
ProcaryaSV: structural variation detection
pipeline for bacterial genomes using short‑read
sequencing
Robin Jugas1    and Helena Vitkova1*    

Abstract 

Background:  Structural variations play an important role in bacterial genomes. They
can mediate genome adaptation quickly in response to the external environment
and thus can also play a role in antibiotic resistance. The detection of structural vari-
ations in bacteria is challenging, and the recognition of even small rearrangements
can be important. Even though most detection tools are aimed at and benchmarked
on eukaryotic genomes, they can also be used on prokaryotic genomes. The key fea-
tures of detection are the ability to detect small rearrangements and support haploid
genomes. Because of the limiting performance of a single detection tool, combin-
ing the detection abilities of multiple tools can lead to more robust results. There are
already available workflows for structural variation detection for long-reads technolo-
gies and for the detection of single-nucleotide variation and indels, both aimed at bac-
teria. Yet we are unaware of structural variations detection workflows for the short-
reads sequencing platform. Motivated by this gap we created our workflow. Further,
we were interested in increasing the detection performance and providing more
robust results.

Results:  We developed an open-source bioinformatics pipeline, ProcaryaSV,
for the detection of structural variations in bacterial isolates from paired-end
short sequencing reads. Multiple tools, starting with quality control and trimming
of sequencing data, alignment to the reference genome, and multiple structural
variation detection tools, are integrated. All the partial results are then processed
and merged with an in-house merging algorithm. Compared with a single detection
approach, ProcaryaSV has improved detection performance and is a reproducible easy-
to-use tool.

Conclusions:  The ProcaryaSV pipeline provides an integrative approach to structural
variation detection from paired-end next-generation sequencing of bacterial samples.
It can be easily installed and used on Linux machines. It is publicly available on GitHub
at https://​github.​com/​robin​jugas/​Proca​ryaSV.

Keywords:  Copy number variation, Structural variation, CNV, SV, Bacteria, Pipeline

Open Access

© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://
creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdo-
main/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

SOFTWARE

Jugas and Vitkova ﻿BMC Bioinformatics (2024) 25:233
https://doi.org/10.1186/s12859-024-05843-1

BMC Bioinformatics

*Correspondence:
vitkovah@vut.cz

1 Department of Biomedical
Engineering, Brno University
of Technology, Brno, Czech
Republic

http://orcid.org/0000-0003-4675-0985
http://orcid.org/0000-0003-4562-2746
https://github.com/robinjugas/ProcaryaSV
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-024-05843-1&domain=pdf

Page 2 of 13Jugas and Vitkova ﻿BMC Bioinformatics (2024) 25:233

Background
Structural variation (SV) plays an important role in bacterial genomes [1–6]. They
shape genome evolution, specialization, and adaptation. Genomic rearrangements can
be reversible and temporarily beneficial, making bacterial genomes very plastic and
adaptable to rapid changes. Short-term adaptive gene duplication can cause antibiotic
resistance, which is an emerging issue [3]. Unlike large-scale SVs in eukaryotic genomes,
large-scale SVs in bacteria are rare because of the constrained genomes of bacteria. The
most common types of SVs present in bacteria are inversions, duplications, and inser-
tions, often induced by horizontal gene transfer [3]. Deletions in bacteria are relevant
to the topic of genome reduction and their implications. Gene loss by deletion was
observed to surprisingly improve fitness and result in a faster growth rate [7]. A reduc-
tion in the genome density also increases genome stability and was first observed in sym-
biotic bacteria [8]. The molecular mechanisms underlying the occurrence of structural
variations are similar in prokaryotes and eukaryotes [3]. Unlike eukaryotes, prokaryotic
genomes have circular shapes, which further propagate into the symmetry of genome
rearrangements [9, 10].

The majority of SV detection tools were designed and benchmarked on eukaryotic
diploid genomes, and only a few were initially aimed at prokaryotes [11–13]. Despite
that, they are successfully usable for detection in prokaryotic haploid genomes. The ben-
efits of merging multiple independent tools have been successfully tested in eukaryotic
genomes [14–16]. Recently, a pipeline for bacterial SV detection in long-read sequencing
was published [17]. Also, a pipeline for SNV and indel detection for bacterial genomes
exists [18]. Yet, an SV detection workflow using short-read sequencing reads for bacteria
is missing.

In this study, we propose a pipeline named ProcaryaSV that integrates six SV and
CNV detection tools based on reference alignment. These tools include CNproScan [13],
CNVnator [19], LUMPY [20], DELLY2 [21], Pindel [22], and INSurVeyor [23]. These
tools employ various approaches to detect four classes of SVs: deletions, duplications,
inversions, and insertions. The selected tools were benchmarked before [13] and cover
the whole spectrum of detection approaches. While these tools are commonly used, we
added CNproScan, which is a tool that is able to detect very short CNVs present in bac-
terial genomes; these CNVs are generally more challenging to detect. Additionally, we
added the recently published INSurVeyor to improve insertion detection [23].

Implementation
Pipeline design

The ProcaryaSV pipeline is implemented in the Python-based reproducible workflow
Snakemake [24]. The workflow covers all the usual steps of sequencing data processing.
A diagram of the pipeline is shown in Fig. 1. The process starts with a quality check of
sequencing reads (FastQC [25]) and trimming (trim-galore [26]). The alignment is per-
formed with BWA-MEM2, and BAM files are processed with SAMtools [27, 28]. Then,
the BAM files serve as inputs for the SV and CNV callers. Additional inputs for detec-
tion tools are handled too, e.g., LUMPY requires separate BAM files for split and dis-
cordant reads. CNproScan uses the GenMap [29] output for mappability normalization.

