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Abstract

Background: There is an urgent need to understand the key events driving pathogenesis of severe COVID-19
disease, so that precise treatment can be instituted. In this respect NETosis is gaining increased attention in the
scientific community, as an important pathological process contributing to mortality. We sought to test if indeed
there exists robust evidence of NETosis in multiple transcriptomic data sets from human subjects with severe
COVID-19 disease. Gene set enrichment analysis was performed to test for up-regulation of gene set functional in
NETosis in the blood of patients with COVID-19 illness.

Results: Blood gene expression functional in NETosis increased with severity of iliness, showed negative correlation
with blood oxygen saturation, and was validated in the lung of COVID-19 non-survivors. Temporal expression of /L-6
was compared between severe and moderate illness with COVID-19. Unsupervised clustering was performed to reveal
co-expression of /-6 with complement genes. In severe COVID-19 illness, there is transcriptional evidence of activation
of NETosis, complement and coagulation cascade, and negative correlation between NETosis and respiratory function
(oxygen saturation). An early spike in /L-6 is observed in severe COVID-19 illness that is correlated with complement
activation.

Conclusions: Based on the transcriptional dynamics of /-6 expression and its downstream effect on complement
activation, we constructed a model that links early spike in IL-6 level with persistent and self-perpetuating complement
activation, NETosis, immunothrombosis and respiratory dysfunction. Our model supports the early initiation of anti-IL6
therapy in severe COVID-19 disease before the life-threatening complications of the disease can perpetuate themselves
autonomously.
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Background

COVID-19 disease caused by SARS-CoV-2 has rapidly
become a center of intense scientific investigation, with
emphasis on unravelling the biology for actionable
knowledge. While the majority of the infected subjects
are asymptomatic or mildly ill, a small percentage are se-
verely ill with respiratory distress [1]. However, at
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present, it is difficult to predict with certainty the pa-
tients at high-risk for clinical severity and poor outcome,
although multiple pathophysiological processes have
been proposed, such as, cytokine storm [2, 3], coagula-
tion and complement activation [4], neutrophil extracel-
lular trap - NETosis [5]. These studies have also led to
predictive biomarkers, such as, neutrophil to lymphocyte
ratio [6, 7] and interleukin 6 (IL-6) expression [2, 4].
Insight into cytokine dysregulation has driven thera-
peutic advances, such as, anti-cytokine tocilizumab (/L-6
receptor antagonist) for severely ill patients of COVID-
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19 [8, 9]. Such treatment is premised on the induction
of intra-pulmonary inflammation by SARS-Cov-2 infec-
tion that ultimately leads to severe local vascular dys-
function including micro-thrombosis, haemorrhage and
pulmonary intravascular coagulopathy [10]. It has been
suggested to start tocilizumab early, in order to avoid
mechanical ventilation [11], although the best timing for
the treatment is still being investigated [12]. Therefore,
it is important to understand the temporal and/or causal
relationship of the cytokine up-regulation with coagu-
lopathy and respiratory dysfunction.

The prothrombotic state (contributing to pulmonary
dysfunction in COVID-19) is explained in terms of Neu-
trophil extracellular traps (NETs) that originate from
decondensed chromatin of neutrophils that can trigger
immunothrombosis. Critically ill patients of COVID-19
show significantly higher plasma levels of MPO-DNA
complex, a marker of NETosis. Factors triggering NET's
were significantly increased in COVID-19 and pulmon-
ary autopsies confirmed NET-containing microthrombi
with neutrophil-platelet infiltration. The authors con-
cluded that NETs triggering immunothrombosis may
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partly explain the prothrombotic clinical presentations
in COVID-19 [5].

In view of the pivotal role of cytokines (especially /L-6)
and NETosis in biology of COVID-19 host response, we
performed a deep and focussed investigation into IL-6,
NETosis, complement and coagulation in published data
from multiple patients of COVID-19 with varying illness
severity. The primary goal was to dissect the transcrip-
tomic dynamics of the functional modules and examine
if there is a therapeutic window for drugs targeting spe-
cific pathophysiological mechanisms, such as IL-6 block-
ade or inhibition of NETosis.

