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Background
Complex biological systems and processes such as tissue homeostasis [1, 2], neurotrans-
mission [3, 4], immune response [5], ontogenesis [6], and stem cell niches niche [7, 8] 
are composed of cell–cell interactions (CCIs). Many molecular biology studies have 
decomposed such systems into constituent parts (e.g., genes, proteins, and metabolites) 
to clarify their functions. Nevertheless, more sophisticated methodologies are required 
because CCIs essentially differentiate whole systems from functioning merely as the 
sum of their parts. Accordingly, micro-level measurements of such parts cannot always 
explain macro-level biological functions.

Previous studies have investigated CCIs using technologies such as fluorescence 
microscopy [9–13], microdevice-based methods such as microwells, micropatterns, sin-
gle-cell traps, droplet microfluidics, and micropillars [14–22], and transcriptome-based 
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methods [23–52]. In particular, the recent single-cell RNA-sequencing (scRNA-seq) 
studies have focused on CCIs based on ligand–receptor (L–R) gene co-expression. By 
investigating the detected cell types through scRNA-seq and the L–R pairs specifically 
expressed in the cell types, CCIs can potentially be understood at high resolution.

Despite their wide usage, the analytical methods based on L–R pairs are still not 
mature; such methods implicitly assume that CCIs consist of one-to-one relationships 
between two cell types and that the corresponding L–R co-expression is observed in a 
cell-type-specific manner. One study even removed ligand and receptor genes expressed 
in multiple cell types from their data matrix, assuming one-to-one CCIs [53]. In real 
empirical data, however, each ligand and receptor gene can be expressed across multiple 
cell types, and some studies have actually focused on many-to-many CCIs [25, 33, 36, 
48, 54]. Such a difference between actual CCI patterns composed of real data and the 
hypothesis assumed by a model will cause severe bias in the detection of CCIs.

For the above reason, we propose scTensor, which is a novel CCI prediction method 
based on a tensor decomposition algorithm. Our method regards CCIs as hypergraphs 
and extracts some representative triadic relationships consisting of ligand-expression, 
receptor-expression, and related L–R pairs. The main contributions of this article are 
summarized as follows.

•	 We developed a novel simulator to model the CCIs as hypergraphs and quantitatively 
evaluate the performance of scTensor and other L–R detection methods.

•	 We re-implement some L–R detection methods from scratch in order to analyze the 
same L–R database with all of these methods and focus on only the performance 
of L–R detection methods, not the slight differences in data pre-processing and the 
L–R database used.

•	 We show that scTensor’s performance with respect to its accuracy of many-to-
many CCI detection, computation time, and memory usage are superior to the other 
L–R detection methods.

•	 We describe the implementation of scTensor as an R/Bioconductor package to 
enable the reproducibility of data analyses as well as continuous maintenance and 
improvements. We provide some original visualization functions and a function to 
generate an HTML report in scTensor to enable detailed interpretation of the 
results. We have extended our framework to work with 125 species.

Results
CCI as a hypergraph

One of the simplest CCI representations is a directed graph, where each node represents 
a cell type and each edge represents the co-expression of all L–R pairs (Fig. 1a, left). The 
direction of each edge is set as the ligand expressing cell type → the receptor-expressing 
cell type. Such a data structure corresponds to an asymmetric adjacency matrix, in which 
each row and column represents a ligand-expressing cell type and receptor-expressing 
cell type, respectively. If some combinations of cell types are regarded as interacting, the 
corresponding elements of the matrix are filled with 1 and otherwise 0. If the degree of 
CCI is not a binary relationship, weighted graphs and corresponding weighted adjacent 
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matrices may also be used. The previous analytical methods are categorized within this 
approach [23, 24, 26–34, 36, 40, 43–46, 48, 49, 51, 52, 55].

The drawback of using an adjacency matrix to describe CCIs is that multiple L–R co-
expression scores are collapsed into a single value by summation or averaging. Because 
the average is simply a constant multiple of the sum, here we discuss only the sum. The 
summed value has no meaning in which L–R pairs are related to the CCI, and therefore 
CCIs and the related L–R pair lists cannot be detected simultaneously.

Fig. 1  Cell–cell interaction (CCI) as a hypergraph (CaH). a Previous scRNA-seq studies have regarded CCIs 
as graphs, and the corresponding data structure can be expressed as an adjacency matrix (left). In this work, 
CCIs are regarded as context-aware edges (hypergraphs), and the corresponding data structure is a tensor 
(right). b The CCI-tensor is generated by users’ scRNA-Seq matrices, cell-type labels, and ligand–receptor (L–R) 
databases. NTD-2 is used to extract CaHs from the CCI-tensor. c Each CaH(r1,r2) is equal to the outer product 
of three vectors. A(1)

:r1 represents the ligand expression pattern, A(2)
:r2 represents the receptor expression pattern, 

and Gr1,r2,: represents the patterns of related L–R pairs
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In contrast to an adjacency matrix (i.e., graph), the triadic relationship of CCIs also can 
be described as directed hypergraphs (i.e., CCI as hypergraph; CaH), where each node 
is a cell type but the edges are distinguished from each other by the different related 
L–R pair sets (Fig. 1a, right). Such a context-aware edge is called a “hyperedge” and is 
described as multiple different adjacency matrices. The set of matrices corresponds to a 
“tensor”, which is a generalization of a matrix to expand its order.

Overview of scTensor

Here we introduce the procedure of scTensor. Firstly, a tensor data is constructed 
through the following steps (Fig. 1b). A scRNA-seq matrix and the cellular labels speci-
fying cell types are supposed to be provided by users. Firstly, the gene expression val-
ues of each cell are normalized by count per median of library size (CPMED [56–58]) 
and logarithm transformation, for variance-stabilization, is performed to the data matrix 
[i.e., log10 (CPMED+ 1)].

Next, the data matrix is converted to a cell-type-level average matrix according to the 
cell type labels. Combined with an L–R database, two corresponding row-vectors of an 
L–R pair are extracted from the matrix. The outer product (direct product) of the two 
vectors is calculated, and a matrix is generated. The matrix can be considered as the sim-
ilarity matrix of all possible cell-type combinations for each L–R pair. Finally, for each 
L–R pair, the matrix is calculated, and the tensor χ ∈ R

J×J×K  , where J is the number of 
cell types and K is the number of L–R pairs, is generated as the merged matrices. In this 
work, this tensor is called the “CCI-tensor”.

