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Abstract 

Background:  Gene co-expression networks represent modules of genes with shared 
biological function, and have been widely used to model biological pathways in gene 
expression data. Co-expression networks associated with a specific trait can be con-
structed and identified using weighted gene co-expression network analysis (WGCNA), 
which is especially useful for the study of transcriptional signatures in disease. WGCNA 
networks are typically constructed using both disease and wildtype samples, so molec-
ular pathways associated with disease are identified. However, it would be advanta-
geous to study such co-expression networks in their disease context across spatiotem-
poral conditions, but currently there is no comprehensive software implementation for 
this type of analysis.

Results:  Here, we introduce a WGCNA-based procedure, multiWGCNA, that is tailored 
to datasets with variable spatial or temporal traits. As well as constructing the com-
bined network, multiWGCNA also generates a network for each condition separately, 
and subsequently maps these modules between and across designs, and performs 
relevant downstream analyses, including module-trait correlation and module preser-
vation. When applied to astrocyte-specific RNA-sequencing (RNA-seq) data from vari-
ous brain regions of mice with experimental autoimmune encephalitis, multiWGCNA 
resolved the de novo formation of the neurotoxic astrocyte transcriptional program 
exclusively in the disease setting. Using time-course RNA-seq from mice with tau 
pathology (rTg4510), we demonstrate how multiWGCNA can also be used to study the 
temporal evolution of pathological modules over the course of disease progression.

Conclusion:  The multiWGCNA R package can be applied to expression data with two 
dimensions, which is especially useful for the study of disease-associated modules 
across time or space. The source code and functions are freely available at: https://​
github.​com/​fogel​lab/​multi​WGCNA.
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Introduction
Network analysis has been widely applied to gene expression data as a systems genetics 
approach to understand the coordinated activity of many genes [1]. For this purpose, 
weighted gene co-expression network analysis (WGCNA) is a popular tool that has been 
used to identify development-specific transcriptional programs [2], regional [3] and 
pathological [4] gene networks, and much more.

In a typical WGCNA, to resolve disease-specific alterations, both wildtype and disease 
samples are used for network construction, using correlation to binary disease status to 
resolve co-expression networks associated with disease. This approach is particularly 
effective at identifying cases where disease alters a critical network’s expression level. 
However, since both wildtype and disease samples are used for network construction, 
this approach provides no information on changes in network topology, such as whether 
the network is differentially preserved across conditions [5]. Furthermore, for many dis-
orders, it would be especially useful to analyze how the associated biological networks 
behave across various conditions beyond simply expression levels. Two key examples of 
this would be how the module changes across space (e.g., anatomical location, cell type, 
etc.) or time (e.g., timepoint, age).

When expression profiling experiments include two or more sample traits, multi-
ple experimental designs are possible, and sample selection for network construction 
becomes more complex. In these cases, most protocols opt for using the entire dataset—
regardless of disease status, time, age, tissue, etc.—for network construction [4, 6]. This 
is reasonable, as correlation-based methods benefit from larger sample sizes. However, 
other valid designs are possible, such as: (1) subsetting by disease status [4], which ena-
bles study of the secondary trait across wildtype and disease samples separately, or (2) 
subsetting by the secondary trait itself, which enables study of disease across this other 
trait, which is useful for considerations involving varying space or time. A biologically 
relevant module should be robust and detectable across these different experimental 
designs [7]. Currently, a comprehensive software implementation for this type of analy-
sis is not available.

To address this gap, we developed a software tool that constructs all the individual 
networks for each possible design and subsequently integrates the resulting networks 
between these designs. Using astrocyte-specific RNA-seq from various brain regions of 
mice with experimentally induced autoimmune encephalitis (EAE) [8], we demonstrate 
that our approach can identify disease-specific network topology that is highly relevant 
to EAE pathology. We also show that this procedure can facilitate selection of biologi-
cally interesting modules, a laborious step of standard network analysis. Lastly, we dem-
onstrate how multiWGCNA can be used to study the evolution of pathological modules 
over time using a previously published module associated with tau accumulation in the 
rTg4510 mouse model [6].