Results

Human transcriptomic data were extracted from pub-
lished data sets of patients of COVID-19 from different
tissues: whole blood (longitudinal sampling) [13], periph-
eral blood mononuclear cells (PBMC) [14], and lung tis-
sue [15]. Whole blood was especially selected because it
includes neutrophils that are directly responsible for for-
mation of NETs.
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Fig. 1 Up-regulation of genes functional in NETosis in the blood of patients with COVID-19. (A) For the gene set functional in NETosis, pathway
score (red vertical line) was calculated by weighted averaging of t-statistic between control group (10 healthy subjects, single time point) and
COVID-19 group (3 cases, multiple time-points). The histogram (gray bars) represents the null distribution of the pathway score calculated for
each of the 10,000 iterations of permuting the sample labels. The position of the red vertical line (observed pathway score) with respect to the
histogram (null distribution) suggests that the pathway is significantly up-regulated in the blood of COVID-19 patients. As shown, there is
significant (p = 0.04) up-regulation of the gene set functional in NETosis. (B) Calculation of the pathway score and the null-distribution of the
cytokine gene set has been performed as mentioned for NETosis. As shown, there is no (p = 1) up-regulation of cytokine gene set in COVID-19.
(C) For validation of NETosis, gene expression data of healthy control (n=6) and COVID-19 (n =7) were extracted from an independent cohort
[14]. Box plot shows up-regulation of NETosis genes in COVID-19 cases compared to the control group. Gene expression data were extracted
from the data set E-MTAB-8871 [13] for panels A and B; and from the data set GSE150728 [14] for panel C
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Up-regulation of NETosis in COVID-19

Targeted analysis was performed to study the extent
of differential expression of two gene sets in whole
blood: cytokine genes and genes functional in NETo-
sis. Gene set functional in NETosis was significantly
up-regulated in whole blood of patients of COVID-19
[13]. Gene set enrichment analysis (permutation test-
ing) revealed that the genes functional in NETosis
were strongly up-regulated in the blood of COVID-19
patients compared to healthy subjects (Fig. 1A). On
the other hand, there was no evidence of broad up-
regulation of cytokine gene set in the blood of the
patients (Fig. 1B). Up-regulation of genes functional
in NETosis was validated in an independent data set
of COVID-19 (Fig. 1C).
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Association of NETosis up-regulation with disease severity
As the heat map (Fig. 2A) shows the magnitude of
up-regulation is greater in the severe COVID-19 ill-
ness (Case 1) compared to cases with moderate ill-
ness (Cases 2 and 3). In general, more genes
functional in NETosis are up-regulated (red cells) in
severe illness compared to moderate illness. The
genes shown in Fig. 2A are shown in the bar graphs
in Fig. 2B. Average level of expression of each gene
across all time points was compared between moder-
ate illness (pink bar) and severe illness (orange bar).
For each of these genes, level of expression is higher
(and for many of these genes, the difference is statis-
tically significant) in severe illness compared to
moderate illness (Fig. 2B).
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Fig. 2 Expression of genes functional in NETosis increases in blood with COVID-19 disease severity. Gene expression data [13] were collected from healthy
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control subjects (n=10), and COVID-19 patients sampled at multiple time points: moderate illness (2 patients, 13 samples), severe illness (1 patient, 9 samples).
(A) Column sidebar on the top marks healthy control as green, moderate illness as cyan, and severe illness as red. Each row represents a gene participating in
NETosis. The colour of the cell represents the level of expression, low as blue and high as red. Magnitude of up-regulation of NETosis genes is greater in the
case with severe COVID-19 illness (as shown by the greater number of red cells for case 1 — severe illness). (B) Each bar represents the mean log-expression of a
gene across all-time samples from either moderate or severe illness. Error bar represents standard deviation of gene expression levels across all samples in that
group of illness severity. For most of the genes there is a higher level of gene expression in severe illness compared to moderate illness. Significance of up-
regulation in severe illness was assessed by t-test and is indicated with an asterisk over the bars (** p < 001; ** p < 0.001). (C) For each of the days 6, 7, 8 and 9
(post-onset), box plot shows higher level of gene expression functional in NETosis in a patient with severe COVID-19 illness compared to a patient with
moderate COVID-19 illness
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Further, level of gene expression was compared between
severe and moderate illness for fixed time points (days
post-onset of illness). For each of the four time points
(Day 6, 7, 8 and 9 post-onset, where such paired data were
available), box plot was drawn to show up-regulation of
NETosis in severe illness compared to moderate illness
(Fig. 2C). There is an upward trend in gene expression
from moderate illness to severe illness at each day post-
onset, suggesting sustained up-regulation of genes func-
tional in NETosis in severe illness.

