
traits, highlighted several candidate genes (i.e. MEF2A, 
ADAMTS17, POU3F2, and TYRO3) with potential 
impacts on growth rate and feed efficiency as reported 
in previous studies. The MEF2A and ADAMTS17 were 
located within the consensus ROH on chromosome 13 
(134,704,541:135,003,083  bp), which was significantly 
(P < 0.01) associated with RFI. The MEF2A gene, which 
plays an important role in vertebrate skeletal muscle 
development and differentiation by activation of numer-
ous muscle-specific and growth factor-induced genes 
[74], is known to be the candidate gene for muscle devel-
opment and body growth in livestock species [75–77]. 
Remarkably, research conducted by Foroutan et al. [78] 
revealed that MEF2A showed higher expression levels 
across all tested tissues (liver, muscle, and testis) in the 
offspring of low-RFI Angus bulls, as opposed to their 
high-RFI counterparts. The ADAMTS17 gene, which is 
a member of ADAMTS proteins with numerous biologi-
cal functions [79], has been previously reported as one of 
the height-associated variants in several species, such as 
horse [80], cattle [81], dog [82, 83], and human [84–86]. 
Interestingly, the ADAMTS17 gene was reported as a 
selective signal associated with animal height in the Shet-
land pony [87], and Brazilian locally adapted taurine cat-
tle [88], highlighting the potential impacts of ADAMTS17 
gene on body size.

The POU3F2 gene located within a ROH on chro-
mosome 11 (32,128,510: 32,316,405  bp), is associated 
with HW and FBW traits. The POU3F2 gene, which 
is widely expressed in the central nervous system, has 

been well-described to play a key role in diverse neuro-
nal functions and hormonal regulation [89, 90]. Nota-
bly, Schönauer et al. [91] reported a negative correlation 
of POU3F2 gene expression with body mass index in 
humans, suggesting the critical role of POU3F2 in 
hyperphagic obesity in humans. The TYRO3 gene was 
found within the consensus ROH on chromosome 13 
(85,787,981: 86,060,018 bp), significantly associated with 
the KR trait. The TYRO3 gene, which is expressed in neu-
rons of the central nervous system, plays regulatory roles 
in cell proliferation and differentiation, associating with 
adipocyte size in moderately obese individuals [92]. A 
GWAS analysis by Sun et al. [93] reported that TYRO3 
gene was associated with intramuscular fat content in the 
breast muscle of chicken. Interestingly, it was revealed 
that TYRO3 was significantly differentially expressed 
in muscle between low and high RFI pigs, indicating 
that TYRO3 might affect the body fat, and consequently 
increase feed efficiency in pigs [94].

Conclusion
We characterized the distribution of ROH and ROH 
islands, and the association between the consensus 
ROH with growth and feed efficiency traits in Ameri-
can mink. In total, we identified 13 consensus regions 
significantly associated with the studied traits, harbor-
ing several candidate genes that are known to be asso-
ciated with growth and body size development, such as 
MEF2A, ADAMTS17, POU3F2, and TYRO3. In addition, 
ten ROH islands were identified across the genome, har-
boring genes related to immune systems processes such 
as DTX3L, PARP9, PARP14, CD86, and HCLS1. Over-
all, the results revealed the impact of homozygosity in 

Table 3  Regions of runs of homozygosity (ROH) significantly associated with growth and feed efficiency traits in American mink
Chr Start End Length 

(bp)
Associated 
traits

P-valuea Frequency 
(%)b

No. 
SNPs

Candidate genes

1 233,051,034 233,378,886 327,853 RFI 0.0038 47.9 20 PPP2R2B
1 84,492,422 84,643,650 151,229 RG; RIG 0.0094; 0.0084 69.6 5 MDGA1
1 268,594,555 268,631,729 37,175 HW 0.0064 39.3 7 THG1L
4 20,9695,778 209,720,164 24,387 FBL 0.00027 66.6 5 COPG2
2 45,138,611 45,265,052 126,442 FBL; FBW; RFI 0.0014; 0.0016; 

0.0065
81.9 19 -

5 42,989,622 43,198,887 209,266 FBL 0.0063 20.8 5 -
1 32,128,510 32,316,405 187,896 FBW; HW 0.0034; 0.0051 16.1 11 POU3F2; FBXL4; LOC122913962
5 130,209,831 130,237,085 27,255 DFI 0.0069 15.1 5 KLHL1
13 85,787,981 86,060,018 272,038 KR 0.0066 10.9 5 MGA; OIP5; NUSAP1; RTF1; LTK; 

RPAP1; NDUFAF1; ITPKA; TYRO3; 
LOC122894302; LOC122894795; 
LOC122894805; LOC122894585

9 10,609,898 10,786,369 176,472 RG 0.0023 10.9 6 LHX2
13 134,704,541 13,500,3083 298,543 RFI 0.0034 9.9 6 LYSMD4; ADAMTS17; MEF2A
8 134,262,073 134,331,827 69,755 HW 0.0062 6.6 5 -
1 69,893,506 69,902,125 8,620 HW; ADG 0.0047; 0.0065 55.1 7 AKAP7
aP-value < 0.01. b Percentage of the population presented this ROH.
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the mink genome on growth and efficiency traits. These 
findings have important implications for the evaluation 
and selection of American mink in genetic improvement 
programs, offering valuable insights for enhancing the 
breeding and sustainability of this species.
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