Page 3 of 13Jugas and Vitkova ﻿BMC Bioinformatics (2024) 25:233 	

The complete list of tools and their versions is provided in the Supplementary Table,
together with the Snakemake rules graph (Table 1).

The outputs of SV callers are formatted as vcf files. These are subsequently input into
ProcaryaSV’s merging algorithm. Additionally, we implemented the SURVIVOR merg-
ing algorithm as a reference tool for benchmarking [16, 30]. The final outputs are tab-
separated files from ProcaryaSV’s merging algorithm and auxiliary plots. The pipeline
computational requirements depend on a user-defined number of threads. We used
a 12-core CPU, and the RAM usage reached approximately 10 GB in the artificial
benchmarking.

Merging algorithm

There are a limited number of tools available for merging structural variations. Some of
the available tools often possess some limitations in terms of their use on haploid bacte-
rial genomes [31–33]. We consider this field to be open to new inventions. Common
approaches to SV merging include union or intersection, which are sometimes applied
iteratively if multiple outputs are to be merged. The most common approach is the con-
sensus approach. While merging two outputs is plain, merging multiple outputs is more
challenging. The SV types were overlapped separately. A commonly used tool is part of
the SURVIVOR toolkit [30], which we also employed in our pipeline. In SURVIVOR,
two SVs are defined as overlapping if their start and stop coordinates are within 1 kbp
and are of the same SV class. While SURVIVOR merging works with interval numeric
operations, ProcaryaSV’s merging works based on signal processing.

Fig. 1  Simplified diagram of ProcaryaSV. The SV types are merged separately in the ProcaryaSV merging
algorithm

Table 1  Overview of SV detection tools and SV types

SV type: Being called by:

Deletions DELLY2, LUMPY, PINDEL, CNVnator, CNProScan (5)

Duplications DELLY2, LUMPY, PINDEL, CNVnator, CNProScan (5)

Inversions PINDEL, DELLY2, LUMPY (3)

Insertions PINDEL, DELLY2, LUMPY, INSurVeyor (4)

Page 4 of 13Jugas and Vitkova ﻿BMC Bioinformatics (2024) 25:233

Here, we demonstrate the new consensus-voting merging method based on sig-
nal summing. The genome rearrangements of each class and each caller are sepa-
rately converted into a binary signal representation where a value of zero indicates
the absence of the genome rearrangement and a value of one indicates its presence.
The signal has the length of the reference genome used for alignment. The binary
signals of SV callers for each SV type are summed together. In this signal, the value
of three would denote a genome region called by three callers. Since it is a consensus
merging process, the important parameter is the lower threshold, which determines
which regions will be accepted. We call this parameter minCallers. The parameter
minCallers was defined as the minimal number of callers supporting the presence of
SV. Because we used six callers for the detection of deletions and duplications and
four or three callers for the detection of inversions and insertions, respectively, we
defined the minCallers parameter separately for CNVs, inversions, and insertions.
These parameters can be set in the configuration file of the pipeline. Only events
equal to or above this threshold are reported during postprocessing.

Multiplying the binary detection signal of the selected caller puts a higher weight
on the caller. Generally, we do not employ weighting except for the insertion detec-
tion followed by the benchmarking. Thus, we doubled the weight of INSurVeyor
in the detection. That means, that with minCallers of 2 for insertions, all events
detected by INSurVeyor are detected. Alternatively, two other tools must call an
insertion to be detected as positive.

During the merging, multiple overlapping reported SVs are created as a side effect.
This process is graphically described in Fig. 2 and occurs because the coordinates of
SVs reported by callers are not the same. The important parameter is user-defined
maxGap. The maximum allowed distance between coordinates is defined such that
the region is merged into one. If the distance between the corresponding start or
stop coordinates reported by the original callers was greater than the maxGap value,
the regions were reported as separate SVs. If the coordinates are in the range, we
can use the information to report the narrowest and widest coordinates of a single
SV. We call the narrowest coordinates the maxSup start and stop coordinates (see
Fig. 2).

In certain cases, the SV signal consists of shorter peaks with a certain base value;
e.g., the region was called one long rearrangement by two callers and multiple
shorter rearrangements by another caller. In this case, depending on the maxGap
value, there could be a single long SV with the support of 2 and multiple shorter SVs
with greater support.

In the last step of the process of merging, the SVs are backtracked to the original
calls reported by SV callers. This process serves to obtain the additional information
reported by callers. Furthermore, the algorithms report the number of participating
subevents together with their relative coverage. For example, an SV is covered by
a certain number of smaller events called by a certain tool, and these events cover
approximately 90% of the merged SV. The final result is formatted as a tab-separated
(tsv) file. The merging algorithm is implemented as an R script and is called by the
Snakemake workflow with user-defined parameters.

Page 5 of 13Jugas and Vitkova ﻿BMC Bioinformatics (2024) 25:233 	

Results
Datasets

We created four artificial datasets to benchmark our pipeline. The first dataset is used
to establish the optimal minCallers threshold values (minCallers dataset). The second
dataset is used to validate these values and to benchmark the performance with other
tools and pipelines (SV dataset). The third one has already been used in the past to
benchmark CNV detection in bacterial genomes (CNV dataset) [12, 13]. Lastly, we
evaluated the impact of GC content on detection. For overview see Supplementary
Table.