After the construction of the CCI-tensor, we use the non-negative Tucker2 decompo-
sition (NTD-2) algorithm [59, 60]. NTD-2 decomposes the CCI-tensor as a core tensor 
G ∈ R

R1×R2×K  , and two factor matrices A(1) ∈ R
J×R1 and A(2) ∈ R

J×R2 , where R1 and R2 
are the NTD-2 rank parameters. The factor matrix A(1) describes the R1 of ligand gene 
expression patterns in each cell type and the factor matrix A(2) describes R2 of recep-
tor gene expression patterns in each cell type, and core tensor G describes the degree of 
association of all the combination ( R1× R2 ) of the ligand and receptor expression pat-
terns of each L–R pair.

The result of NTD-2 is considered the sum of some representative triadic relation-
ships. In this work, each triadic relationship is termed CaH(r1, r2) , which refers to the 
outer product of three vectors, A(1)

:r1 , A
(2)
:r2 , and Gr1,r2,: , where r1 ( 1 ≤ r1 ≤ R1 ) and r2 

( 1 ≤ r2 ≤ R2 ) are the indices of the columns of the two factor matrices (Fig.  1c). The 
CaHs are extracted in a data-driven way without the assumption of one-to-one CCIs. 
Therefore, this approach can also detect many-to-many CCIs according to the data 
complexity.

Evaluation of many‑to‑many CCIs detection

To examine the performance of the CCI methods in terms of detecting CaH, we vali-
dated the CCI methods using both simulated and empirical datasets (Fig. 2).

We first prepared 90 simulated datasets considering five numbers of cell types (3, 5, 
10, 20, or 30), two CCI styles (one-to-one or many-to-many including one-to-many and 
many-to-one), three numbers of CCI types (1, 3, or 5), and three threshold values (E2, 
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E5, or E10) for recognition of differentially expressed genes (DEGs). According to these 
conditions, ground truth CCIs were determined (Additional file 1).

Next, we prepared five real empirical datasets (FetalKidney [36], GermlineFe-
male [25], HeadandNeckCancer [54], Uterus [33], and VisualCortex [48]), 
each of which focused on many-to-many CCIs in their respective original papers.

There are many L–R scoring methods to quantify the degree of co-expression of ligand 
and receptor genes. We re-implemented four scores used in many CCI prediction meth-
ods to evaluate performance independent of software implementation (Table  1 and 
Additional file  1). Here, we selected as the four methods sum score (CellPhoneDB 
[37], Giotto [61], CrossTalkR [62], and Squidpy [63]), product score (NATME [64], 
FunRes [65], ICELLNET [66], and TraSig [67]) Halpern’s score [68], and Cabello 
− Aguilar’s score (SingleCellSignalR [69] and CellTalkDB [70]), each of which is 
widely used in many studies.

To differentiate significant CCIs from non-significant CCIs, many CCI methods intro-
duce a label permutation test with a random permutation of cell-type labels to simu-
late the null distribution of CCIs. This process is considered a kind of binarization (1 for 
significant CCIs, 0 for non-significant CCIs). For scTensor, binarization was realized 
by median absolute deviation (MAD) thresholding against each column vector in factor 
matrices calculated by tensor decomposition.

To quantitatively evaluate how selectively each CCI method was able to detect the 
ground truth CCIs before and after binarization, nine evaluation measures were intro-
duced. Four of them were applied both before and after binarization, and the remaining 
five were applied to the results only after binarization.

scTensor could selectively detect many‑to‑many CCIs in simulated datasets

The area under the curve of precision–recall (AUCPR) and Matthews correlation coef-
ficient (MCC) values of 30 datasets with an E10 threshold value are shown in Fig. 3. For 
the details of all the evaluation results for all the conditions, see Additional files 3–12. 
Figure  3 shows that the AUCPR values can vary among the CCI methods. When the 
CCI-style was one-to-one (Fig.  3a, left), scTensor (NTD-2) achieved the highest 

Fig. 2  Evaluation scheme. To evaluate CCI methods, 90 simulated datasets and six real empirical datasets 
were prepared. Four ligand–receptor (L–R) scoring methods and six binarization methods were then 
evaluated. For the evaluation of these methods, area under the receiver operating characteristic curve 
(AUCROC), area under the precision–recall curve (AUCPRC), memory usage, and computational time were 
determined. For the evaluation of binarization methods, F-measure, Matthews correlation coefficient (MCC), 
positive ratio (PR), false positive ratio (FPR), and false negative ratio (FNR) were determined
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AUCPR scores, and Halpern’s score obtained the second-highest AUCPR values 
on average. For Halpern’s score, however, binarization has significantly reduced 
the significant CCIs. This may be explained by Halpern’s score having the low-
est FPR (Additional file  10) and the highest FNR (Additional file  11), and it suggests 
that Halpern’s score is a quite conservative method to detect one-to-one CCIs. 
When the CCI-style was set as many-to-many, both the previous and current versions of 
scTensor (NTD-3 and NTD-2, respectively) achieved higher AUCPR values on aver-
age (Additional file 4), compared with the other methods (Fig. 3a, right).

Figure  3b shows that the MCC values also varied among the CCI methods. When 
the CCI-style was one-to-one (Fig.  3b, left), Halpern’s score achieved the high-
est MCC values and scTensor (NTD-2) obtained the second-highest values on aver-
age (Additional file  8). When the CCI-style was many-to-many, scTensor (NTD-2) 
and sum score obtained the highest MCC values, compared with the other methods 
(Fig. 3b, right).

Characteristics of scTensor (NTD‑2), Halpern’s score, and sum score

The comprehensive validation described that the three methods (scTensor (NTD-2), 
Halpern’s score, and sum score) performed better than the others under certain 
conditions. To further examine the characteristics and trends of each method, we aggre-
gated the number of CCIs detected in three datasets in which each of the three methods 
excelled (Fig. 4).

Fig. 3  Results of simulated datasets. a Area under the curve of precision–recall (AUCPR) of all the methods. b 
Matthews correlation coefficient (MCC) of the binarization methods
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scTensor (NTD-2): this method performed well when the CCI style was many-to-
many. For example, in Fig. 4a, most many-to-many CCIs could be detected. Although 
there were some false negative (FN) CCIs that were not detected, there were fewer false 
positive (FP) CCIs. In contrast, Halpern’s score was too conservative against this 
dataset and failed to detect most of the CCIs by the label permutation test. At a first 
glance of Fig. 4a, the sum score appears to work well with these data, but under scru-
tiny at the level of individual L–R pairs, sum score results contain many FP and FN 
CCIs (Additional file 13).
Sum score: This method performed well when the number of cell types was small 

and the style of CCI was restricted to one-to-one (Fig. 4b). Even though Halpern’s 
score and scTensor (NTD-2) were able to detect similar CCIs, Halpern’s score 
was quite conservative and contained many FN CCIs because it considered many CCIs 
to not be significant. For sum score, there seemed to be a bias toward FP CCIs. If 
the degree of co-expression of an L–R pair is high between two cell types, this method 
seems to detect FP pairs in which only one of the L–R is highly expressed. In such cases, 
cross-shaped patterns were observed in the heatmap in Fig.  4. In our simulated data-
sets, this cross-shaped pattern of FP CCIs were observed more frequently in the sum 
score.
Halpern’s score: In most data sets, Halpern’s score was found to be too 

conservative, with many FN CCIs, but in a very specific situation, that is, when the 

