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Abstract 

Background:  Structural variations play an important role in bacterial genomes. They 
can mediate genome adaptation quickly in response to the external environment 
and thus can also play a role in antibiotic resistance. The detection of structural vari-
ations in bacteria is challenging, and the recognition of even small rearrangements 
can be important. Even though most detection tools are aimed at and benchmarked 
on eukaryotic genomes, they can also be used on prokaryotic genomes. The key fea-
tures of detection are the ability to detect small rearrangements and support haploid 
genomes. Because of the limiting performance of a single detection tool, combin-
ing the detection abilities of multiple tools can lead to more robust results. There are 
already available workflows for structural variation detection for long-reads technolo-
gies and for the detection of single-nucleotide variation and indels, both aimed at bac-
teria. Yet we are unaware of structural variations detection workflows for the short-
reads sequencing platform. Motivated by this gap we created our workflow. Further, 
we were interested in increasing the detection performance and providing more 
robust results.

Results:  We developed an open-source bioinformatics pipeline, ProcaryaSV, 
for the detection of structural variations in bacterial isolates from paired-end 
short sequencing reads. Multiple tools, starting with quality control and trimming 
of sequencing data, alignment to the reference genome, and multiple structural 
variation detection tools, are integrated. All the partial results are then processed 
and merged with an in-house merging algorithm. Compared with a single detection 
approach, ProcaryaSV has improved detection performance and is a reproducible easy-
to-use tool.

Conclusions:  The ProcaryaSV pipeline provides an integrative approach to structural 
variation detection from paired-end next-generation sequencing of bacterial samples. 
It can be easily installed and used on Linux machines. It is publicly available on GitHub 
at https://​github.​com/​robin​jugas/​Proca​ryaSV.
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Background
Structural variation (SV) plays an important role in bacterial genomes [1–6]. They 
shape genome evolution, specialization, and adaptation. Genomic rearrangements can 
be reversible and temporarily beneficial, making bacterial genomes very plastic and 
adaptable to rapid changes. Short-term adaptive gene duplication can cause antibiotic 
resistance, which is an emerging issue [3]. Unlike large-scale SVs in eukaryotic genomes, 
large-scale SVs in bacteria are rare because of the constrained genomes of bacteria. The 
most common types of SVs present in bacteria are inversions, duplications, and inser-
tions, often induced by horizontal gene transfer [3]. Deletions in bacteria are relevant 
to the topic of genome reduction and their implications. Gene loss by deletion was 
observed to surprisingly improve fitness and result in a faster growth rate [7]. A reduc-
tion in the genome density also increases genome stability and was first observed in sym-
biotic bacteria [8]. The molecular mechanisms underlying the occurrence of structural 
variations are similar in prokaryotes and eukaryotes [3]. Unlike eukaryotes, prokaryotic 
genomes have circular shapes, which further propagate into the symmetry of genome 
rearrangements [9, 10].

The majority of SV detection tools were designed and benchmarked on eukaryotic 
diploid genomes, and only a few were initially aimed at prokaryotes [11–13]. Despite 
that, they are successfully usable for detection in prokaryotic haploid genomes. The ben-
efits of merging multiple independent tools have been successfully tested in eukaryotic 
genomes [14–16]. Recently, a pipeline for bacterial SV detection in long-read sequencing 
was published [17]. Also, a pipeline for SNV and indel detection for bacterial genomes 
exists [18]. Yet, an SV detection workflow using short-read sequencing reads for bacteria 
is missing.

In this study, we propose a pipeline named ProcaryaSV that integrates six SV and 
CNV detection tools based on reference alignment. These tools include CNproScan [13], 
CNVnator [19], LUMPY [20], DELLY2 [21], Pindel [22], and INSurVeyor [23]. These 
tools employ various approaches to detect four classes of SVs: deletions, duplications, 
inversions, and insertions. The selected tools were benchmarked before [13] and cover 
the whole spectrum of detection approaches. While these tools are commonly used, we 
added CNproScan, which is a tool that is able to detect very short CNVs present in bac-
terial genomes; these CNVs are generally more challenging to detect. Additionally, we 
added the recently published INSurVeyor to improve insertion detection [23].