The first two datasets benchmark all SV types separately. We randomly defined 100
SVs for each SV type, deletion, duplication, inversion, and insertion (400 SVs com-
bined). The length of the SVs ranged from 50 to 10,000 bp. We used SVim to generate
these SVs [34]. Because SVsim simulates insertions by taking them from the other
chromosomes in the input FASTA file, we have to use our in-house script to create
artificial insertions. We benchmarked these coverage values as follows: 5 × , 10 × ,
20 × , 50 × , and 100 × . The minCallers dataset uses Escherichia coli str. K-12 sub-
str. MDS42 (GenBank: AP012306.1) as source of sequencing reads. We benchmarked
insertions from another different bacteria and from another strain of E. coli to see
how detection performs based on the origin of insertions sequence (see Supplemen-
tary Table for sequence details). The read length was 150 bp.

Fig. 2  Overview of the SVs merging process. A The illustration of the SV signal and the effect of different
start-stop coordinates by various callers. The colored dots indicate the values of start-stop coordinates. B The
table of reported SVs from the example above. C The merged SVs if the start-stop coordinates are below the
maxGap threshold for merging

Page 6 of 13Jugas and Vitkova ﻿BMC Bioinformatics (2024) 25:233

The SV dataset was created in the K. pneumoniae genome subsp. pneumoniae NTUH-
K2044 (GenBank: NC_012731), and artificial insertions were inserted from the S. aureus
subsp. aureus USA300_FPR3757 genome (GenBank: NC_007793.1). The read length was
75 bp.

The third CNV dataset consists of 30 artificial deletions and duplications of various
short lengths and copy numbers imputed into the genome of Staphylococcus aureus
subsp. aureus TW20 (GenBank: NC_017331). We benchmarked four coverage values:
5 × , 10 × , 20 × , 100 × , and 200 × . The read length was 75 bp. Artificial reads for all
datasets were generated with art-sim [35].

The real samples dataset contains sequencing data for bacterial isolates from three
projects, which are listed in Supplementary Table [36–38]. In these datasets, there were
190 bacterial isolate samples sequenced with short reads with an average coverage of
60 × to 350 × .

Artificial benchmarking involves resolving several aspects. First, efficient minCallers
values are set based on the performance metrics. Second, we measured the performance
of ProcaryaSV’s merging algorithm against the SURVIVOR merging algorithm. Third,
the performance of the whole pipeline was compared to that of the Parliament2 pipeline.
Lastly, we can see how merging improves the detection compared to individual callers.

Defining optimal minCallers values

We employed the first dataset to obtain ideal values of minimal consensus threshold
called minCallers in our pipeline. The minCallers values are defined independently for
CNVs, inversions, and insertions.

We assessed the optimal value of the minCallers parameters with the use of precision
and recall values (see Supplementary Table). We ran the pipeline multiple times with
different minCallers values being set. Then, we calculated performance scores for all the
minCallers and coverage levels.

For CNVs, defining exact minCallers values is not straightforward. The range of val-
ues from 2 to 4 seems to be optimal for coverage above 20 × . For lower coverage, set-
ting minCallers to 2 or 3 is optimal. We repeated the analysis of optimal minCallers in
the CNV dataset, which includes very small CNVs. Here, we discovered that the min-
Callers set to 2 achieved the highest accuracy and F1 scores across all coverage levels.
Many false positives were detected for the minCallers set to 1, caused by Pindel and
CNproScan, and were eliminated by increasing the value to 2. On the other hand, Pindel
and CNproScan were able to detect the shortest CNVs. Observing the precision-recall
curves (see Supplementary Table), we conclude that the optimal value of minCallers is
2 for a broad range of CNV lengths, including small lengths. For generally longer CNVs,
which are easier to detect, the minCallers can be set to a value of 3 or 4.

For inversions, the optimal minCallers value is 2. As inversions can be detected by
three detection tools at most, the choice of 2 was straightforward. Also, the detection of
inversions is not coverage-dependent.

Insertions are most effectively called by INSurVeyor and three other tools. Since the
elevated weight for INSurVeyor, the values 1 and 2 perform similarly. Furthermore,
we compared the performance of insertion detection with distant and more similar

Page 7 of 13Jugas and Vitkova ﻿BMC Bioinformatics (2024) 25:233 	

sequences. Insertions of taxonomically close origin (different strain of bacteria in this
case) are more challenging to detect.

Artificial CNV dataset

We used the CNV dataset to evaluate the performance of ProcaryaSV for detecting
small CNVs and to estimate the optimal value of the minCallers parameter for small
CNV detection (see previous section). The complete results and plots are provided in
the Supplementary Table.

Second, we compared ProcaryaSV’s merging algorithm with the SURVIVOR merg-
ing algorithm. SURVIVOR was chosen because of its easy implementation and usabil-
ity with selected callers. Additionally, we tested the SVDB merging tool [39]; however,
the output was not reliable for use because the SVDB merging tool inserts modified
sequences into the vcf file. The SURVIVOR merge settings for minimal callers were
set to 2, the maximum allowed distance was set to 1000, and the minimal considered
SV length was set to 1. The minCallers parameter of ProcaryaSV was also set to 2. We
achieved similar results, as shown in Table 2. The values in bold signify the highest
values. The ProcaryaSV had higher accuracy and F1 scores for 20 × and higher cover-
age by a few percent. Generally, the results are comparable to what we expected. The
results reflect the congruency between the methods.

Third, we compared the performance against the Parliament2 pipeline. We used
Parliament2 with Breakdancer[40], CNVnator[19], DELLY2[21], Manta[41], and
LUMPY[20]. Merging in Parliament2 is performed natively with SURVIVOR[30]. We
put the results into Table 2. The first notion is that Parliament2 results are less cover-
age independent. However, we achieved higher scores except for precision and speci-
ficity at 100 × and 200 × coverage.