Fig. 4  Analyses of three datasets in which each of the three methods excelled. Summary of the number of 
significant cell–cell interactions (CCIs) with a three cell types, one CCI types, one-to-one CCI style, and 1st-CCI 
type; b 20 cell types, five CCI types, many-to-many CCI style, 2nd-CCI type; and c 30 cell types, five CCI types, 
many-to-many CCI style, 5th-CCI type. The y-axis (L) and x-axis (R) indicate the ligand-expressing cell types 
and the receptor-expressing cell types, respectively. FN and FP indicate false negative and false positive CCIs, 
respectively
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CCI-style was one-to-all (or all-to-one), it outperformed the other methods (Fig. 4c). In 
contrast, scTensor (NTD-2) inferred many FN CCIs among these data, while the sum 
score identified many FP CCIs (Additional file 13).

scTensor could selectively detect many‑to‑many CCIs in real datasets

Next, we applied these CCI methods to real empirical datasets (Table 2 and Additional 
files 3–12). As expected from the results of simulated datasets, scTensor (NTD-2) 
outperformed the other methods on these real datasets, which contain many-to-many 
CCIs. Regarding AUCPR (Fig.  5a) and MCC (Fig.  5b) values, scTensor (NTD-2) 
achieved higher values compared with the other methods, although the difficulty of 
detecting the CCIs was highly dependent on the dataset (Additional files 4, 8). We fur-
ther investigated the real empirical datasets and found that the known CCIs reported by 
the original papers were reproduced by scTensor (Table 3). Additionally, some pre-
dicted many-to-many CCIs can be considered biologically plausible because the CCIs 
are related to the same signaling pathways of known CCIs, although the original papers 
did not refer to the CCIs. These results can be interactively investigated using the HTML 
report generated by scTensor (Additional files 13–17).

Computational complexity and memory usage

We also assessed the orders of computational complexity and memory usage of all the 
CCI methods (Table 4). All the L–R score methods require O(N 2L) order both in the 
computation and in memory usage, where N is the number of cell types and L is the 
number of L–R pairs. The label permutation tests combining any L–R scores require 
O(N 2LP) in computation, where P is the number of random shuffles of cell-type labels. 

Fig. 5  Cell–cell interaction (CCI) identification results from real empirical datasets. a Area under the curve 
of precision–recall (AUCPR) of all the methods. b Matthews correlation coefficient (MCC) of the binarization 
methods
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In many cases, P is typically set as a large value greater than 1000 [37, 69], making this a 
very time-consuming calculation.

In contrast, scTensor (NTD-2) does not perform the label permutation; instead, it 
simply utilizes the factor matrices after the decomposition of the CCI-tensor. Hence, the 
order of computational complexity is reduced to O(N 2L(R1+ R2)) , where R1 and R2 are 
the number of columns or “rank” parameters for the first- and second-factor matrices, 
respectively. The rank parameters are typically set as small numbers (e.g., 10), this leads 
to a substantial computational advantage compared with the label permutation test. The 
computation time and memory usage when analyzing the simulated and real empirical 
datasets show that scTensor has an advantage in computational complexity compared 
with the label permutation test (Additional files 5, 6).

Method comparisons

The first method similar to scTensor is CellChat. This method uses the commu-
nication probabilities (3rd-order tensor), which is a CCI tensor constructed with the 
authors’ original score and is normalized so that the sum in the second mode is 1. In 
addition to the label permutation test on each L–R pair in the third-order tensor, NMF 
on the matrix data summarized by the second mode of the 3rd-order tensor is per-
formed to detect global CCI patterns. However, this summarization reduces the order 
of tensor (i.e., 3rd to 2nd) and loses information on which L–R pairs contributed to the 
CCI. In particular, as this study has shown, the label permutation test tends to detect 
one-to-one CCI, whereas NMF may also detect many-vs-many CCI, making it difficult 
to consider many-vs-many CCI and the L–R pairs that contribute to it simultaneously, 
even when the two methods are combined. Therefore, models like scTensor that can 
handle higher-order data as is are preferable.

Inspired by our method, another method Tensor-cell2cell [71] extended our 
approach to higher-order CCI tensors (e.g., 4th-order tensors) to consider CCIs and the 
CCI contexts (e.g., disease state, organismal life stage, and tissue microenvironment) 
simultaneously. Other than its effectiveness for such a higher-order CCI tensor, the main 
differences between Tensor-cell2cell and scTensor may include the following. 
First, Tensor-cell2cell is implemented by Python but scTensor is implemented 
by R. Python offers a wide range of machine learning/deep learning packages, while R 
offers data preprocessing and visualization with TidyVerse and bioinformatics-related 
packages with Bioconductor.

Second, there are differences in tensor decomposition models; Tensor-cell2cell 
performs CANDECOMP/PARAFAC-type non-negative tensor decomposition but 
scTensor’s model is NTD-2. The difference between these models is the number of 
rank parameters. Tensor-cell2cell has only one rank parameter, while scTen-
sor has rank parameters for the number of tensor orders (i.e. 3). This difference can be 
an advantage or a disadvantage; a small number of ranks reduces the computational time 
required to estimate the optimal ranks but it might make the model too simple.

Third, there are differences in the related tools. Tensor-cell2cell assumes their 
text file for input, it only supports major species such as mouse and human, and it seems 
to assume to be used with LIANA [72, 73], another CCI tool of the authors. On the 
other hand, scTensor supports 124 species (September 5, 2024) in the Bioconductor 
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package LRBase, and can be combined with various other single-cell packages via the 
SingleCellExperiment object and Seurat (see Implementations and Fig. 6). With 
an understanding of these differences, users should choose the tool they want to use 
according to what they want to do.