Results
The multiWGCNA workflow

We devised a WGCNA-based procedure that can leverage the multidimensionality of 
experimental designs to study co-expression networks across variable conditions, such 
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as space or time. As shown in Fig. 1a, a typical multidimensional dataset has two sam-
ple traits: one of which is often disease status, and the other which is usually space (tis-
sue/region) or time (timepoint/age). We refer to this additional trait as the secondary 
trait (ST). Broadly, the workflow consists of network construction, module mapping, and 
level-specific analyses (Fig. 1). In the first step, we perform WGCNA to construct the 
networks (Fig. 1a), which yields three levels of networks: (1) the combined network, (2) 
the disease-status networks, and (3) the ST networks. After network construction, we 
perform module mapping, which maps all modules across and between levels 1, 2, and 
3 using module member overlap as a measure of correspondence (Fig.  1b). As shown 
in Fig. 1b, there are cross-design comparisons (gray) and between-design comparisons 
(white). Unlike between-design module pairs, cross-design pairs are confounded by 
shared biological samples and therefore their gene overlap cannot be used to assess bio-
logical relationships. However, these comparisons are useful in mapping modules so that 
a specific network can be traced at each design level. Lastly, we perform level-specific 
analyses, including module-trait association, module preservation, and analysis of mod-
ule dynamics (Fig. 1c).

For convenience, module-trait association is performed in level 1 (the combined 
network), as it includes all samples and conditions. We summarize module expression 
using the first principal component (module eigengene) and apply the linear model, 
Module eigengene = disease status+secondary trait+disease status∗secondary trait , and 
significance for each term is tested using factorial ANOVA as has been done previously 
[6]. However, it is important to note that performing ANOVA using module eigengenes 
can potentially be misleading as eigengenes are a univariate projection of multivari-
ate data [9]. To address this, we provide users with the option of using PERMANOVA 
(Permutational Multivariate Analysis of Variance), which provides a non-paramet-
ric multivariate analysis of variance [10], as a means for performing multivariate data 

Fig. 1  Overview of the multiWGCNA workflow. (a) multiWGCNA requires a dataset with two sample traits, 
such as disease versus a secondary trait like time or space. From this data, co-expression networks are 
constructed using WGCNA. (b) Three levels of networks are constructed from this design: (1) the combined 
network, (2) the disease and wildtype (WT) networks, and (3) the secondary trait (ST) networks. From these 
networks, modules can be mapped both across levels (gray arrows) and within levels (white arrows). (c) For 
each network level, appropriate analysis is performed, including differential module expression, module 
preservation, and module dynamics
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comparisons in complex experimental designs. Additional multivariate analytic meth-
ods, such as the R package resampleWGCNA [9], could also be employed at the user’s 
discretion.

In level 2 and 3 networks, we study module preservation and module dynamics. Pres-
ervation analysis is performed within each level—for example, using the disease net-
works as reference and the wildtype data as test or vice versa. Based on the previous 
implementation [5], we define a differentially preserved module as any module with low 
or no preservation (Zsummary < 10) in the test dataset. To test if preservation scores are 
lower than expected by chance, we implemented a permutation test (see Methods) that 
can be used to test the probability of observing the biological preservation score when 
phenotype labels are randomly assigned. Module dynamics is a more subtle analysis that 
consists of analyzing the flow of module genes across conditions to identify interesting 
module-membership patterns.