Finally, we analyzed the redundant tools via UpSet plots [42]. These plots are in
the Supplementary Table. Considering only CNVs, the CNVnator detected the least

Table 2  Results of the artificial CNV dataset (ProcaryaSV minCallers 2)

Coverage Accuracy Sensitivity Precision Specificity F1 score

ProcaryaSV 5 ×  90.0 80.0 100.0 100.0 88.8
10 ×  90.0 80.0 100.0 100.0 88.9
20 ×  90.0 80.0 100.0 100.0 88.9
100 ×  87.3 83.3 89.3 90.9 86.2
200 ×  88.9 86.7 89.7 90.9 88.1

SURVIVOR 5 ×  88.5 80.0 96.0 96.8 87.3

10 ×  90.0 80.0 100.0 100.0 88.9

20 ×  85.0 70.0 100.0 100.0 82.4

100 ×  87.1 80.0 92.3 93.8 85.7

200 ×  85.5 76.7 92.0 93.8 83.6

Parliament2 5 ×  78.3 56.7 100.0 100.0 72.3

10 ×  78.3 56.7 100.0 100.0 72.3

20 ×  83.3 66.7 100.0 100.0 80.0

100 ×  83.3 66.7 100.0 100.0 80.0

200 ×  83.3 66.7 100.0 100.0 80.0

Page 8 of 13Jugas and Vitkova ﻿BMC Bioinformatics (2024) 25:233

number of CNVs. None of them were detected uniquely by the CNVnator. On the
other hand, it participated in the detection of some low-coverage events.

We also evaluated individual callers separately to see how the SV merging improved
overall detection (see Supplementary Table). Regarding the F1 scores, the DELLY2
and LUMPY are the best-performing tools across all the coverage levels. In sensitivity,
the CNproScan detects the highest number of true positives. Generally, the merging
of small-sized CNVs brought performance benefits.

Artificial SV dataset

We benchmarked the performance also on the validation SV dataset and compared it
again with SURVIVOR, Parliament2, and independent tools. We set the minCallers
threshold for all SV types to 2 but also included a value of 3 for CNVs. The F1 scores
of the competing methods are shown in Table 3. For the rest of the metrics and plots,
see Supplementary Table.

The performance for deletions and duplications was stable across different coverage
values. The detection of large CNVs is not as dependent on coverage as the detection
of short CNVs is. The inversion results were also stable, with a small decrease toward
high coverage. This was caused by 5 inversions misclassified as duplications.

The most challenging part was the detection of insertions. This is attributed to
the nature of short-read sequencing. In the evaluation, we increased the boundaries
of the exact breakpoints by 50 bp so that we could match the breakpoints with the
detected insertions. Of the four tools used to detect insertions, three can detect only
short insertions via split-read alignment (Pindel, LUMPY, DELLY2). This requires
that the length of the insertion fit into a single read length [20–22]. Furthermore,
detection is difficult when the insertion is similar to regions in the reference genome.
The employed INSurVeyor uses read-pair and de novo assembly methods to detect a

Table 3  F1 scores of the artificial SV dataset (ProcaryaSV minCallersCNV = 2, minCallersINV = 2,
minCallersINS = 2)

Coverage Deletions Duplications Inversions Insertions

ProcaryaSV 5 ×  97.1 98.5 100.0 27.4
10 ×  100.0 99.0 99.5 65.1
20 ×  100.0 99.5 99.5 77.2
50 ×  99.5 99.5 98.0 76.5
100 ×  98.0 98.0 95.7 59.3

SURVIVOR 5 ×  83.5 80.2 80.6 0.0

10 ×  99.5 99.0 97.1 3.8

20 ×  99.0 99.5 100.0 13.1

50 ×  97.5 98.0 99.0 12.7

100 ×  95.1 98.0 97.1 10.7

Parliament2 5 ×  98.0 98.5 87.0 0.0

10 ×  98.5 99.0 98.5 1.9

20 ×  98.5 99.5 100.0 8.6

50 ×  97.4 99.5 100.0 11.8

100 ×  97.4 99.5 100.0 13.1

Page 9 of 13Jugas and Vitkova ﻿BMC Bioinformatics (2024) 25:233 	

larger scope of insertions [23]. INSurVeyor is responsible for a major boost in inser-
tion detection against competitors.

As previously described, the merging results are comparable between the two imple-
mented algorithms, ProcaryaSV’s and SURVIVOR’s merging methods. The differences
are small, benefitting the first method by a few points.

ProcaryaSV slightly outperformed Parliament2 in terms of deletions and largely in
detection insertions. The Parliament2 was slightly better in inversions. Both pipelines
performed similarly in duplications. The performance of Parliament2 matched the per-
formance of ProcaryaSV when minCallers were set to 2.

DELLY2 and LUMPY, as in the CNV dataset, are very well-performing tools in the
detection of deletions, duplications, and inversions. Unlike in CNV dataset results with
short CNVs and indels, the performance of these two individual tools is comparable
with the merging approach. However, when we observed the results, we noticed that
individual tools tend to call multiple shorter events along the original long SV. All these
are detected as true positives in our case (as they overlap with defined intervals), but the
merging method overcomes this drawback of individual callers and merges them into
one continuous event.

Finally, we observed the performance of each tool via UpSet plots of the true-positive
SVs (see Supplementary Table). Unlike for short CNVs, the least well-performing tool
for CNV detection was Pindel. The majority of events were detected by the other tools.
Pindel was more useful for detecting inversions, yet a large share of detected inversions
were also called by other tools. In contrast, Pindel is indispensable for insertion detec-
tion. Most of the insertions were detected with INSurVeyor seconded by Pindel.