Implementations

scTensor is implemented as an R/Bioconductor package that is freely available. 
Both a scRNA-seq dataset and L–R database are required for scTensor execution. 
The default format for a scRNA-seq dataset is SingleCellExperiment, in which 
the gene IDs correspond to NCBI’s Gene database to allow links with other databases 
(Fig. 6a). A scRNA-seq dataset can also be converted from a Seurat object. We pro-
vided instructions for this data conversion (https://​bioco​nduct​or.​org/​packa​ges/​relea​
se/​bioc/​vigne​ttes/​scTen​sor/​inst/​doc/​scTen​sor_1_​Data_​format_​ID_​Conve​rsion.​html#​
case-​iii-​umi-​count).
LRBase, which is the L–R database for scTensor, is stored on a remote server 

called AnnotationHub and is downloaded to the user’s machine on demand, only 
when called by the user (Fig. 6a). To extend out method to a wide range of organisms, in 
this work, we originally constructed and are providing the L–R lists for 125 organisms 
(https://​github.​com/​riken​bit/​lrbase-​workf​low/​blob/​master/​sample_​sheet/​sample_​sheet.​

Fig. 6  Implementation of the scTensor package. a scTensor is an R package that requires the input 
of both an scRNA-Seq expression matrix (SingleCellExperiment or Seurat) and a ligand–receptor 
(L–R) database (LRBase). The LRBase is retrieved from the AnnotationHub remote server, after which a 
LRBase object is created. b Using these objects, scTensor generates an HTML report file, and the results 
of cell–cell interaction (CCI) analysis can be visualized with a wide variety of plots

https://bioconductor.org/packages/release/bioc/vignettes/scTensor/inst/doc/scTensor_1_Data_format_ID_Conversion.html#case-iii-umi-count
https://bioconductor.org/packages/release/bioc/vignettes/scTensor/inst/doc/scTensor_1_Data_format_ID_Conversion.html#case-iii-umi-count
https://bioconductor.org/packages/release/bioc/vignettes/scTensor/inst/doc/scTensor_1_Data_format_ID_Conversion.html#case-iii-umi-count
https://github.com/rikenbit/lrbase-workflow/blob/master/sample_sheet/sample_sheet.csv
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csv). The details of the data processing pipeline are summarized in the README.md 
of lrbase-workflow (https://​github.​com/​riken​bit/​lrbase-​workf​low), which is a workflow 
for constructing the LRBase for each of the species. For data sustainability, we offer the 
data files, including older versions, on the AnnotationHub server. The data files are 
bi-annually updated in conjunction with Bioconductor updates and are provided using 
lrbase-workflow. Users can specify which version of the data is used for analysis, thus 
ensuring data reproducibility.

NTD-2 was implemented as within the function of nnTensor [74] R/CRAN package 
and internally imported into scTensor. scTensor constructs the CCI-tensor, decom-
poses the tensor by the NTD-2 algorithm, and generates an HTML report.

To enhance the biological interpretation of CaH results, we implemented some vis-
ualization functions (Fig.  6a) and these plots can be interactively investigated via web 
browser. A wide variety of gene-wise information is included in the report and can be 
linked to the L–R lists through the use of other R/Bioconductor packages; the gene anno-
tation is assigned by biomaRt [75] (Gene Name, Description, Gene Ontology [GO], 
STRING, and UniProtKB), reactome.db [76] (Reactome) and MeSH.XXX.eg.db 
[77] (Medical Subject Headings [MeSH]), while the enrichment analysis (also known as 
over-representative analysis [ORA]) is performed by GOstats [78] (GO-ORA), meshr 
[77] (MeSH-ORA), ReactomePA [79] (Reactome-ORA), and DOSE [80] (Disease 
Ontology (DO)-ORA, Network of Cancer Genes (NCG)-ORA, DisGeNET-ORA).

To validate that the detected the co-expression of L–R gene pairs is also consist-
ently detected in the other data including tissue- or cell-type-level transcriptome data, 
the hyperlinks to RefEx [81], Expression Atlas [82], SingleCell Expression Atlas [83], 
scRNASeqDB [84], and PanglaoDB [85] are embedded in the HTML report, facilitat-
ing comparisons of the L–R expression results with the data from large-scale genom-
ics projects such as GTEx [86], FANTOM5 [87], the NIH Epigenomics Roadmap [88], 
ENCODE [89], and the Human Protein Atlas [90]. Additionally, in consideration of users 
who might want to experimentally investigate detected CCIs, we embedded hyperlinks 
to Connectivity Map (CMap [91]), which provides relationships between perturbations 
by the addition of particular chemical compounds/genetic reagents and the resulting 
gene expression change.

Discussion
In this work, we regarded CCIs as CaHs, which represent the triadic relationships of 
ligand-expressing cell types, receptor-expressing cell types, and the related L–R pairs. 
We implemented a novel algorithm scTensor based on a tensor decomposition algo-
rithm for detecting such CaHs. Our evaluations using both simulated and real empirical 
datasets suggest that scTensor can detect many-to-many CCIs more accurately than 
the other conventional CCI methods. Additionally, the calculation time and memory 
usage performances of scTensor are also superior to those of the other CCI methods.

To extend the use of scTensor to a wide range of organisms, we also created multi-
ple L–R datasets for 125 organisms. scTensor has been published as an R/Bioconduc-
tor package, facilitating the reproducibility of data analysis and the maintainability of 
datasets. We also implemented an HTML report function that simplifies checking the 

https://github.com/rikenbit/lrbase-workflow/blob/master/sample_sheet/sample_sheet.csv
https://github.com/rikenbit/lrbase-workflow
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analysis results of scTensor. Like many CCI tools, scTensor can import an external 
L–R database.

In the development of many CCI tools, the authors also develop their own L–R data-
bases and investigate the differences among various L–R databases, particulaly when 
comparing their method with other conventional methods [72]. This makes it difficult to 
distinguish whether the performance of a method is caused by differences in algorithms 
or databases. Although the primary CCI resources used for existing L–R tools are highly 
duplicated, even slight differences can influence the detection of CCIs [72]. Therefore, 
to separate these two comparisons and to focus only on the algorithmic differences, in 
this work, we compared several existing CCI algorithms, by re-implementing them and 
anchoring them to a common L–R database.

We were also able to examine several strengths and weaknesses of the methods other 
than scTensor. For example, Halpern’s score was found to be too conservative 
with many FN CCIs, but it was superior to the other methods with respect to the detec-
tion of one-to-all (or all-to-one) CCIs. A possible reason for this is that since the formula 
for this score includes the square root of the chi-square distribution with two degree of 
freedom (or an exponential distribution with an expected value of 2), and these distribu-
tions are known to be heavy-tailed to some extent, thus potentially inflating the number 
of significant L–R pairs.

The permutation test implicitly assumes that the interactions occur between very 
few cell types because the larger the observed L–R score is than the empirical distribu-
tion computed by label permutation, the more significant the test result is. However, if 
the expression levels of ligand and receptor genes are high in any cell of any cell type, 
the L–R scores calculated by the label permutation are will also be high, and thus, the 
observed value of the L–R score will be regarded as not a particularly high value in the 
empirical distribution; consequently, such a test result will be not significant. Therefore, 
detection of many-to-many CCIs by label permutation test is difficult in principle. In 
the extreme case of all-to-all CCIs, the current approaches (although it also includes 
scTensor) cannot avoid FN CCIs.