Up-regulation of genes functional in NETosis in lung of
COVID-19 patients

NETosis up-regulation was observed in lung tissue from
deceased COVID-19 patients. Genes functional in NETo-
sis are up-regulated in the lungs of COVID-19 patients
compared to healthy control (Fig. 3). These genes include
cathepsin G, CEA cell adhesion molecule 8, complement
C3b/C4b receptor 1, integrin subunit alpha, C-C motif
chemokine ligand 5.

Up-regulation of NETosis is associated with higher
neutrophil to lymphocyte ratio (NLR)

NETosis up-regulation was associated with increased
NLR in the blood. As shown in Fig. 4A, there is up-
regulation of genes functional in NETosis at a level
higher in the severe case (red) compared to the moder-
ate cases (blue). Additionally, NLR is higher in the blood
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of severe case compared to moderate cases. With time,
both NLR and NETosis gene expression return to base-
line in the severe case (red boxes and red bars respect-
ively for case 1 in Fig. 4A and B). NLR is positively
correlated with gene expression functional in NETosis.

Negative association between NETosis and respiratory
function

In the severely ill patient of COVID-19, line plots were
drawn to show the reciprocal relationship of gene expres-
sion with oxygen saturation (%). As shown in Fig. 5, there
is up-regulation of genes (functional in NETosis) at the
time of low oxygen saturation and down-regulation other-
wise. This is also proven by negative correlation coefficient
for the genes (CR1: -0.52, CCL5: -0.37, ITGAM: - 0.61).

Up-regulation of complement pathway

Genes belonging to the complement pathway were ex-
tracted and subjected to gene set enrichment analysis
(permutation testing). As shown in Fig. 6, there is sig-
nificant up-regulation of the genes functional in the
complement pathway. Additionally, multiple genes func-
tional in the coagulation cascade are also observed to be
up-regulated (Fig. 7).

IL-6 segregates with complements
We performed an unsupervised clustering of four cyto-
kines (IL-6, IL-8, TNFw, IL1B) with genes functional in
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Fig. 3 Expression of genes functional in NETosis increases in lung with COVID-19 disease severity. Each bar represents the average log-gene
expression in the lung of COVID-19 non-survivors (COVID-19 Lung; n = 2) and post-mortem lung tissue of uninfected individuals (Healthy Lung;
n=2) [15]. Error bar represents standard deviation of log-gene expression. Significance of up-regulation in severe illness was assessed by t-test
and is indicated with an asterisk over the bars (* p < 0.1; ** p < 0.01). The genes functional in NETosis are up-regulated in the lungs of the patients
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expression and NLR in the patients of COVID-19 (correlation coefficient = 0.8)
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Fig. 4 Expression of genes functional in NETosis is positively correlated with Neutrophil to Lymphocyte ratio in COVID-19. Gene expression data were extracted
from [13]. (A) Each box represents a single sample (color-coded red for the patient with severe illness and blue for the patients with moderate illness). Dotted
line represents baseline expression (average gene expression in healthy subjects). The samples from the severe case, especially the early time points, have
higher expression (up-regulation) of NETosis genes compared to the cases with moderate illness. With passing days from the onset of COVID-19, gene
expression tends to return to baseline. (B) Each bar represents neutrophil to lymphocyte ratio (NLR) in peripheral blood in that sample. NLR is increased at the
early time points in severe illness. With passing days from the onset of COVID-19, NLR is reduced. Generally, there is agreement in the trend of NETosis gene

NETosis (including complement genes). Gene expression
data (log-scale) of all-time samples from the three patients
of COVID-19 were used. Hierarchical clustering revealed
segregation of IL-6 with complement factors C3, C5 and
CFB (Fig. 8). The other 3 cytokines were assigned to a sep-
arate clade. Since the data are captured from peripheral
blood of the patients during the time-course of illness, this
result suggests a possible role of /L-6 in the gene expres-
sion dynamics of complement genes.