GC content impact on detection

Lastly, we evaluated the impact of GC content on detection. We benchmarked simulated
CNV datasets of three different bacteria, representing low, middle, and high GC content.
The selected bacteria were Staphylococcus aureus (GC 33%), Klebsiella pneumoniae (GC
57%), and Anaeromyxobacter dehalogenans (GC 74%). The details about sequences and
dataset creation are in the Supplementary Table, although the same recipe as in the SV
dataset was used.

The detection results correspond to the previous results. The lowest and the highest
coverage is slightly the most challenging. However, we found no performance impact
associated with different GC content, as can be verified in the Supplementary Table.

Real dataset

Benchmarking on real data was performed to assess the usability of the pipeline for real
data. Since no apriori-defined SVs are known, the space for evaluation is limited. We
can conclude the overlap between various tools and features of detected SVs depending
on the SV class and the caller. The results are provided in the Supplementary Table. All
samples of the same species were pooled together in the final analysis.

All SV types were detected in samples of K. pneumoniae. The majority of inversions
were called by DELLY2 and Pindel, unlike the combination of DELLY and LUMPY in
the artificial dataset. The insertion results copied those of artificial ones, with DELLY2
detecting a significant portion of the insertions. Interestingly, only two duplications were

Page 10 of 13Jugas and Vitkova ﻿BMC Bioinformatics (2024) 25:233

detected by all five tools. The number of detected deletions was much greater. The L.
casei samples had the lowest number of SVs. No insertions were detected. In contrast, S.
aureus had high numbers of SVs called by multiple tools. There were 60 insertions called
by both Pindel and INSurVeyor, and the number of inversions called by the three callers
was also high.

Despite that we cannot point to the accuracy of the real dataset detection, it is inter-
esting to see the differences in detection compared to artificial datasets. While DELLY
and LUMPY performed well as individual CNV and inversion callers on the artificial
SV dataset, they each detected a distinct set of SVs. Here, we see fully the benefit of the
merging approach.

Computational performance of ProcaryaSV

Data analysis of bacterial genomes, which are only megabases in length, is not a compu-
tationally demanding task given modern PC specifications. The pipeline was tested on
a 12-thread CPU with 64 GB of RAM. The run times reported by the Snakemake work-
flow are in the Supplementary Table. The RAM usage generally did not exceed 10 GBs
when 12 threads were used.

Discussion
We developed a consensus-based pipeline for structural variation detection in bacte-
rial genomes sequenced via short-read technologies. Although long-read sequencing,
mainly nanopore sequencing, has become widely used in bacterial sequencing, short-
read sequencing is still widely used, and with the arrival of new vendors in the field, the
costs of sequencing will likely further decrease [43].

While many SV detection tools and pipelines have been presented, not many were
tested on bacterial genomes. There is a long-read SV detection pipeline [17] and a
short-read SNV and indel pipeline [18], but there is a gap in the bacterial SV detection
pipelines.

We compared our pipeline with Parliament2 [16]. Like in Parliament2, we also imple-
mented the SURVIVOR merging algorithm [30]. We developed our method for SV
merging and tested it against SURVIVOR. The two merging methods are comparable
in their results; in certain cases, our merging algorithm provides better results. Most
importantly, our method enabled us to tweak the so-called minCallers parameter defin-
ing the minimal callers’ support to call an SV. We defined this parameter separately for
CNVs, inversions, and insertions for the best performance.

Comparing the performance of the two pipelines for SV detection, ProcaryaSV, and
Parliament2, the former produced better results across the whole dataset and drasti-
cally better results in insertion detection. Unlike Parliament2, our pipeline is a complete
workflow that includes read trimming and alignment. Parliament2 requires an aligned
BAM file. Additionally, ProcaryaSV is implemented in the popular Snakemake workflow,
which is easy to configure, use, and modify ad hoc. Snakemake workflows are highly
scalable in terms of performance.

An important step was the selection of tools to include in the pipeline. We used tools
we had previously successfully tested [13], and they are also commonly used. We also
included recently published INSurVeyor aimed at insertion detection. Therefore, we

Page 11 of 13Jugas and Vitkova ﻿BMC Bioinformatics (2024) 25:233 	

were able to present results that outperformed those of the competition. Some tools
could be skipped, and this can be performed easily by the user via a configuration file.
CNVnator and Pindel could be two candidates for exclusion. Pindel detects several false
positives but is useful for insertion detection. CNVnator participated modestly in the
CNV dataset. However, when observing the UpSet plots, we believe that they are still
usable and increase the robustness of the consensus voting-based approach.

We see the potential of the merging approach when observing the discordance
between the results of artificial and real datasets in the overlap diagrams. Unlike in the
in-silico data, detection tools detect distinct sets of structural variations. These differ-
ences point out the benefits of the merging approach.

General limitations of SV detection originate from the fact that we are inferring them
from indirect signatures in the alignment data and that SVs are longer than the size of
sequencing reads. Limitations we are specifically aware of are the insertion detection
and merging algorithm designed for short genomes. Three callers out of four can detect
only insertions fitting into the read length. Only INSurVeyor can detect larger ones. Fur-
thermore, the insertion detection is limited by the genomic origin of the insertion itself
with genetically closer insertions being more challenging to detect. The ProcaryaSV’s
merging algorithm was designed with bacteria-size genomes in mind and will take more
computational time if the genome size increases beyond the usual size of several mil-
lions of bases. This is because of the signal representation of the reference genome.

Conclusions
In this study, we presented a ProcarySV, an SV/CNV detection workflow focused on
bacterial research. We implemented a total of six tools to increase the performance met-
rics and to find the most accurate genome rearrangements. We also wanted to provide
an easy-to-use workflow, which demands a certain kind of bioinformatics knowledge,
yet saves time by studying the specifics of each detection tool and computing the tai-
lored inputs for some callers.