There are still some plans to improve scTensor to build on the advantages of this 
current framework. For example, the algorithm can be improved by utilizing accelera-
tion techniques such as randomized algorithm/sketching methods [92], incremental 
algorithm/stochastic optimization [93, 94], or distributed computing on large-scale 
memory machines [95] for tensor decomposition, as is now available.

To reduce the memory usage of scTensor, we are developing DelayedTensor 
[96], which is an R/Bioconductor package to perform various tensor arithmetic and ten-
sor decomposition algorithms based on DelayedArray [97], another R/Bioconductor 
package for handling out-of-core multidimensional arrays in R. We intend to reduce the 
memory usage of scTensor by supporting this data format.

Tensor data formats are very flexible ways to represent heterogeneous biological data 
structures [98], because they easily integrate supplemental information about genes or 
cell types in a semi-supervised manner. Such information could extend the scope of the 
data and thus improve the accuracy of inferences. For example, there are some attempts 
to use the following additional information for CCI detection as well (for more details, 
see Additional file 1).
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•	 CCI inference via receptor-receptor and extracellular matrix data [51, 99].
•	 Consideration of multi-subunit complexes [37].
•	 Comparison of CCIs across multiple conditions [62, 71, 100–106].
•	 Consideration of downstream transcriptional factors, target genes, and signaling 

pathways [69, 107–109].
•	 Integration with bulk RNA-Seq or other type of omics datasets [37, 64, 65, 107–110].
•	 Integration with pseudo-time [67, 111, 112].
•	 Integration with spatial transcriptome data [113].

In particular, in a recent benchmark study [113], the proximity of spatial coordinates on 
tissue sections measured by spatial transcriptome technology and the CCI detected by 
L–R data were correlated, and some studies have attempted to integrate these two kinds 
of datasets a single model ([113] and Additional file 1). Auxiliary Information such as the 
proximity in spatial coordinates can be incorporated as a regularization term to extend 
the tensor decomposition model [114–116].

Although it is beyond the scope of the present paper to cover all of the above-
mentioned topics, considering these in the framework of tensor decomposition is 
a promising research direction, so we aim to continuously work on these through the 
development of updates and releases of scTensor for Bioconductor.

Conclusion
In this work, we present and evaluate scTensor, a new method for detecting CCIs 
based on L–R co-expression in scRNA-seq datasets. We also revealed that the widely 
used label permutation test has a bias that impedes the detection of many-to-many CCIs 
and demonstrated that the proposed method is a viable alternative.

Materials and methods
Simulated datasets

The simulated single-cell gene expression data were sampled from the negative binomial 
distribution NB

(

fgcmg ,φg
)

 , where fgc is the fold-change (FC) for gene g and cell type 
c, and mg and φg are the average gene expression and the dispersion parameter of the 
expression of gene g, respectively.

The mg value and gene-wise variance vg were calculated from a real scRNA-seq dataset 
of mouse embryonic stem cells (mESCs) measured by Quartz-Seq [117], and the gene-
wise dispersion parameter φg was estimated as φg = vg −mg /m2

g.
For the determination of differentially expressed genes (DEGs) and non-DEGs, fgc 

values were calculated based on the non-linear relationship of FC and the gene expres-
sion level log10 fgc = a exp(−b log10

(

mg + 1
)

) . To estimate the parameters a and b, we 
detected the DEGs using edgeR. By setting the threshold values (i.e., false discovery 
rate) of edgeR as 10−2 (E2), 10−5 (E5), and 10−10 (E10) and using the resulting DEGs, 
a and b values for each threshold were estimated as (0.701, 0.363), (1.907, 0.666), and 
(4.429, 0.814), respectively.

For genes identified as DEGs based on a threshold according to the non-linear relation-
ship above, the estimated fgc value was used, otherwise, 1 is specified as fgc . If a ligand 
gene of a cell type and a receptor gene of a cell type were both DEGs, we defined the 
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relationship between these cell types as the ground truth CCIs and used them for quantita-
tive evaluation.

To simulate the “dropout” phenomenon of scRNA-seq experiments, we also introduced 
the dropout probability pgcdropout = exp(−cfgcm

2
g ) , which is used in ZIFA [118] (default, 

c=1), and the expression values were randomly converted to 0 according to the dropout 
probability.

To simulate various situations, we set many different CCI tensors, considering the num-
ber of cell types (3, 5, 10, 20, or 30), the style of CCIs (one-to-one or many-to-many includ-
ing one-to-many and many-to-one), the number of types of CCIs (1, 3, or 5), and the DEG 
threshold value (E2, E5, or E10); in total, 90 synthetic CCI tensors were generated.

scRNA‑seq real datasets

The gene expression matrix of human FetalKidney data was retrieved from the GEO 
database (GSE109205), and only highly variable genes (HVGs: http://​pklab.​med.​harva​rd.​
edu/​scw20​14/​subpop_​tutor​ial.​html) with low P values ( ≤ 1E−1) were extracted. The cell-
type label data were provided by the authors upon our request.

The gene expression matrix of human GermlineFemale data was retrieved from the 
GEO database (GSE86146), and only HVGs with low P values ( ≤ 1E−7) were extracted.

The gene expression matrix and the cell-type labels of human HeadandNeckCancer 
data were retrieved from the GEO database (GSE103322), and only HVGs with low P val-
ues ( ≤ 1E−1) were extracted.

The gene expression matrix of mouse Uterus data was retrieved from the GEO data-
base (GSE118180), and only HVGs with low P values ( ≤ 1E−1) were extracted. The cell-
type labels were provided by the authors upon our request.

The gene expression matrix and the cell-type labels of mouse VisualCortex data were 
retrieved from the GEO database (GSE102827), and only HVGs with low P values ( ≤ 1E−1) 
were extracted.