Changing expression level of IL-6

Box plot of longitudinal /L-6 profiling in three groups of
subjects (healthy control, moderate illness, severe illness)
revealed that the magnitude of up-regulation is greatest
early in the disease process (Fig. 9). With increasing days
post-onset, the level of expression in the severe illness
approaches that in the moderate illness (Fig. 9). The re-
duction in IL-6 expression coincides with an increase in

the expression of genes functional in NETosis, such as
CTSG and CEACAMS (Fig. 10).

Reduction in the level of DNASE1 expression

In view of the role of DNASEI in clearance of NETs, we
explored the level of its expression in the patients of
COVID-19 with varying illness severity. As shown in
Fig. 11, there is significant down-regulation of DNASEI
in the COVID-19 patients, with greater down-regulation
in the COVID-19 patients with ARDS.

A model connecting the rise in IL-6 level with NETosis
leading to immunothrombosis and ARDS

Considering the robust up-regulation of NETosis, com-
plement pathways and transient early rise of IL-6 in se-
vere cases of COVID-19, a model is proposed. IL-6 is a
likely trigger for complement up-regulation and NET osis
that leads to coagulation, platelet activation and positive
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Fig. 5 Gene expression functional in NETosis is negatively correlated with oxygen saturation in severe COVID-19 illness. Temporal line plots of
selected NETosis genes in the severe patient (Case 1) over days of illness. Each plot corresponds to one gene, with the red line representing
oxygen saturation (%), and the blue line representing level of gene expression. Pearson correlation coefficient (r) is negative between oxygen
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feedback on neutrophil activation. The model is based
on the temporal dynamics of IL-6 and co-expression
with complement genes C3 and C5, activation of neutro-
phil, formation of neutrophil extracellular trap, activa-
tion of platelets, coagulation, and positive feedback from
platelet to neutrophil. Post-IL-6 spike, a vicious cycle of
NETosis and thrombosis ensues and sustains illness se-
verity and ARDS.

Discussion
Unbiased analysis of transcriptome data reveals that
gene set functional in NETosis is strongly up-

regulated in the blood of COVID-19 patients. The
up-regulation is statistically significant and is higher
in magnitude in severe illness than in moderate ill-
ness. Paired testing reveals that from day 6 until day
9, there is significant and sustained elevation of gene
expression functional in NETosis in severe illness
compared to moderate illness. Of note, death of the
patients of COVID-19 occurs primarily due to the
complications arising from SARS-CoV-2-associated
acute respiratory distress syndrome. NETosis is
known to cause immunothrombosis and respiratory
dysfunction in COVID-19 [5]. We present
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transcriptional evidence of increased NETosis in both
peripheral blood and lung tissue of COVID-19 pa-
tients. Additionally, time-course expression data from
a case of severe COVID-19 reveal negative association
of NETosis with respiratory function (oxygen satur-
ation). Together, these findings are consistent with
NETosis as an underlying mechanism for a prothrom-
botic state in blood leading to respiratory dysfunction.

Transcriptional profiling of nasopharyngeal swabs
from COVID-19 patients have demonstrated upregu-
lation of complement and coagulation pathway asso-
ciated with mortality and morbidity [4]. Our analysis
(of data from [13]) also revealed significant up-
regulation of the complement pathway genes in se-
vere COVID-19 illness. NETs act as scaffolds for
both coagulation and complement activation, and the
three  pathways (NETosis, complement and