multiWGCNA identifies an EAE‑induced network in astrocytes

To test whether multiWGCNA can reveal biologically meaningful relationships from 
expression profiling experiments, we performed multiWGCNA on an astrocyte-specific 
Ribotag dataset that compared mice with EAE (n = 20) to wildtype controls (n = 16) 
across the cerebral cortex, cerebellum, hippocampus, and spinal cord [8]. After filter-
ing modules driven by a single sample (see Methods), multiWGCNA identified a single 
module from the disease network (dM15, d = disease network) that exhibited weak pres-
ervation (Zsummary = 9.16) in wildtype astrocytes (Fig. 2a). Permutation testing with ran-
dom phenotype assignment revealed that the preservation score of dM15 is significantly 
lower than that expected by chance (p = 0.0195 by 2000 permutations, Fig. 2b). Using a 
subsampling procedure, we independently validated that the sample size of the wildtype 
dataset (n = 16) was large enough to obtain accurate preservation scores (see Additional 
file 1: Fig. S1, see Methods).

In addition, dM15 could only be detected in the combined network (M13, 
FDR = 3.8 × 10–306, 249/303 genes), but not the wildtype network, or any region-specific 
network (Fig. 2c), and thus appears to require many EAE astrocyte samples for detec-
tion. Importantly, genes in dM15 show tightly coordinated expression in EAE astrocytes, 
but largely unsynchronized expression in wildtype astrocytes (Fig.  2d). In agreement 
with these results, we performed differential co-expression analysis [11] and found that 
99.86% (5894/5902) differentially co-expressed pairs (FDR < 0.05) of module genes had 
higher co-expression in EAE astrocytes than wildtype astrocytes (see Additional file 1: 
Fig. S2A). In contrast, no differentially co-expressed genes between disease and wildtype 
conditions were observed for a similarly sized module, dM14 (see Additional file 1: Fig. 
S2B). Therefore, multiWGCNA identified a co-expression network that is induced in 
astrocytes by EAE.

multiWGCNA improves prioritization of key biological networks

Selection and prioritization of co-expression networks remains a laborious step of 
the standard workflow. If one were to use only the combined network as in standard 
WGCNA, there are two modules (M13 and M16) that have a significant association 
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to EAE or the interaction between EAE and region at an FDR < 0.05, and six mod-
ules (M13, M16, M22, M33, M32, M20) that have a significant association to EAE at 
an FDR < 0.1 by factorial ANOVA (see Additional file  1: Table  S1). However, multi-
WGCNA clearly indicates that M13 in the combined network (dM15 in the disease 
network) is the module most relevant to EAE, as it is the only module with a dis-
ease-specific co-expression pattern (Fig. 2a). Since modules are thought to represent 
shared biological processes, we used gene ontology (GO) [12] to validate that the 
module identified using multiWGCNA is indeed the most relevant EAE-associated 
network. Indeed, M13 dominated the top of the enrichment results and was enriched 
for GO terms like immune system process and defense response, which are highly 
relevant to EAE pathology (Fig. 3a). We also cross-referenced our modules with the 
original published lists of differentially expressed genes (DEGs) [8]. Strikingly, M13 
was the co-expression network that best defined the EAE-induced transcriptional 
response of astrocytes across all four regions profiled, suggesting that the transcrip-
tional responses of astrocytes to EAE across the CNS are actually part of a conver-
gent molecular pathway that can be delineated by a single co-expression network 
(Fig. 3b). Ultimately, these findings indicate that multiWGCNA can indeed facilitate 

Fig. 2  multiWGCNA reveals an EAE-specific network in astrocytes. (a) Preservation scores of modules 
from EAE network in wildtype network, using astrocyte Ribotag data. (b) Distribution of expected 
preservation scores for modules of similar size to dM15 when phenotype labels are randomly assigned (2000 
permutations). (c) Network view of the correspondence (based on hypergeometric overlap p value) between 
dM15 and the other modules constructed by multiWGCNA. (d) Expression patterns of the top 20 connected 
genes in dM15, showing highly unsynchronized expression in the wildtype samples
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the module selection step of the network analysis workflow, rapidly identifying bio-
logically-relevant disease-associated networks across anatomical regions.