The gene expression values of each cell are normalized by CPMED [56–58] and logarithm 
transformation, for variance-stabilization, is performed to the data matrix. For analyzing 
these real datasets, known L–R pairs in DLRP [119], IUPHAR [120], and HPMR [121] were 
searched in the data matrix. We defined the ground truth CCIs between two cell types if 
the CCIs were reported by the original studies. The L–R pairs associated with the CCIs 
were used for quantitative evaluation.

scTensor algorithm

CCI‑tensor construction

Here, data matrix Y ∈ R
I×H is the gene expression matrix of scRNA-seq data, where I is 

the number of genes and H is the number of cells. Matrix Y  is converted into cell-type-
wise average matrix X ∈ R

I×J , where J is the number of cell types. The cell-type labels are 
assumed to be specified by the user’s prior analysis, such as clustering or confirmation of 
marker gene expression. The relationship between the X and Y  is described below:

where the matrix A ∈ R
H×J converts cellular-level matrix Y  to cell-type-level matrix X 

and each element of A is

(1)X = YA,

http://pklab.med.harvard.edu/scw2014/subpop_tutorial.html
http://pklab.med.harvard.edu/scw2014/subpop_tutorial.html
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where nj is the number of cells belonging to the j’s cell type.
Next, we search to determine whether any L–R pairs stored in the L–R database are 

both in the row names of matrix X, and if both IDs are found, corresponding J-length 
row-vectors of the ligand and receptor genes ( xL and xR ) are extracted.

Finally, a J × J  matrix is calculated as the outer product of xL and xR and incre-
mentally stored. The stacked J × J  matrices can be considered as a three-dimensional 
array, which is also known as a three-order tensor. The following outer product in the 
kth L–R pair ( L(k) and R(k) ) found is stored as the frontal slice (sub-tensor) of the 
CCI-tensor χ ∈ R

J×J×K :

Non‑negative Tucker3 decomposition (NTD‑3)

To extract the CaHs from the CCI-tensor χ ∈ R
J×J×K  , we utilize NTD-3 and NTD-2, 

which are generalizations of non-negative matrix factorization (NMF) to tensor data 
[59, 60]. The NMF approximates a non-negative matrix data as the product of two 
lower rank non-negative matrices (also known as factor matrices). Similar to NMF, 
NTD-3 and NTD-2 approximate a non-negative tensor data as the product of some 
factor matrices and a core tensor.

To extend NMF to NTD-3, we consider iterative updating 
A
(n)G(n)A

(−n)T = A
(n)G

(n)
A (n = 1, 2, 3) , which is the matricized expression of tensor 

decomposition. Here A(−n) is Kronecker product of the factor matrices without A(n) 
and G(n) is the mode-n matricization of the core tensor G . For example, if n = 1 , these 
become A(2) ⊗ A

(3) and G(n) , respectively. By replacing X in the multiplicative update 
rule [60] with A(n)G(n)A

(−n)T (n = 1, 2, 3) , we can obtain the update rule for A(n) as 
follows;

Similarly, the updating rule for core tensor G is:

where ǫ is a small value included to avoid generating negative values (default value 
1E−10).

(2)Ahj =
{

1/nj
(

hth cell belongs to jth cell type
)

0 (otherwise),

(3)χ::k = xL(k) ◦ xR(k)

(4)

A
(1) ← A

(1) ∗ X (1)G
(1)T
A

A
(1)G

(1)
A G

(1)T
A

A
(2) ← A

(2) ∗ X (2)G
(2)T
A

A
(2)G

(2)
A G

(2)T
A

A
(3) ← A

(3) ∗ X (3)G
(3)T
A

A
(3)G

(3)
A G

(3)T
A

.

(5)
G ← max{χ ×1 A

(1)T ×2 A
(2)T ×3 A

(3)T , ǫ}

G ← χ ×1 A
(1)T ×2 A

(2)T ×3 A
(3)T

G ×1 A
(1)T

A
(1) ×2 A

(2)T
A
(2) ×3 A

(3)T
A
(3)

,
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Non‑negative Tucker2 decomposition (NTD‑2)

The NTD-3 has three rank parameters to be estimated, and it requires huge search 
space ( R1× R2× R3 ). Additionally, the fewer the factor matrices, the more interpret-
able the results are. For these reasons, we further expanded the NTD-3 into a model 
called the NTD-2 [60] since v1.4.0 of scTensor.

In NTD-2, the third factor matrix A(3) , which is related to L–R pairs, is replaced by 
an identity matrix IK  , where the K diagonal elements are all 1 and the iteration step of 
A
(3) is skipped as follows:

Here, G(1)
A = G1[A(2)IK ] and G(2)

A = G2[A(1)IK ].
The updating rule for core tensor G is

Rank estimation of NTD‑2

To extract the CaHs, scTensor estimates the NTD-2 ranks for each matricized CCI-
tensor ( X (n) , n = 1 or 2). To be able to focus only on the dimensions that are informa-
tive and are not noisy, we used an ad hoc approach for NTD-2 rank estimation.

Because NMF is performed in each matricized CCI-tensor in scTensor, we esti-
mated each rank of NMF based on the residual sum of squares (RSS) [122] as

where RSSmax is the RSS by full rank NMF, RSSmin is the RSS by rank-1 NMF, RSSk is the 
RSS by rank-k NMF, and thrrank is the threshold value, ranging 0 to 1 (the default value 
is 0.8). RSS by rank-k NMF is calculated between a data matrix X and the reconstructed 
matrix from W and H calculated by multiplicative updating rule [60] as follows:

RSS by full-rank and rank-1 NMF is calculated by setting k as J and 1, respectively. With 
the estimated ranks (R̂1, R̂2) , NTD-2 was performed, and only the pairs (r1,r2) with large 
core tensor values are selected as CaHs. In its default mode, scTensor selects CaHs 
that explain the top 20 pairs sorted by the core tensor values.

(6)

A
(1) ← A

(1) ∗ X (1)G
(1)T
A

A
(1)G

(1)
A G

(1)T
A

A
(2) ← A

(2) ∗ X (2)G
(2)T
A

A
(2)G

(2)
A G

(2)T
A

.

(7)
G ← max{χ ×1 A

(1)T ×2 A
(2)T , ǫ}

G ← χ ×1 A
(1)T ×2 A

(2)T

G ×1 A
(1)T

A
(1) ×2 A

(2)T
A
(2)

.

(8)
RSSmax − RSSk

RSSmax − RSSmin
> thrrank,

(9)RSSk = �X(n) −WkHk�2F.
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Binarization

To binarize each column vector of the factor matrices obtained by NTD-2, median 
absolute deviation (MAD), which is the median version of standard deviation (SD), 
was applied. Because we are only interested in the outliers of the elements of each 
vector in the positive direction, not the negative one, we focused only on the elements 
that deviate from the median in the positive direction as follows:

Table 1  Correspondence between L–R scoring used in this study and previous tools

L–R scoring used in this study Previous tools

Sum score CellPhoneDB [37], Giotto [61], CrossTalkR [62], and Squidpy [63]

Product score NATME [64], FunRes [65], ICELLNET [66], and TraSig [67]

Halpern’s score Halpern et al.