coagulation) are considered a single coordinated bio-
logical process [18]. NETosing neutrophils have been
shown to activate complement via alternative and
non-alternative pathways [19]. Also, activated macro-
phages are known to cause induction of complement
factors. The supernatant of macrophage that causes
overexpression of the complement factors C3 and
CFB are enriched in IL-6 [20], which is consistent
with our observation of segregation of complement
factors C3 and CFB with IL-6 but not with the other
pro-inflammatory cytokines (/L-8, IL-1f3 and TNFu)
in COVID-19 illness. While cooperation among dif-
ferent  components of  NETosis-complement-
coagulation consortium protects the host against
both haemorrhage and infection [18], unchecked
NETosis causes immunothrombosis and leads to
acute respiratory distress in COVID-19 illness [5].
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Plasma from both COVID-19 patients [5] and pa-
tients of sickle cell disease (SCD) with vaso-occlusive
crisis (but not from steady state plasma of SCD)
cause significant increase in NETosis [21]. The level
of IL-6 is observed to be high in the plasma from
these patients. Up-regulation of [L-6 signaling has
been observed in nasopharyngeal swab [4], lung [15]
and has been associated with poor outcome of
COVID-19 [2, 4, 15]. Interestingly, Mann and col-
leagues [7] observed an early rise of IL-6 level in crit-
ically ill patients of COVID-19, which progressively
decreased over time even if the patient did not sur-
vive. In data from a different cohort [17], we also ob-
served an early spike of blood expression of IL-6 in
severe COVID-19 illness, which returns, over time, to
levels comparable with moderate illness. Together
these findings support a dynamic shift in IL-6 level in
severe illness — with potential mechanistic and thera-
peutic significance of IL-6 in the early time window.

It seems likely that the spike in IL-6, secreted by the
macrophages responding to the viral entry, triggers NETo-
sis in the patients with severe COVID-19, leading to a
complex interaction among NETosis, complement and
coagulation pathways [18], pulmonary immune throm-
bosis and acute respiratory distress. IL-6 is known to
stimulate thrombosis in platelet-dependent and platelet-

independent manner [5, 22]. With time, while IL-6 levels
in patients with severe illness approach that of patients
with moderate illness (Fig. 9), NETosis and complement
activation are sustained. Therefore, inhibition of IL-6 sig-
naling is most beneficial before sustained up-regulation of
NETosis by a positive feedback loop (Fig. 12). In the later
phase, IL-6 levels are similar in severe and moderate ill-
ness, but NETosis-complement-coagulation leads to
immunothrombosis, compounded by reduced clearance of
the NET's (due to decreased levels of DNASEL), ultimately
leading to acute respiratory distress in the severe cases. In
this phase, a different strategy is called for, such as, inhib-
ition of complement and NETosis. Level of IL-6 upon ad-
mission can be used as a prognostic marker of outcome
[2] and for prioritization of anti-/L-6 therapy.

Neutrophil to lymphocyte ratio (NLR) is proposed as a
prognostic biomarker of disease severity and organ fail-
ure in COVID-19 [6]. In general, there is an increased
number of neutrophils in blood, which, along with lym-
phopenia, contribute to high NLR. There is also in-
creased neutrophil activation of genes functional in
formation of NET. The host gene expression in COVID-
19 disease is consistent with neutrophilia commonly ob-
served in severe COVID-19 illness resulting in increased
formation of Neutrophil Extracellular Traps (NETs).
Therefore, NETosis adequately explains the prognostic
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Fig. 8 (A) Unsupervised clustering reveals segregation of IL-6 with complement genes. The heat map was generated from all-time samples of the
3 cases of COVID-19 (Case 1 - severe illness, Cases 2, 3 - moderate illness) and log (gene expression) of four cytokine genes (IL-6, IL-8, TNFa, IL13)
and genes functional in NETosis (including complement factors) [13]. Unsupervised hierarchical clustering reveals segregation of IL-6 with the
complement factors C3, C5 and CFB while the other 3 cytokines (IL-8, TNFaq, IL1{3) were assigned to a separate clade. The samples are arranged
according to the case IDs (from left to right: Case 1, Case 2, Case 3), with increasing days post-onset of illness from left to right. Gene expression
data were extracted from [13]. (B) Temporal Line plot IL6 vs NETosis genes in severe COVID-19. These line plots show the temporal relation of

power of NLR, and extends itself as a fundamental dys-
regulation underlying COVID-19 disease severity, re-
spiratory distress and mortality.