The module identified by multiWGCNA corresponds to the A1 neurotoxic phenotype

Since multiple sclerotic lesions are specifically associated with astrocytes that have 
undergone reactive astrocytosis [8, 13], we hypothesized that M13/dM15 might corre-
spond to the reactive astrocytic cell state. We used the reactive astrocyte transcriptional 
markers from Liddelow et  al. [13], which included transcripts specific to neurotoxic 
A1 and neuroprotective A2 astrocytes as well as pan-reactive transcripts. We con-
firmed these reactive astrocyte transcripts exhibited higher expression in EAE astro-
cytes, suggesting that gliosis can be detected in the Ribotag dataset (see Additional 
file  1: Fig. S3). Next, we tested whether our EAE modules were enriched for reactive 
astrocyte markers (Fig.  4a). dM15 was highly enriched for all 36 reactive astrocyte 
markers (FDR = 1.0 × 10–13, 13/36 genes), and was also enriched for the neurotoxic 
A1-specific transcripts (FDR = 2.3 × 10–7, 6/11 genes) as well as pan-reactive transcripts 
(FDR = 3.2 × 10–5, 5/13 genes). Importantly, no other modules in the EAE network were 
enriched for any of these gene sets at an FDR of 1%, indicating that dM15 is the network 
most representative of the reactive astrocyte cell state in the EAE Ribotag data (Fig. 4a). 
Likewise, no modules from the wildtype network were enriched for reactive astrocyte 
transcripts, indicating that the reactive astrocyte co-expression signature can only be 
detected in astrocytes from mice with EAE (Fig. 4a).

Since dM15 was lowly preserved in wildtype astrocytes, we reasoned that the reac-
tive astrocyte-specific transcripts themselves may be differentially co-expressed between 
wildtype and EAE astrocytes. We performed differential co-expression analysis [11], 

Fig. 3  The module identified by multiWGCNA is the most biologically relevant to EAE. (a) Top GO terms for 
all modules of the combined EAE network. A maximum of 6 terms were allowed per module. M13/dM15 
dominates the top of the list and has terms most relevant to EAE. (b) Overlap analysis between combined 
EAE network modules and DEGs from Itoh et al. [8]. Only M13 is enriched for genes upregulated in EAE across 
all CNS regions profiled
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which found that 53 out of 53 differentially co-expressed pairs of these 36 reactive 
astrocyte transcripts have higher co-expression (FDR < 0.05) in EAE than in wildtype 
astrocytes (Fig.  4b). This is especially true of pan- and A1-reactive transcripts, which 
exhibited a very strong differential co-expression signature, and less so for A2 markers 
(Fig. 4b). This is in line with the finding that dM15 is enriched for A1- and pan-reac-
tive transcripts but not A2 reactive transcripts (Fig. 4a). In sum, by splitting samples by 
disease status and performing differential network analysis, multiWGCNA was able to 
resolve an EAE-induced transcriptional program that corresponds to the neurotoxic A1 
phenotype.

Module dynamics reveals evolution of pathological modules over disease course

Next, we applied multiWGCNA to an RNA-seq dataset from the entorhinal cortex of 
the rTg4510 mouse model of the tau pathology in Alzheimer’s Disease, with ages rang-
ing from 2 to 8 months, covering the onset of tau accumulation in the cortex [6]. In the 
original study, a WGCNA module turquoise was identified as being positively correlated 
to tau accumulation in both the entorhinal cortex and the hippocampus as measured 
by immunohistochemistry [6]. Since we used the same parameters as the original paper 
(see Methods), the modules from our combined network (n = 58) were identical to theirs 
(see Additional file  2). To resolve temporal network changes related to tau pathology, 
we focused on the level three networks, in which each timepoint (2, 4, 6, and 8 month) 
is subjected to an individual network analysis (n = 15, 15, 13, and 15, respectively). 