The essential task for acquiring high-accuracy results is the robust merging of genome
rearrangements. Therefore, we also presented a novel merging algorithm based on a
signal representation of detected events. This algorithm is suitable mainly for bacterial
genomes because of their small size and the occurrence of small structural variations. It
is also effective at merging multiple detection tools.

The pipeline covers the whole workflow beginning with the processing of sequencing
reads, alignment, quality reports, and SV detection, ending with the final list of detected
SVs.

Supplementary Information
The online version contains supplementary material available at https://​doi.​org/​10.​1186/​s12859-​024-​05843-1.

Supplementary Material 1: Table Overview of the results, information about the dataset, and plots.

Author contributions
R.J. and H.V. wrote the main manuscript text. All authors reviewed the manuscript. R.J. designed the pipeline a performed
the analysis.

Funding
This work was supported by a grant project from the Czech Science Foundation [GA23-05845S].

https://doi.org/10.1186/s12859-024-05843-1

Page 12 of 13Jugas and Vitkova ﻿BMC Bioinformatics (2024) 25:233

Availability of data and materials
The ProcaryaSV homepage and code can be found at https://​github.​com/​robin​jugas/​Proca​ryaSV. The datasets used are
stored at https://​doi.​org/​10.​5281/​zenodo.​11552​616.

Availability and requirements
Project name: ProcaryaSV, Project home page: https://​github.​com/​robin​jugas/​Proca​ryaSV, Operating system(s): Linux,
Programming language: Python3, R, Bash, and Snakemake, Other requirements: Python 3.6 or higher, Snakemake 5.13 or
higher, License: MIT license, Any restrictions to use by non-academics: none.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that there are no relevant financial or non-financial competing interests to report.

Received: 31 January 2024 Accepted: 13 June 2024

References
	1.	 Hughes D. Evaluating genome dynamics: the constraints on rearrangements within bacterial genomes. Genome

Biol. 2000;1(6):0006. https://​doi.​org/​10.​1186/​gb-​2000-1-​6-​revie​ws0006.
	2.	 Noureen M, Tada I, Kawashima T, Arita M. Rearrangement analysis of multiple bacterial genomes. BMC Bioinform.

2019;20(23):23. https://​doi.​org/​10.​1186/​s12859-​019-​3293-4.
	3.	 West PT, Chanin RB, Bhatt AS. From genome structure to function: insights into structural variation in microbiology.

Curr Opin Microbiol. 2022;69: 102192. https://​doi.​org/​10.​1016/j.​mib.​2022.​102192.
	4.	 Firrao G, et al. Genomic structural variations affecting virulence during clonal expansion of Pseudomonas syringae pv.

actinidiae Biovar 3 in Europe. Front Microbiol. 2018. https://​doi.​org/​10.​3389/​fmicb.​2018.​00656.
	5.	 Seferbekova Z, et al. High rates of genome rearrangements and pathogenicity of Shigella spp. Front Microbiol. 2021.

https://​doi.​org/​10.​3389/​fmicb.​2021.​628622.
	6.	 Slack A, Thornton PC, Magner DB, Rosenberg SM, Hastings PJ. On the mechanism of gene amplification induced

under stress in Escherichia coli. PLoS Genet. 2006;2(4): e48. https://​doi.​org/​10.​1371/​journ​al.​pgen.​00200​48.
	7.	 Koskiniemi S, Sun S, Berg OG, Andersson DI. Selection-driven gene loss in bacteria. PLoS Genet. 2012;8(6): e1002787.

https://​doi.​org/​10.​1371/​journ​al.​pgen.​10027​87.
	8.	 LeBlanc N, Charles TC. Bacterial genome reductions: tools, applications, and challenges. Front Genome Ed. 2022;4:

957289. https://​doi.​org/​10.​3389/​fgeed.​2022.​957289.
	9.	 Periwal V, Scaria V. Insights into structural variations and genome rearrangements in prokaryotic genomes. Bioinfor-

matics. 2015;31(1):1–9. https://​doi.​org/​10.​1093/​bioin​forma​tics/​btu600.
	10.	 Rocha EPC. The organization of the bacterial genome. Annu Rev Genet. 2008;42(1):211–33. https://​doi.​org/​10.​1146/​

annur​ev.​genet.​42.​110807.​091653.
	11.	 Wu L, Wang H, Xia Y, Xi R. CNV-BAC: copy number variation detection in bacterial circular genome. Bioinformatics.

2020;36(12):3890–1. https://​doi.​org/​10.​1093/​bioin​forma​tics/​btaa2​08.
	12.	 Brynildsrud O, Snipen LG, Bohlin J. CNOGpro: detection and quantification of CNVs in prokaryotic whole-genome

sequencing data. Bioinformatics. 2015;31(11):1708–15. https://​doi.​org/​10.​1093/​bioin​forma​tics/​btv070.
	13.	 Jugas R, et al. CNproScan: hybrid CNV detection for bacterial genomes. Genomics. 2021;113(5):3103–11. https://​doi.​

org/​10.​1016/j.​ygeno.​2021.​06.​040.
	14.	 Lin K, Smit S, Bonnema G, Sanchez-Perez G, de Ridder D. Making the difference: integrating structural variation

detection tools. Brief Bioinform. 2015;16(5):852–64. https://​doi.​org/​10.​1093/​bib/​bbu047.
	15.	 Fang L, Hu J, Wang D, Wang K. NextSV: a meta-caller for structural variants from low-coverage long-read sequencing

data. BMC Bioinform. 2018;19(1):180. https://​doi.​org/​10.​1186/​s12859-​018-​2207-1.
	16.	 Zarate S, et al. Parliament2: accurate structural variant calling at scale. GigaScience. 2020;9:12. https://​doi.​org/​10.​

1093/​gigas​cience/​giaa1​45.
	17.	 Charron P, Kang M. VariantDetective: an accurate all-in-one pipeline for detecting consensus bacterial SNPs and SVs.