Implementation
Pipeline design

The ProcaryaSV pipeline is implemented in the Python-based reproducible workflow 
Snakemake [24]. The workflow covers all the usual steps of sequencing data processing. 
A diagram of the pipeline is shown in Fig. 1. The process starts with a quality check of 
sequencing reads (FastQC [25]) and trimming (trim-galore [26]). The alignment is per-
formed with BWA-MEM2, and BAM files are processed with SAMtools [27, 28]. Then, 
the BAM files serve as inputs for the SV and CNV callers. Additional inputs for detec-
tion tools are handled too, e.g., LUMPY requires separate BAM files for split and dis-
cordant reads. CNproScan uses the GenMap [29] output for mappability normalization. 
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The complete list of tools and their versions is provided in the Supplementary Table, 
together with the Snakemake rules graph (Table 1).

The outputs of SV callers are formatted as vcf files. These are subsequently input into 
ProcaryaSV’s merging algorithm. Additionally, we implemented the SURVIVOR merg-
ing algorithm as a reference tool for benchmarking [16, 30]. The final outputs are tab-
separated files from ProcaryaSV’s merging algorithm and auxiliary plots. The pipeline 
computational requirements depend on a user-defined number of threads. We used 
a 12-core CPU, and the RAM usage reached approximately 10  GB in the artificial 
benchmarking.

Merging algorithm

There are a limited number of tools available for merging structural variations. Some of 
the available tools often possess some limitations in terms of their use on haploid bacte-
rial genomes [31–33]. We consider this field to be open to new inventions. Common 
approaches to SV merging include union or intersection, which are sometimes applied 
iteratively if multiple outputs are to be merged. The most common approach is the con-
sensus approach. While merging two outputs is plain, merging multiple outputs is more 
challenging. The SV types were overlapped separately. A commonly used tool is part of 
the SURVIVOR toolkit [30], which we also employed in our pipeline. In SURVIVOR, 
two SVs are defined as overlapping if their start and stop coordinates are within 1 kbp 
and are of the same SV class. While SURVIVOR merging works with interval numeric 
operations, ProcaryaSV’s merging works based on signal processing.

Fig. 1  Simplified diagram of ProcaryaSV. The SV types are merged separately in the ProcaryaSV merging 
algorithm

Table 1  Overview of SV detection tools and SV types

SV type: Being called by:

Deletions DELLY2, LUMPY, PINDEL, CNVnator, CNProScan (5)

Duplications DELLY2, LUMPY, PINDEL, CNVnator, CNProScan (5)

Inversions PINDEL, DELLY2, LUMPY (3)

Insertions PINDEL, DELLY2, LUMPY, INSurVeyor (4)
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Here, we demonstrate the new consensus-voting merging method based on sig-
nal summing. The genome rearrangements of each class and each caller are sepa-
rately converted into a binary signal representation where a value of zero indicates 
the absence of the genome rearrangement and a value of one indicates its presence. 
The signal has the length of the reference genome used for alignment. The binary 
signals of SV callers for each SV type are summed together. In this signal, the value 
of three would denote a genome region called by three callers. Since it is a consensus 
merging process, the important parameter is the lower threshold, which determines 
which regions will be accepted. We call this parameter minCallers. The parameter 
minCallers was defined as the minimal number of callers supporting the presence of 
SV. Because we used six callers for the detection of deletions and duplications and 
four or three callers for the detection of inversions and insertions, respectively, we 
defined the minCallers parameter separately for CNVs, inversions, and insertions. 
These parameters can be set in the configuration file of the pipeline. Only events 
equal to or above this threshold are reported during postprocessing.