Fig. 4  The immune astrocyte module corresponds to the A1 neurotoxic phenotype. (a) Overlap analysis 
between modules from EAE/wildtype networks and the reactive astrocyte transcripts used in Liddelow 
et al. [13]. The only network enriched for reactive astrocyte transcripts across all disease and wildtype 
modules is dM15. (b) Left heatmap shows the Pearson correlation between reactive astrocyte transcripts 
in the EAE astrocyte samples from Itoh et al. [8]. Middle heatmap shows the Pearson correlation between 
reactive astrocyte transcripts in the wildtype astrocyte samples from Itoh et al. [8]. Right heatmap shows the 
differential co-expression of reactive astrocyte transcripts between EAE and wildtype conditions, where high 
z-scores represent higher co-expression in EAE. Boxes around heatmap cells signify significantly different 
correlations (FDR < 0.05). Right boxplots show the quantification of the Pearson correlations from the first two 
heatmaps
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Overlap analysis revealed that the turquoise module (M1 in the combined network) is 
the equivalent of module 4m-4 in the 4 month network (FDR = 3.4 × 10–306, 1110/3091 
genes), 6m-2 in the 6 month network (FDR = 6.1 × 10–306, 1680/3091 genes), and 8m-1 
(FDR = 4.5 × 10–306, 1825/3091 genes) in the 8 month network, but has no clear corre-
sponding module in the 2 month network. Comparative analysis of these level three net-
works (Fig. 5) revealed that 4m-4, 6m-2, and 8m-1 correlate with disease. Interestingly, 
these late timepoint modules have no clear origin in the 2 month network.

To get gene-level resolution, we plotted the topological overlap clustering trees for 
the four networks constructed with wildtype and rTg4510 mice at 2, 4, 6, and 8 months 
(Fig. 6). Figure 6 shows where the genes of the 8 month version of the turquoise mod-
ule (8m-1) are located in the gene clustering of earlier timepoints. This revealed a step-
wise recruitment of genes to this pathological cluster over the course of tau pathology, 
such that peripheral genes from other modules are recruited to become part of the tur-
quoise network (Fig. 6). The hubs are well-preserved from 4 to 8 months (see Additional 
file 1: Fig. S4-6, also see Additional file 3). At 2 months of age, turquoise genes are inter-
spersed across the topological overlap clustering tree, but their position in the tree is 
greatly refined at 4 months of age, indicating that the formation of the turquoise module 
follows tau accumulation, which is also detected in the entorhinal cortex at 4 months 
of age [6]. Another interesting feature revealed by the analysis in Fig. 6 is that part of 
the 8m-1 module originates from a group of genes that is tightly connected throughout 

Fig. 5  Module dynamics of the timepoint-specific networks from rTg4510 + mice exhibiting tau 
pathology. Sankey flow diagram showing the transfer of genes from one timepoint to the next timepoint 
across the 2–8 month timecourse. The y-axis represents genes while the x-axis represents the different 
timepoint networks in order of time. The color of the edges represents module correspondence (based on 
hypergeometric overlap p value)



Page 9 of 15Tommasini and Fogel ﻿BMC Bioinformatics          (2023) 24:115 	

the time-course. These genes are enriched for GO terms blood vessel development 
(p = 1.28 × 10–13) and cell migration (p = 5.30 × 10–13), and only join this pathological 
module at month 8 (Fig.  6). Interestingly, the late timepoint modules are all well-pre-
served at 2  months (8m-1 Zsummary = 26.5; 6m-2 Zsummary = 28.3; 4m-4 Zsummary = 25.5) 
suggesting that the turquoise module is a constitutive transcriptional network that may 
be rewired in disease rather than developing de novo like M13/dM15 in EAE. Ultimately, 
these are subtleties of module dynamics that would be entirely missed when performing 
a standard WGCNA.