While there is an increased number of neutrophils in
the patients of COVID-19, it is not clear if these are the
usual neutrophils of healthy blood. Wilk and colleagues
[14] observed a novel kind of “developing neutrophil” in
the blood of COVID-19 patients. These neutrophils ex-
press high levels of CEACAMS, a marker of immature
neutrophils that are higher in men and pregnant women
compared to non-pregnant women [23]. Notably, mor-
tality and morbidity in COVID-19 has been consistently
associated with gender of the patients, with male pa-
tients at a higher risk of poor outcome [3, 24]. The role
of any hormonal influence on neutrophil type and acti-
vation (and NETosis) in COVID-19 outcome remains to
be elucidated.

Sepsis appears as the single most frequent factor asso-
ciated with mortality in COVID-19 [25]. Similar to
COVID-19, sepsis is also associated with coagulopathy
[26, 27]. It is likely that the dynamic cytokine (IL-6) dys-
regulation induces NETosis and coagulation in other
non-COVID causes of sepsis. Thus, temporal and

precise mechanistic therapy targeting IL-6 and NETosis
shall potentially benefit critically ill patients of both
COVID-19 and sepsis.

Level of IL-6 gene expression is known to be asso-
ciated with the —174 G/C polymorphism (rs1800795)
[28], and we considered the possibility that this vari-
ant is associated with severe COVID-19 and poor
outcome. A search on the PubMed with the query
string “rs1800795 and COVID-19” returned only two
articles that tested for association between this poly-
morphism and IL-6 level, severity, and outcome in
COVID-19 patients [29, 30]. In one study (n=70)
[29], with patients belonging to two groups, severe
(high IL-6 and macrophage activation syndrome -
MAS), and non-severe (no-MAS, low IL-6), G allele is
significantly associated with MAS. In the other study
(n=71) [30], C allele is associated with higher mortal-
ity and IL-6 levels. These two studies show contra-
dictory results: G allele appears to be the risk in one
study but protective in the other. Therefore, it is diffi-
cult to come to any conclusion regarding the associ-
ation of this polymorphism with COVID-19 outcome.
On the other hand, an IL-6 spike can be caused by
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Fig. 9 Temporal change in IL-6 expression differs between severe and moderate COVID-19 disease. Box plot shows temporal change in plasma
IL-6 level in control and patients with (moderate and severe) COVID-19 illness. At the early time points, IL-6 level is higher in the cases with
severe illness compared to the cases with moderate illness. At the later time points, the level of IL-6 approaches that in the cases with moderate

events such as viral load which can over-ride the ef-
fect (if any) of the host genetic variants. We have ob-
served that the increased level of IL-6 in severe
illness (compared to moderate illness) is most accen-
tuated in the early stage of illness (Fig. 9). This can
be explained by decreased viremia that no longer
stimulate IL-6 release but cannot undo the (proposed)
cascading effects on complements, NETosis and ul-
timately thrombosis.

Conclusions

In conclusion, we present evidence from the analysis
of several transcriptomic data sets of NETosis and
complement activation in COVID-19, especially in se-
vere disease. There is an early spike in /L6 transcrip-
tion in early infection, which is not so apparent in
later stages. The early spike could trigger NETosis in
severe cases. Over time, however, the level of IL-6 ex-
pression fluctuates, while the patterns suggestive of
NETosis and complement activation persist. This
could indicate, as suggested by our model, that after

initiation by /L6, NETosis and complement activation
can continue autonomous to the initiating signal. This
is a possible explanation to the variable results of
anti-/L6 therapy in severe COVID-19 disease. This
also supports the early initiation of anti-IL6 therapy
before the life-threatening complications of the dis-
ease can perpetuate themselves autonomously.

Methods

This study follows retrospective, case-control study de-
sign in order to prove that NETosis exists in COVID-19
cases. After this the study focuses on association of
NETosis with disease severity. Then it associates the role
of probable factors along with NETosis playing a role in
disease severity.

Selection and preprocessing of the data

Gene expression data of different covid-19 studies
were downloaded from NCBI GEO [31], ArrayExpress
[32] and other data repository portals (Table 1). The
raw count matrix data were quantile normalised and
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Fig. 10 CEACAMS gene expression increases with COVID-19 disease severity. CEACAM8 gene expression in PBMC of healthy control (n=6) and
COVID-19 (n=7) were extracted from published data set [14]. Group-level expression (aggregate log counts) data are shown in the box plot, with
monotonic up-regulation of CEACAM8 genes from the control group, to COVID-19 cases without ARDS (NonVent) and with ARDS. CEACAMS8 up-
regulation is a signature of immature or developing neutrophil, a neutrophil subtype associated with COVID-19. Statistical significance of the
difference in DNASE1 transcript levels was calculated using analysis of variance (Anova)

log transformed, if necessary. The normalised data
were then stored as individual “expressionSet” objects
and subjected to downstream analysis. All analyses
were performed in the R programming language [33].