Multiplying the binary detection signal of the selected caller puts a higher weight 
on the caller. Generally, we do not employ weighting except for the insertion detec-
tion followed by the benchmarking. Thus, we doubled the weight of INSurVeyor 
in the detection. That means, that with minCallers of 2 for insertions, all events 
detected by INSurVeyor are detected. Alternatively, two other tools must call an 
insertion to be detected as positive.

During the merging, multiple overlapping reported SVs are created as a side effect. 
This process is graphically described in Fig. 2 and occurs because the coordinates of 
SVs reported by callers are not the same. The important parameter is user-defined 
maxGap. The maximum allowed distance between coordinates is defined such that 
the region is merged into one. If the distance between the corresponding start or 
stop coordinates reported by the original callers was greater than the maxGap value, 
the regions were reported as separate SVs. If the coordinates are in the range, we 
can use the information to report the narrowest and widest coordinates of a single 
SV. We call the narrowest coordinates the maxSup start and stop coordinates (see 
Fig. 2).

In certain cases, the SV signal consists of shorter peaks with a certain base value; 
e.g., the region was called one long rearrangement by two callers and multiple 
shorter rearrangements by another caller. In this case, depending on the maxGap 
value, there could be a single long SV with the support of 2 and multiple shorter SVs 
with greater support.

In the last step of the process of merging, the SVs are backtracked to the original 
calls reported by SV callers. This process serves to obtain the additional information 
reported by callers. Furthermore, the algorithms report the number of participating 
subevents together with their relative coverage. For example, an SV is covered by 
a certain number of smaller events called by a certain tool, and these events cover 
approximately 90% of the merged SV. The final result is formatted as a tab-separated 
(tsv) file. The merging algorithm is implemented as an R script and is called by the 
Snakemake workflow with user-defined parameters.
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Results
Datasets

We created four artificial datasets to benchmark our pipeline. The first dataset is used 
to establish the optimal minCallers threshold values (minCallers dataset). The second 
dataset is used to validate these values and to benchmark the performance with other 
tools and pipelines (SV dataset). The third one has already been used in the past to 
benchmark CNV detection in bacterial genomes (CNV dataset) [12, 13]. Lastly, we 
evaluated the impact of GC content on detection. For overview see Supplementary 
Table.

The first two datasets benchmark all SV types separately. We randomly defined 100 
SVs for each SV type, deletion, duplication, inversion, and insertion (400 SVs com-
bined). The length of the SVs ranged from 50 to 10,000 bp. We used SVim to generate 
these SVs [34]. Because SVsim simulates insertions by taking them from the other 
chromosomes in the input FASTA file, we have to use our in-house script to create 
artificial insertions. We benchmarked these coverage values as follows: 5 × , 10 × , 
20 × , 50 × , and 100 × . The minCallers dataset uses Escherichia coli str. K-12 sub-
str. MDS42 (GenBank: AP012306.1) as source of sequencing reads. We benchmarked 
insertions from another different bacteria and from another strain of E. coli to see 
how detection performs based on the origin of insertions sequence (see Supplemen-
tary Table for sequence details). The read length was 150 bp.

Fig. 2  Overview of the SVs merging process. A The illustration of the SV signal and the effect of different 
start-stop coordinates by various callers. The colored dots indicate the values of start-stop coordinates. B The 
table of reported SVs from the example above. C The merged SVs if the start-stop coordinates are below the 
maxGap threshold for merging
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The SV dataset was created in the K. pneumoniae genome subsp. pneumoniae NTUH-
K2044 (GenBank: NC_012731), and artificial insertions were inserted from the S. aureus 
subsp. aureus USA300_FPR3757 genome (GenBank: NC_007793.1). The read length was 
75 bp.

The third CNV dataset consists of 30 artificial deletions and duplications of various 
short lengths and copy numbers imputed into the genome of Staphylococcus aureus 
subsp. aureus TW20 (GenBank: NC_017331). We benchmarked four coverage values: 
5 × , 10 × , 20 × , 100 × , and 200 × . The read length was 75  bp. Artificial reads for all 
datasets were generated with art-sim [35].