Discussion
In summary, our proposed software tool, multiWGCNA, performs all the network con-
structions possible in a multi-trait expression dataset to maximize the amount of data 
extracted from large-scale RNA-seq experiments and identify interesting co-expres-
sion relationships. This package provides several key features that build on the existing 
WGCNA R package [1]. A notable advantage of multiWGCNA is that it uses a linear 
model and ANOVA to identify significant associations between module expression 
and disease status along with a secondary spatiotemporal trait, functions which are 
not directly available in the standard WGCNA package. The multiWGCNA tool also 
provides a comprehensive, automated workflow for resolving modules that have trait-
specific expression, preservation, and gene recruitment (described in Fig.  1), and can 
be easily integrated into existing WGCNA pipelines without a need for detailed cus-
tomization. Lastly, multiWGCNA provides additional useful functions for data visuali-
zation. These include module tracing diagrams (Fig. 2c, available through the function 

Fig. 6  Genesis of the module associated with tau pathology mimics tau burden in the entorhinal cortex. 
Gene-level sankey flow plot showing flow of genes originating from 8 month equivalent of the turquoise 
module (8m-1) from Castanho et al. [6]. The topological clustering tree for each timepoint network is shown 
along with module colors. Most of the gene recruitment to the turquoise module occurs at 4 months of age, 
which is the onset of tau pathology in the entorhinal cortex
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drawMultiWGCNAnetwork), which constructs a graph of all modules clustered by 
design level where edges signify correspondence between a module of interest and mod-
ules from other designs. multiWGCNA also provides module dynamics plots (Fig.  5, 
available through the function moduleComparisonPlot), which draw a sankey diagram 
of the movement of genes across networks. Lastly, the TOM-flow plot (Fig. 6, available 
through the function TOMFlowPlot) allows users to track the movement of individual 
genes across the topological overlap clustering tree of different networks. Collectively, 
these functions complement the purpose of the WGCNA package by extending the 
analysis and visualization of co-expression networks across multiple dimensions in a 
comprehensive, accessible, and easily integrated format for both new and sophisticated 
WGCNA users.

When considering the methodology behind the development of the networks, given 
that we find WGCNA to be very sensitive to the state of the biological samples used for 
network construction, other network-based methods may also generate different results 
depending on the tissue, timepoint, and/or treatment groups included in the analysis. 
Therefore, the subset-and-integrate procedure we apply here might prove useful for such 
methods as well. Furthermore, such integration could prove to be complimentary to the 
analysis. For example, since WGCNA does not aim to identify causal regulatory relation-
ships, the network construction procedure we describe could instead be applied using 
one of the various gene regulatory network inference algorithms currently available [14–
17] for network construction instead of WGCNA, potentially revealing regulatory inter-
actions that may be conditional on a specific sample trait. Although such integration is 
not presently incorporated in the multiWGCNA package, it could be added to future 
implementations.

We provide two examples of how multiWGCNA can be applied to real experimen-
tal data. Importantly, we show that multiWGCNA is able to resolve the induction of 
reactive astrocytes in EAE, a well-established feature of EAE pathology. We note that, 
while the network identified by multiWGCNA is highly similar to that identified by the 
standard workflow, there are two important differences. First of all, we show that selec-
tion of interesting modules is more rapidly achieved through multiWGCNA (Figs.  2, 
3). Second and more importantly, the interpretation of the multiWGCNA results is 
quite different from the interpretation of the results from the combined network alone. 
In standard WGCNA, the module derived from the combined network (M13) is pre-
sumed to be preserved in the entire dataset as both wildtype and EAE samples were 
used for network construction. However, in multiWGCNA, we construct separate 
networks for EAE and wildtype samples, which reveals that M13 is recapitulated only 
in EAE astrocytes (dM15) and not in wildtype astrocytes (Fig.  2c). Together with the 
finding that dM15 is differentially preserved, our results indicate that M13/dM15 is a 
de novo disease-associated network that is gained in EAE. multiWGCNA can therefore 
differentiate biological pathways as being over- or underexpressed versus being entirely 
inactive under different experimental conditions related to disease. It should be noted 
that in bulk RNA-sequencing from heterogenous tissue, modules are often interpreted 
as reflecting different cell types [3]. Thus, it is rather appropriate that in an astrocyte-
specific Ribotag dataset, the pathological module identified maps to a specific cell 
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subtype—neurotoxic A1 astrocytes—rather than a cell type, as the expression data itself 
is already astrocyte-specific.