Cabello − Aguilar’s score SingleCellSignalR [69] and CellTalkDB [70]

Table 2  Empirical datasets subjected to cell–cell interaction (CCI) identification

Name Organisms GEO ID # Genes # Cells # Cell types CCI-tensor size

FetalKidney [36] Homo sapiens GSE109205 3204 4131 11 11 × 11 × 1072

GermlineFemale [25] Homo sapiens GSE86146 2717 992 8 8 × 8 × 1622

HeadandNeckCancer [54] Homo sapiens GSE103322 5244 5577 26 26 × 26 × 61

Uterus [33] Mus musculus GSE118180 2566 6443 12 12 × 12 × 2282

VisualCortex [48] Mus musculus GSE102827 5365 47,209 30 30 × 30 × 274

Table 3  Many-to-many cell–cell interactions (CCIs) detected by only scTensor 

Dataset Signal pathway Ligand and receptor Reported

FetalKidney [36] Eph/ephrin EFNB2–EPHB3 Yes

FetalKidney [36] Eph/ephrin EFNB2–EPHB4 No

FetalKidney [36] Eph/ephrin EFNB2–EPHB6 No

FetalKidney [36] Eph/ephrin EFNA1–EPHA4/7 No

FetalKidney [36] Eph/ephrin EFNA5–EPHA4/7 No

GermlineFemale [25] Bone morphogenetic protein (BMP) BMP2–BMPR2 Yes

GermlineFemale [25] Bone morphogenetic protein (BMP) GDF9–BMPR2 No

GermlineFemale [25] NOTCH JAG1–NOTCH2 Yes

GermlineFemale [25] NOTCH JAG1–NOTCH3 No

HeadandNeckCancer [54] Fibroblast growth factor (FGF) FGF7–FGFR2 Yes

Uterus [33] Insulin-like growth factor (IGF) Igf1–Igf1r Yes

Uterus [33] Insulin-like growth factor (IGF) Igf2–Igf1r No

Uterus [33] Pleiotrophin (PTN) Ptn–Ptprb Yes

Uterus [33] Wingless-related integration site (Wnt) Rspo3–Lgr5 Yes

Uterus [33] Vascular endothelial growth factor 
(VEGF)

Vegfa–Kdr Yes

Uterus [33] Vascular endothelial growth factor 
(VEGF)

Vegfa–Flt1/Nrp1 No

VisualCortex [48] Activin receptor (ACVR) Inhba–Acvr1b Yes

VisualCortex [48] Activin receptor (ACVR) Nodal–Acvr1b No

VisualCortex [48] Activin receptor (ACVR) Nodal/Bmp5/Bmp7–Acvr2a No
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Here, MAD(x) is median(�x −median(x)�) and thrbin is the threshold value (the default 
value is 1.0).

L–R scoring

Several methods have been proposed to score the degree of co-expression of a given L–R 
pair between two cell types, as described below.

Sum score

The gene expression of a ligand gene l can be averaged over cells belonging to the sth cell 
type within J cell types as follows:

Here, Cs ∈
(

C1,C2, . . . ,CJ

)

 and NCs is the number of cells belonging to cell type Cs.
Likewise, the gene expression of a receptor gene r is averaged over cells belonging to 

the tth cell type within J cell types as follows:

Here, Ct ∈
(

C1,C2, . . . ,CJ

)

 and NCt is the number of cells belonging to cell type Ct.
Using these values, the sum score is calculated as follows:

For example, some methods such as CellPhoneDB [37], Giotto [61], CrossTalkR [62], and 
Squidpy [63], essentially use this type of scoring (Table 1 and Additional file 1).

Product score

In some studies, the degree of co-expression is expressed as a product instead of a 
summation.

(10)xi =
{

1 (xi ≥ median(x)+ thrbin ×MAD(x))
0 (otherwise).

(11)x
Cs

l = 1

NCs

∑

c∈Cs

xlc.

(12)xCt
r = 1

NCt

∑

c∈Ct

xrc.

(13)Scorel,Cs ,r,Ct
sum = x

Cs

l + xCt
r .

Table 4  Order of calculation time and memory space for cell–cell interaction (CCI) identification

Method Calculation time Memory space

Sum/product score O(N2
L) O(N2

L)

Permutation test of sum/product score O(N2
LP) O(N2

L)

Halpern’s score O(N2
L) O(N2

L)

Permutation test of Halpern’s score O(N2
LP) O(N2

L)

Cabello − Aguilar’s score O(N2
L) O(N2

L)

Permutation test of Cabello − Aguilar’s score O(N2
LP) O(N2

L)

Previous scTensor (NTD-3) O(N2
L(R1+ R2+ R3)) O(N2

L)

scTensor (NTD-2) O(N2
L(R1+ R2)) O(N2

L)
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For example, some methods such as NATME [64], FunRes [65], ICELLNET [66], and 
TraSig [67], essentially use this type of scoring (Table 1 and Additional file 1).

Halpern’s score

Derived from the sum score, Halpern et al. proposed a score described below 
(Table 1 and Additional files 1).

In this score, Z-scaling is firstly applied to both xCs

l  and xCt
r  over J cell types as follows:

Here, xL =
(

x
C1
l , x

C2
l , . . . , x

CJ

l

)

 and xR =
(

xC1
r , x

C2
r , . . . , x

CJ
r

)

 . Then, the square root of the 

sum of squares of these values is used as the degree of co-expression as follows:

Cabello − Aguilar’s score

Derived from the product score, Cabello − Aguilar et al. proposed a score 
described as follows (Table 1 and Additional file 1):

Here, µ is the averaged value of the normalized read count matrix and is added as a 
scaling factor to avoid division by zero. This score is used in SingleCellSignalR [69] and 
CellTalkDB [70].

Label permutation method

To quantify the deviation of the observed scores obtained from real data, many studies 
employ P values in a statistical hypothesis testing framework. Typically, the label permu-
tation method is widely used to calculate P values. In principle, this method can be used 
in combination with any L–R score as described above.

Here, we consider assigning a P value to any type of Scorel,Cs ,r,Ct above. In this method, 
the cluster labels of all the cells are randomly shuffled, and a synthetic score value is cal-
culated. Performing this process 1000 times generates 1000 of the values. These values 
are used to generate the null distribution; for a combination of cell types, the proportion 
of the means which are “as or more extreme” than the observed mean is calculated as the 
P value. The label permutation test is performed as a one-tailed test; there is a focus on 
L–R scores with significantly higher values compared to the null distribution, and not 
on L–R scores with significantly lower values. Because separating significant CCIs from 

(14)Score
l,Cs ,r,Ct

prod = x
Cs

l × xCt
r

(15)Z
Cs

l =
x
Cs

l −mean(xL)

std(xL)

(16)ZCt
r =xCt

r −mean(xR)

std(xR)
.