The real samples dataset contains sequencing data for bacterial isolates from three 
projects, which are listed in Supplementary Table [36–38]. In these datasets, there were 
190 bacterial isolate samples sequenced with short reads with an average coverage of 
60 × to 350 × .

Artificial benchmarking involves resolving several aspects. First, efficient minCallers 
values are set based on the performance metrics. Second, we measured the performance 
of ProcaryaSV’s merging algorithm against the SURVIVOR merging algorithm. Third, 
the performance of the whole pipeline was compared to that of the Parliament2 pipeline. 
Lastly, we can see how merging improves the detection compared to individual callers.

Defining optimal minCallers values

We employed the first dataset to obtain ideal values of minimal consensus threshold 
called minCallers in our pipeline. The minCallers values are defined independently for 
CNVs, inversions, and insertions.

We assessed the optimal value of the minCallers parameters with the use of precision 
and recall values (see Supplementary Table). We ran the pipeline multiple times with 
different minCallers values being set. Then, we calculated performance scores for all the 
minCallers and coverage levels.

For CNVs, defining exact minCallers values is not straightforward. The range of val-
ues from 2 to 4 seems to be optimal for coverage above 20 × . For lower coverage, set-
ting minCallers to 2 or 3 is optimal. We repeated the analysis of optimal minCallers in 
the CNV dataset, which includes very small CNVs. Here, we discovered that the min-
Callers set to 2 achieved the highest accuracy and F1 scores across all coverage levels. 
Many false positives were detected for the minCallers set to 1, caused by Pindel and 
CNproScan, and were eliminated by increasing the value to 2. On the other hand, Pindel 
and CNproScan were able to detect the shortest CNVs. Observing the precision-recall 
curves (see Supplementary Table), we conclude that the optimal value of minCallers is 
2 for a broad range of CNV lengths, including small lengths. For generally longer CNVs, 
which are easier to detect, the minCallers can be set to a value of 3 or 4.

For inversions, the optimal minCallers value is 2. As inversions can be detected by 
three detection tools at most, the choice of 2 was straightforward. Also, the detection of 
inversions is not coverage-dependent.

Insertions are most effectively called by INSurVeyor and three other tools. Since the 
elevated weight for INSurVeyor, the values 1 and 2 perform similarly. Furthermore, 
we compared the performance of insertion detection with distant and more similar 
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sequences. Insertions of taxonomically close origin (different strain of bacteria in this 
case) are more challenging to detect.

Artificial CNV dataset

We used the CNV dataset to evaluate the performance of ProcaryaSV for detecting 
small CNVs and to estimate the optimal value of the minCallers parameter for small 
CNV detection (see previous section). The complete results and plots are provided in 
the Supplementary Table.

Second, we compared ProcaryaSV’s merging algorithm with the SURVIVOR merg-
ing algorithm. SURVIVOR was chosen because of its easy implementation and usabil-
ity with selected callers. Additionally, we tested the SVDB merging tool [39]; however, 
the output was not reliable for use because the SVDB merging tool inserts modified 
sequences into the vcf file. The SURVIVOR merge settings for minimal callers were 
set to 2, the maximum allowed distance was set to 1000, and the minimal considered 
SV length was set to 1. The minCallers parameter of ProcaryaSV was also set to 2. We 
achieved similar results, as shown in Table 2. The values in bold signify the highest 
values. The ProcaryaSV had higher accuracy and F1 scores for 20 × and higher cover-
age by a few percent. Generally, the results are comparable to what we expected. The 
results reflect the congruency between the methods.

Third, we compared the performance against the Parliament2 pipeline. We used 
Parliament2 with Breakdancer[40], CNVnator[19], DELLY2[21], Manta[41], and 
LUMPY[20]. Merging in Parliament2 is performed natively with SURVIVOR[30]. We 
put the results into Table 2. The first notion is that Parliament2 results are less cover-
age independent. However, we achieved higher scores except for precision and speci-
ficity at 100 × and 200 × coverage.