Permutation based gene set enrichment analysis

Any pathway with 10 or less number of genes was
discarded from analysis. For each gene, t-statistic was
computed to denote change in gene expression in the
case group compared to the control group. For each
pathway, a score was calculated by weighted averaging
(i.e., sum of the gene-level t-statistics divided by the
square root of the number of genes in the pathway)
of all gene-level t-statistics for the pathway. Signifi-
cance of the observed pathway score was calculated
by permutation testing performed in the following
manner. In each permutation, the samples were ran-
domly re-labelled as case and control, with calculation
of a simulated pathway score. This was done 10,000
times generating 10,000 simulated values representing
the null distribution of the pathway score. Deviation
of the observed pathway score from the null distribu-
tion was quantified by the fraction of times that the

simulated score was more extreme than the observed
score. This result was assigned as a permutation p-
value of the observed pathway score. Pathway enrich-
ment analysis was performed using code modified
from the R function gseattperm() of the package
Category [34].

Selection of cytokine and NETosis genes

The genes belonging to the two groups were selected
from relevant literature describing cytokine storm [35]
and NETosis [18]. The list of genes functional in NETo-
sis is provided in Supplementary Table 1. (provided as
an additional file)

Method for deconvolution

We used the CIBERSORTx [36] for deconvolution of
transcriptome data i.e., to find the cellular compo-
nents in the sample through search for similarity of
expression with reference expression values of specific
cell types. A gene by sample expression matrix was
created with the instructed format of the web portal
guidelines. The reference immune cell gene expres-
sion was selected from the lymphocyte signature
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COVID-19 (n=7) were extracted from the published data set [14]. Box plot of group-level gene expression (aggregate log counts) of DNASE1
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activation and coagulation are functionally interrelated and together produce immune-thrombosis. As the blood vessels in the lungs are clogged,
it leads to acute respiratory distress and high mortality
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Table 1 Study characteristics Table showing study characteristics with sources for data sets used in the current study

Database Link Author Article Title

https://covidgenes.weill.  Ramlall  Immune complement and coagulation
cornell.edu/ dysfunction in adverse outcomes of
SARS-CoV-2 infection
E-MTAB-8871 Ong A Dynamic Immune Response Shapes
(ArrayExpress) COVID-19 Progression
GSE150728 (NCBI GEO)  Wilk A single-cell atlas of the peripheral im-
mune response in patients with severe
COVID-19
GSE147507 (NCBI GEO) Blanco- SARS-CoV-2 launches a unique
Melo  transcriptional signature from in vitro,
ex vivo, and in vivo systems
https://www.immport. Lucas  Longitudinal analyses reveal
org/shared/home; study immunological misfiring in severe COVID-
ID SDY1655 19

DOl Country Tissue Ref. Used in the
Figure of
manuscript

https://doi.org/10.  USA Nasopharyngeal 4 7

1038/541591-020- Swabs

1021-2

https://doi.org/10. China Whole blood 13 1,2,4-6,8

1016/j.chom.2020.

03.021

https://doi.org/10.  USA PBMC 15 1,10, 11

1038/541591-020-

0944-y

https://doi.org/10.  USA Primary cell 14 3

1101/2020.03.24. cultured from

004655 Lung

https://doi.org/10.  USA Serum 17 9

1038/541586-020-
2588-y

matrix (LM22) [37]. The analysis was run without
batch correction (only one dataset at a time) and nor-
malisation (as instructed for RNAseq data) with 1000
permutations. The resulting sample by immune cell-
fraction matrix was downloaded in comma separated
values (.csv) file format and analysed to estimate neu-
trophil to lymphocyte ratio (NLR).
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NET: Neutrophil Extracellular Traps; NLR: Neutrophil to Lymphocyte Ratio;
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