(17)Score
l,Cs ,r,Ct
Halpern =

√

(

Z
Cs

l

)2
+

(

Z
Ct
r

)2
.

(18)Score
l,Cs ,r,Ct
Cabello−Aguilar =

√

Scoreprod

µ+
√

Scoreprod
.



Page 20 of 28Tsuyuzaki et al. BMC Bioinformatics          (2023) 24:420 

non-significant CCIs by hypothesis testing can be regarded as a binarization process, 
label permutation results were compared with the results of scTensor binarization.

Quantitative evaluation of CCIs

The CCIs detected by the various methods tested in this paper were compared with 
ground truth CCIs to quantitatively evaluate the performance of each method. To evalu-
ate the results, we used the metrics below.

Evaluation of the scoring before and after binarization

Each CCI method uses each corresponding L–R score to quantify the degree of co-
expression of a given L–R pair between two cell types. To quantitatively evaluate the 
performance of each score, area under the curve of receiver operating characteristic 
(AUCROC) and area under the curve of precision–recall (AUCPR) were used.

A receiver operating characteristic (ROC) curve is a plot of the true positive rate (TPR, 
or the sensitivity = TP

TP+FN  ) versus the false positive rate (FPR, or 1 - specificity, where 
specificity = TN

TN+FP ) (where TP is the number of true positive CCIs, FP is the number 
of false positive CCIs, TN is the number of true negative CCIs, and FN is the number of 
false negative CCIs). The AUCROC value is the area under the ROC curve. AUCROC 
values range from 0 to 1, and the closer the value is to 1, the more the score indicates 
enrichment of the ground truch CCIs among the inferred CCIs.

A precision–recall curve is a plot of recall (i.e., sensitivity) versus precision (i.e., posi-
tive predictive value = TP

TP+FP ). The AUCPR value is the value of the area under the preci-
sion–recall curve. AUCPR ranges from 0 to 1, and the closer the value is to 1, the more 
the score indicates enrichment of the ground truch CCIs among the inferred CCIs. 
AUCPR is known for its robustness against class imbalance, compared with AUCROC 
[123–125]. Hence, it seems that AUCPR is more appropriate than AUCROC because the 
number of significant CCIs are assumed to be less than that of non-significant CCIs in 
both simulated and real empirical data.

To evaluate whether the binarization was properly performed, we also applied these 
metrics to assess label permutation. As the label permutation test outputs P values, we 
utilized 1 − P value to quantify the degree of co-expression of elements of L–R pairs in 
the test. Because tensor decomposition is an unsupervised learning methods, we cannot 
distinguish which CaHs are enriched within the ground truth CCIs in advance. Addi-
tionally, we expected that scTensor could separate different styles of CCIs as multiple 
CaHs. Hence, we used the combination of CaHs from scTensor and ground truth CCIs 
with the maximum metrics values.

The calculation time and memory usage were evaluated by using the benchmark rules 
of Snakemake (https://​snake​make.​readt​hedocs.​io/​en/​latest/​snake​files/​rules.​html?​highl​
ight=​bench​mark#​bench​mark-​rules).

Evaluation of the scoring after binarization

Each CCI method uses a threshold value (e.g., P value, or MAD for scTensor) to dif-
ferentiate significant CCIs from non-significant CCIs. This process is considered a kind 
of binarization (1 for significant CCIs, 0 for non-significant CCIs), so we evaluated how 

https://snakemake.readthedocs.io/en/latest/snakefiles/rules.html?highlight=benchmark#benchmark-rules
https://snakemake.readthedocs.io/en/latest/snakefiles/rules.html?highlight=benchmark#benchmark-rules
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well each thresholding strategy could selectively detect the ground truch CCI by com-
paring the metrics below.

F-measure is the harmonic mean of precision and recall and is defined as follows:

Matthews Correlation Coefficient (MCC) is a special case of Pearson correlation coef-
ficient when two variables are both binary vectors. MCC is defined as follows:

MCC is widely used for binary classification evaluation and especially known for its 
robustness against the class imbalance, compared with the other metrics such as accu-
racy, balanced accuracy, bookmaker informedness, markedness, and F-measure [126–
128]. Hence, it seems that MCC is more appropriate to use than F-measure because the 
number of significant CCIs are assumed to be less than that of non-significant CCIs in 
both simulated and real empirical data.

To distinguish whether the F-measure and MCC values correspond to the number of 
detected CCIs or their selectivity in focusing only the ground truth CCIs, we also com-
pared the positive rate (PR), false positive rate (FPR), and false negative rate (FNR) val-
ues of all the methods.

Availability and requirements

R packages

•	 scTensor: https://​bioco​nduct​or.​org/​packa​ges/​devel/​bioc/​html/​scTen​sor.​html
•	 nnTensor: https://​cran.r-​proje​ct.​org/​web/​packa​ges/​nnTen​sor/​index.​html
•	 AnnotationHub: https://​bioco​nduct​or.​org/​packa​ges/​relea​se/​bioc/​html/​Annot​

ation​Hub.​html
•	 LRBaseDbi: https://​bioco​nduct​or.​org/​packa​ges/​relea​se/​bioc/​html/​LRBas​eDbi.​html
•	 Operating system: Linux, Mac OS X, Windows
•	 Programming language: R (v−4.1.0 or higher), Bioconductor version (v−3.14.0 or 

higher)
•	 License: Artistic−2.0
•	 Any restrictions to use by non-academics: For non-profit use only

Snakemake workflows

•	 scTensor-experiments (for the analyses conducted in this 

study): https://​github.​com/​riken​bit/​scTen​sor-​exper​iments
•	 lrbase-workflow (for the bi-annual updates of LRBase): https://​

github.​com/​riken​bit/​lrbase-​workf​low
•	 Operating system: Linux, Mac OS X, Windows

(19)F−measure = 2 precision × recall

precision + recall
.

(20)MCC = TP× TN − FP× FN√
(TP+ FP)(TP+ FN)(TN + FP)(TN + FN)

.

https://bioconductor.org/packages/devel/bioc/html/scTensor.html
https://cran.r-project.org/web/packages/nnTensor/index.html
https://bioconductor.org/packages/release/bioc/html/AnnotationHub.html
https://bioconductor.org/packages/release/bioc/html/AnnotationHub.html
https://bioconductor.org/packages/release/bioc/html/LRBaseDbi.html
https://github.com/rikenbit/scTensor-experiments
https://github.com/rikenbit/lrbase-workflow
https://github.com/rikenbit/lrbase-workflow
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•	 Programming language: Python (v−3.7.8 or higher), Snakemake (v−6.0.5 or higher), 
Singularity (v−3.8.0 or higher)

•	 License: MIT
•	 Any restrictions to use by non-academics: For non-profit use only
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