Finally, we analyzed the redundant tools via UpSet plots [42]. These plots are in 
the Supplementary Table. Considering only CNVs, the CNVnator detected the least 

Table 2  Results of the artificial CNV dataset (ProcaryaSV minCallers 2)

Coverage Accuracy Sensitivity Precision Specificity F1 score

ProcaryaSV 5 ×  90.0 80.0 100.0 100.0 88.8
10 ×  90.0 80.0 100.0 100.0 88.9
20 ×  90.0 80.0 100.0 100.0 88.9
100 ×  87.3 83.3 89.3 90.9 86.2
200 ×  88.9 86.7 89.7 90.9 88.1

SURVIVOR 5 ×  88.5 80.0 96.0 96.8 87.3

10 ×  90.0 80.0 100.0 100.0 88.9

20 ×  85.0 70.0 100.0 100.0 82.4

100 ×  87.1 80.0 92.3 93.8 85.7

200 ×  85.5 76.7 92.0 93.8 83.6

Parliament2 5 ×  78.3 56.7 100.0 100.0 72.3

10 ×  78.3 56.7 100.0 100.0 72.3

20 ×  83.3 66.7 100.0 100.0 80.0

100 ×  83.3 66.7 100.0 100.0 80.0

200 ×  83.3 66.7 100.0 100.0 80.0
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number of CNVs. None of them were detected uniquely by the CNVnator. On the 
other hand, it participated in the detection of some low-coverage events.

We also evaluated individual callers separately to see how the SV merging improved 
overall detection (see Supplementary Table). Regarding the F1 scores, the DELLY2 
and LUMPY are the best-performing tools across all the coverage levels. In sensitivity, 
the CNproScan detects the highest number of true positives. Generally, the merging 
of small-sized CNVs brought performance benefits.

Artificial SV dataset

We benchmarked the performance also on the validation SV dataset and compared it 
again with SURVIVOR, Parliament2, and independent tools. We set the minCallers 
threshold for all SV types to 2 but also included a value of 3 for CNVs. The F1 scores 
of the competing methods are shown in Table 3. For the rest of the metrics and plots, 
see Supplementary Table.

The performance for deletions and duplications was stable across different coverage 
values. The detection of large CNVs is not as dependent on coverage as the detection 
of short CNVs is. The inversion results were also stable, with a small decrease toward 
high coverage. This was caused by 5 inversions misclassified as duplications.

The most challenging part was the detection of insertions. This is attributed to 
the nature of short-read sequencing. In the evaluation, we increased the boundaries 
of the exact breakpoints by 50  bp so that we could match the breakpoints with the 
detected insertions. Of the four tools used to detect insertions, three can detect only 
short insertions via split-read alignment (Pindel, LUMPY, DELLY2). This requires 
that the length of the insertion fit into a single read length [20–22]. Furthermore, 
detection is difficult when the insertion is similar to regions in the reference genome. 
The employed INSurVeyor uses read-pair and de novo assembly methods to detect a 

Table 3  F1 scores of the artificial SV dataset (ProcaryaSV minCallersCNV = 2, minCallersINV = 2, 
minCallersINS = 2)

Coverage Deletions Duplications Inversions Insertions

ProcaryaSV 5 ×  97.1 98.5 100.0 27.4
10 ×  100.0 99.0 99.5 65.1
20 ×  100.0 99.5 99.5 77.2
50 ×  99.5 99.5 98.0 76.5
100 ×  98.0 98.0 95.7 59.3

SURVIVOR 5 ×  83.5 80.2 80.6 0.0

10 ×  99.5 99.0 97.1 3.8

20 ×  99.0 99.5 100.0 13.1

50 ×  97.5 98.0 99.0 12.7

100 ×  95.1 98.0 97.1 10.7

Parliament2 5 ×  98.0 98.5 87.0 0.0

10 ×  98.5 99.0 98.5 1.9

20 ×  98.5 99.5 100.0 8.6

50 ×  97.4 99.5 100.0 11.8

100 ×  97.4 99.5 100.0 13.1
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larger scope of insertions [23]. INSurVeyor is responsible for a major boost in inser-
tion detection against competitors.