Bioinformatics. 2024;40(2):66. https://​doi.​org/​10.​1093/​bioin​forma​tics/​btae0​66.
	18.	 Seah YM, et al. In silico evaluation of variant calling methods for bacterial whole-genome sequencing assays. J Clin

Microbiol. 2023;61(8):e01842-e1922. https://​doi.​org/​10.​1128/​jcm.​01842-​22.
	19.	 Abyzov A, Urban AE, Snyder M, Gerstein M. CNVnator: an approach to discover, genotype, and characterize typical

and atypical CNVs from family and population genome sequencing. Genome Res. 2011;21(6):974–84. https://​doi.​
org/​10.​1101/​gr.​114876.​110.

	20.	 Layer RM, Chiang C, Quinlan AR, Hall IM. LUMPY: a probabilistic framework for structural variant discovery. Genome
Biol. 2014;15(6):R84. https://​doi.​org/​10.​1186/​gb-​2014-​15-6-​r84.

	21.	 Rausch T, Zichner T, Schlattl A, Stütz AM, Benes V, Korbel JO. DELLY: structural variant discovery by integrated paired-
end and split-read analysis. Bioinformatics. 2012;28(18):i333–9. https://​doi.​org/​10.​1093/​bioin​forma​tics/​bts378.

https://github.com/robinjugas/ProcaryaSV
https://doi.org/10.5281/zenodo.11552616
https://github.com/robinjugas/ProcaryaSV
https://doi.org/10.1186/gb-2000-1-6-reviews0006
https://doi.org/10.1186/s12859-019-3293-4
https://doi.org/10.1016/j.mib.2022.102192
https://doi.org/10.3389/fmicb.2018.00656
https://doi.org/10.3389/fmicb.2021.628622
https://doi.org/10.1371/journal.pgen.0020048
https://doi.org/10.1371/journal.pgen.1002787
https://doi.org/10.3389/fgeed.2022.957289
https://doi.org/10.1093/bioinformatics/btu600
https://doi.org/10.1146/annurev.genet.42.110807.091653
https://doi.org/10.1146/annurev.genet.42.110807.091653
https://doi.org/10.1093/bioinformatics/btaa208
https://doi.org/10.1093/bioinformatics/btv070
https://doi.org/10.1016/j.ygeno.2021.06.040
https://doi.org/10.1016/j.ygeno.2021.06.040
https://doi.org/10.1093/bib/bbu047
https://doi.org/10.1186/s12859-018-2207-1
https://doi.org/10.1093/gigascience/giaa145
https://doi.org/10.1093/gigascience/giaa145
https://doi.org/10.1093/bioinformatics/btae066
https://doi.org/10.1128/jcm.01842-22
https://doi.org/10.1101/gr.114876.110
https://doi.org/10.1101/gr.114876.110
https://doi.org/10.1186/gb-2014-15-6-r84
https://doi.org/10.1093/bioinformatics/bts378

Page 13 of 13Jugas and Vitkova ﻿BMC Bioinformatics (2024) 25:233 	

	22.	 Ye K, Schulz MH, Long Q, Apweiler R, Ning Z. Pindel: a pattern growth approach to detect break points of large dele-
tions and medium sized insertions from paired-end short reads. Bioinformatics. 2009;25(21):2865–71. https://​doi.​
org/​10.​1093/​bioin​forma​tics/​btp394.

	23.	 Rajaby R, et al. INSurVeyor: improving insertion calling from short read sequencing data. Nat Commun. 2023;14(1):1.
https://​doi.​org/​10.​1038/​s41467-​023-​38870-2.

	24.	 Köster J, Rahmann S. Snakemake—a scalable bioinformatics workflow engine. Bioinformatics. 2012;28(19):2520–2.
https://​doi.​org/​10.​1093/​bioin​forma​tics/​bts480.

	25.	 Andrews S, “FastQC: a quality control tool for high throughput sequence data 2010. Accessed 28 Dec 2022. Avail-
able: https://​www.​bioin​forma​tics.​babra​ham.​ac.​uk/​proje​cts/​fastq​c/.

	26.	 Krueger F, “Trim Galore! A wrapper around Cutadapt and FastQC to consistently apply adapter and quality trimming
to FastQ files, with extra functionality for RRBS data” https://​www.​bioin​forma​tics.​babra​ham.​ac.​uk/​proje​cts/​trim_​
galore. 2012. [Online]. Available: https://​github.​com/​Felix​Krueg​er/​TrimG​alore.

	27.	 Li H, Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM, ArXiv13033997 Q-Bio, May
2013, Accessed 15 Apr 2022. Available: http://​arxiv.​org/​abs/​1303.​3997.

	28.	 Danecek P, et al. Twelve years of SAMtools and BCFtools. GigaScience. 2021;10(2):8. https://​doi.​org/​10.​1093/​gigas​
cience/​giab0​08.

	29.	 Pockrandt C, Alzamel M, Iliopoulos CS, Reinert K. GenMap: ultra-fast computation of genome mappability. Bioin-
forma Oxf Engl. 2020;36(12):3687–92. https://​doi.​org/​10.​1093/​bioin​forma​tics/​btaa2​22.

	30.	 Jeffares DC, et al. Transient structural variations have strong effects on quantitative traits and reproductive isolation
in fission yeast. Nat Commun. 2017;8(1):1. https://​doi.​org/​10.​1038/​ncomm​s14061.