As previously described, the merging results are comparable between the two imple-
mented algorithms, ProcaryaSV’s and SURVIVOR’s merging methods. The differences 
are small, benefitting the first method by a few points.

ProcaryaSV slightly outperformed Parliament2 in terms of deletions and largely in 
detection insertions. The Parliament2 was slightly better in inversions. Both pipelines 
performed similarly in duplications. The performance of Parliament2 matched the per-
formance of ProcaryaSV when minCallers were set to 2.

DELLY2 and LUMPY, as in the CNV dataset, are very well-performing tools in the 
detection of deletions, duplications, and inversions. Unlike in CNV dataset results with 
short CNVs and indels, the performance of these two individual tools is comparable 
with the merging approach. However, when we observed the results, we noticed that 
individual tools tend to call multiple shorter events along the original long SV. All these 
are detected as true positives in our case (as they overlap with defined intervals), but the 
merging method overcomes this drawback of individual callers and merges them into 
one continuous event.

Finally, we observed the performance of each tool via UpSet plots of the true-positive 
SVs (see Supplementary Table). Unlike for short CNVs, the least well-performing tool 
for CNV detection was Pindel. The majority of events were detected by the other tools. 
Pindel was more useful for detecting inversions, yet a large share of detected inversions 
were also called by other tools. In contrast, Pindel is indispensable for insertion detec-
tion. Most of the insertions were detected with INSurVeyor seconded by Pindel.

GC content impact on detection

Lastly, we evaluated the impact of GC content on detection. We benchmarked simulated 
CNV datasets of three different bacteria, representing low, middle, and high GC content. 
The selected bacteria were Staphylococcus aureus (GC 33%), Klebsiella pneumoniae (GC 
57%), and Anaeromyxobacter dehalogenans (GC 74%). The details about sequences and 
dataset creation are in the Supplementary Table, although the same recipe as in the SV 
dataset was used.

The detection results correspond to the previous results. The lowest and the highest 
coverage is slightly the most challenging. However, we found no performance impact 
associated with different GC content, as can be verified in the Supplementary Table.

Real dataset

Benchmarking on real data was performed to assess the usability of the pipeline for real 
data. Since no apriori-defined SVs are known, the space for evaluation is limited. We 
can conclude the overlap between various tools and features of detected SVs depending 
on the SV class and the caller. The results are provided in the Supplementary Table. All 
samples of the same species were pooled together in the final analysis.

All SV types were detected in samples of K. pneumoniae. The majority of inversions 
were called by DELLY2 and Pindel, unlike the combination of DELLY and LUMPY in 
the artificial dataset. The insertion results copied those of artificial ones, with DELLY2 
detecting a significant portion of the insertions. Interestingly, only two duplications were 
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detected by all five tools. The number of detected deletions was much greater. The L. 
casei samples had the lowest number of SVs. No insertions were detected. In contrast, S. 
aureus had high numbers of SVs called by multiple tools. There were 60 insertions called 
by both Pindel and INSurVeyor, and the number of inversions called by the three callers 
was also high.

Despite that we cannot point to the accuracy of the real dataset detection, it is inter-
esting to see the differences in detection compared to artificial datasets. While DELLY 
and LUMPY performed well as individual CNV and inversion callers on the artificial 
SV dataset, they each detected a distinct set of SVs. Here, we see fully the benefit of the 
merging approach.

Computational performance of ProcaryaSV

Data analysis of bacterial genomes, which are only megabases in length, is not a compu-
tationally demanding task given modern PC specifications. The pipeline was tested on 
a 12-thread CPU with 64 GB of RAM. The run times reported by the Snakemake work-
flow are in the Supplementary Table. The RAM usage generally did not exceed 10 GBs 
when 12 threads were used.

Discussion
We developed a consensus-based pipeline for structural variation detection in bacte-
rial genomes sequenced via short-read technologies. Although long-read sequencing, 
mainly nanopore sequencing, has become widely used in bacterial sequencing, short-
read sequencing is still widely used, and with the arrival of new vendors in the field, the 
costs of sequencing will likely further decrease [43].

While many SV detection tools and pipelines have been presented, not many were 
tested on bacterial genomes. There is a long-read SV detection pipeline [17] and a 
short-read SNV and indel pipeline [18], but there is a gap in the bacterial SV detection 
pipelines.

We compared our pipeline with Parliament2 [16]. Like in Parliament2, we also imple-
mented the SURVIVOR merging algorithm [30]. We developed our method for SV 
merging and tested it against SURVIVOR. The two merging methods are comparable 
in their results; in certain cases, our merging algorithm provides better results. Most 
importantly, our method enabled us to tweak the so-called minCallers parameter defin-
ing the minimal callers’ support to call an SV. We defined this parameter separately for 
CNVs, inversions, and insertions for the best performance.

Comparing the performance of the two pipelines for SV detection, ProcaryaSV, and 
Parliament2, the former produced better results across the whole dataset and drasti-
cally better results in insertion detection. Unlike Parliament2, our pipeline is a complete 
workflow that includes read trimming and alignment. Parliament2 requires an aligned 
BAM file. Additionally, ProcaryaSV is implemented in the popular Snakemake workflow, 
which is easy to configure, use, and modify ad hoc. Snakemake workflows are highly 
scalable in terms of performance.

An important step was the selection of tools to include in the pipeline. We used tools 
we had previously successfully tested [13], and they are also commonly used. We also 
included recently published INSurVeyor aimed at insertion detection. Therefore, we 
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were able to present results that outperformed those of the competition. Some tools 
could be skipped, and this can be performed easily by the user via a configuration file. 
CNVnator and Pindel could be two candidates for exclusion. Pindel detects several false 
positives but is useful for insertion detection. CNVnator participated modestly in the 
CNV dataset. However, when observing the UpSet plots, we believe that they are still 
usable and increase the robustness of the consensus voting-based approach.

We see the potential of the merging approach when observing the discordance 
between the results of artificial and real datasets in the overlap diagrams. Unlike in the 
in-silico data, detection tools detect distinct sets of structural variations. These differ-
ences point out the benefits of the merging approach.

General limitations of SV detection originate from the fact that we are inferring them 
from indirect signatures in the alignment data and that SVs are longer than the size of 
sequencing reads. Limitations we are specifically aware of are the insertion detection 
and merging algorithm designed for short genomes. Three callers out of four can detect 
only insertions fitting into the read length. Only INSurVeyor can detect larger ones. Fur-
thermore, the insertion detection is limited by the genomic origin of the insertion itself 
with genetically closer insertions being more challenging to detect. The ProcaryaSV’s 
merging algorithm was designed with bacteria-size genomes in mind and will take more 
computational time if the genome size increases beyond the usual size of several mil-
lions of bases. This is because of the signal representation of the reference genome.

Conclusions
In this study, we presented a ProcarySV, an SV/CNV detection workflow focused on 
bacterial research. We implemented a total of six tools to increase the performance met-
rics and to find the most accurate genome rearrangements. We also wanted to provide 
an easy-to-use workflow, which demands a certain kind of bioinformatics knowledge, 
yet saves time by studying the specifics of each detection tool and computing the tai-
lored inputs for some callers.

The essential task for acquiring high-accuracy results is the robust merging of genome 
rearrangements. Therefore, we also presented a novel merging algorithm based on a 
signal representation of detected events. This algorithm is suitable mainly for bacterial 
genomes because of their small size and the occurrence of small structural variations. It 
is also effective at merging multiple detection tools.

The pipeline covers the whole workflow beginning with the processing of sequencing 
reads, alignment, quality reports, and SV detection, ending with the final list of detected 
SVs.
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