	31.	 English AC, Menon VK, Gibbs RA, Metcalf GA, Sedlazeck FJ. Truvari: refined structural variant comparison preserves
allelic diversity. Genome Biol. 2022;23(1):1. https://​doi.​org/​10.​1186/​s13059-​022-​02840-6.

	32.	 Kirsche M, et al. Jasmine and Iris: population-scale structural variant comparison and analysis. Nat Methods.
2023;20(3):3. https://​doi.​org/​10.​1038/​s41592-​022-​01753-3.

	33.	 Mohiyuddin M, et al. MetaSV: an accurate and integrative structural-variant caller for next generation sequencing.
Bioinformatics. 2015;31(16):2741–4. https://​doi.​org/​10.​1093/​bioin​forma​tics/​btv204.

	34.	 Faust G, “GregoryFaust/SVsim.” Jun. 29, 2022. Accessed 17 Jan 2024. Available: https://​github.​com/​Grego​ryFau​st/​
SVsim

	35.	 Huang W, Li L, Myers JR, Marth GT. ART: a next-generation sequencing read simulator. Bioinformatics.
2012;28(4):593–4. https://​doi.​org/​10.​1093/​bioin​forma​tics/​btr708.

	36.	 Copin R, et al. Sequential evolution of virulence and resistance during clonal spread of community-acquired
methicillin-resistant Staphylococcus aureus. Proc Natl Acad Sci. 2019;116(5):1745–54. https://​doi.​org/​10.​1073/​pnas.​
18142​65116.

	37.	 Wang J, et al. Genome adaptive evolution of Lactobacillus casei under long-term antibiotic selection pressures. BMC
Genom. 2017;18(1):320. https://​doi.​org/​10.​1186/​s12864-​017-​3710-x.

	38.	 Bezdicek M, et al. Application of mini-MLST and whole genome sequencing in low diversity hospital extended-
spectrum beta-lactamase producing Klebsiella pneumoniae population. PLoS ONE. 2019;14(8):1–14. https://​doi.​org/​
10.​1371/​journ​al.​pone.​02211​87.

	39.	 Eisfeldt J, Vezzi F, Olason P, Nilsson D, Lindstrand A. TIDDIT, an efficient and comprehensive structural variant caller
for massive parallel sequencing data. F1000Research. 2017;6:664. https://​doi.​org/​10.​12688/​f1000​resea​rch.​11168.2.

	40.	 Fan X, Abbott TE, Larson D, Chen K. BreakDancer—identification of genomic structural variation from paired-end
read mapping. Curr Protoc Bioinforma Board Andreas Baxevanis Al. 2014. https://​doi.​org/​10.​1002/​04712​50953.​bi150​
6s45.

	41.	 Chen X, et al. Manta: rapid detection of structural variants and indels for germline and cancer sequencing applica-
tions. Bioinforma Oxf Engl. 2016;32(8):1220–2. https://​doi.​org/​10.​1093/​bioin​forma​tics/​btv710.

	42.	 Conway JR, Lex A, Gehlenborg N. UpSetR: an R package for the visualization of intersecting sets and their properties.
Bioinformatics. 2017;33(18):2938–40. https://​doi.​org/​10.​1093/​bioin​forma​tics/​btx364.

	43.	 Arslan S, et al. Sequencing by avidity enables high accuracy with low reagent consumption. Nat Biotechnol.
2024;42(1):132–8. https://​doi.​org/​10.​1038/​s41587-​023-​01750-7.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1093/bioinformatics/btp394
https://doi.org/10.1093/bioinformatics/btp394
https://doi.org/10.1038/s41467-023-38870-2
https://doi.org/10.1093/bioinformatics/bts480
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/.
https://www.bioinformatics.babraham.ac.uk/projects/trim_galore
https://www.bioinformatics.babraham.ac.uk/projects/trim_galore
https://github.com/FelixKrueger/TrimGalore.
http://arxiv.org/abs/1303.3997.
https://doi.org/10.1093/gigascience/giab008
https://doi.org/10.1093/gigascience/giab008
https://doi.org/10.1093/bioinformatics/btaa222
https://doi.org/10.1038/ncomms14061
https://doi.org/10.1186/s13059-022-02840-6
https://doi.org/10.1038/s41592-022-01753-3
https://doi.org/10.1093/bioinformatics/btv204
https://github.com/GregoryFaust/SVsim
https://github.com/GregoryFaust/SVsim
https://doi.org/10.1093/bioinformatics/btr708
https://doi.org/10.1073/pnas.1814265116
https://doi.org/10.1073/pnas.1814265116
https://doi.org/10.1186/s12864-017-3710-x
https://doi.org/10.1371/journal.pone.0221187
https://doi.org/10.1371/journal.pone.0221187
https://doi.org/10.12688/f1000research.11168.2
https://doi.org/10.1002/0471250953.bi1506s45
https://doi.org/10.1002/0471250953.bi1506s45
https://doi.org/10.1093/bioinformatics/btv710
https://doi.org/10.1093/bioinformatics/btx364
https://doi.org/10.1038/s41587-023-01750-7

	ProcaryaSV: structural variation detection pipeline for bacterial genomes using short-read sequencing
	Abstract
	Background:
	Results:
	Conclusions:

	Background
	Implementation
	Pipeline design
	Merging algorithm

	Results
	Datasets
	Defining optimal minCallers values
	Artificial CNV dataset
	Artificial SV dataset
	GC content impact on detection
	Real dataset
	Computational performance of ProcaryaSV

	Discussion
	Conclusions
	References