Interestingly, the authors of the original EAE Ribotag dataset identified choles-
terol biosynthesis as a therapeutic target in EAE and were able to mitigate symptoms 
by increasing efflux of cholesterol to extracellular apolipoprotein (APOE) [8]. It was 
recently discovered that neurotoxic reactive astrocytes secrete saturated lipids in APOE 
and APOJ lipoparticles that induce cell death in neurons and oligodendrocytes [18]. 
Thus, it may be that the biosynthesis pathway in A1 neurotoxic astrocytes is redirected 
to produce these toxic lipids at the expense of normal cholesterol biosynthesis, explain-
ing the downregulation of this pathway. This would suggest that A1 astrocyte reactiv-
ity has a two-pronged deleterious effect: (1) depletion of the cholesterol that neurons 
and oligodendrocytes rely on for building synapses and myelin respectively [8], and (2) 
secretion of saturated lipids that directly kill neurons and oligodendrocytes [18]. These 
observations may also explain why eliminating long-chain saturated lipids only par-
tially reduces astrocyte-mediated cell death after axon crush, while preventing neuro-
toxic astrocyte induction by genomic deletion of Il1a, Tnf and C1qa completely reduced 
astrocyte-mediated cell death [18].

Naturally, the question arises of which network constructed by multiWGCNA is the 
most accurate. In our opinion, it depends on the biological question at hand. In the case 
of M13/dM15, the level 2 EAE network (dM15) is more biologically interesting as its co-
expression structure is not obfuscated by the wildtype samples. In cases where it is less 
obvious, we suggest use of the key module(s) derived from the combined network for a 
larger sample size and more robust correlations. Ultimately, this may be of less impor-
tance because the modules should be highly similar and downstream analyses will yield 
almost identical results. In general, we recommend large sample sizes to allow enough 
power (at least 12 samples per condition) for level 2 and level 3 analyses.

In this report, we also introduce the idea of module dynamics, and demonstrate its use 
on time-course data in a module correlated with tau accumulation in the rTg4510 mouse 
model of tau pathology (Fig.  5). The pathological transformation of this module, both 
in terms of disease correlation (Fig. 5) and gene recruitment (Fig. 6), is mirrored by tau 
accumulation in the entorhinal cortex and hippocampus, which also occurs at 4 months 
of age.

In summary, we have developed a WGCNA software tool, multiWGCNA, that is tai-
lored to analyzing multi-trait expression data. Because this approach is especially pow-
erful at analyzing biological networks with temporal or spatial variance, we recommend 
multiWGCNA for future studies that include these conditions in their experimental 
design.

Conclusion
The multiWGCNA R package provides a comprehensive set of high-level software tools 
for analyzing co-expression networks in datasets where samples have two variable traits. 
We expect the multiWGCNA R package will reveal interesting and novel network char-
acteristics associated with spatical or temporal aspects, such as anatomy, development, 
and/or pathology.
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Materials and methods
Module nomenclature

For combined networks, we named each modules using a capital M followed by the 
numeric identifier from the combined network (i.e. M13). For disease networks, we 
added c- to signify control and a d- prefix to signify disease (i.e. dM15). Level three net-
works use a prefix (i.e. 8m-1) to signify the originating WGCNA dataset.

Permutation testing to determine trait‑specific preservation

The standard WGCNA framework [5] determines the degree to which a module is pre-
served by computing a Zsummary score that combines several measures of preservation. 
In the case of multiWGCNA, to confirm biological relevance, we want to determine 
if a module detected in a subset of the data has lower preservation than expected by 
chance in a different subset of the data. To this end, we developed a novel permutation 
test (available using the function diseasePreservationPtest) based on the previous imple-
mentation. First, phenotype labels (e.g., disease and wildtype) are randomly assigned 
to samples, then WGCNA is performed in the randomized reference set (e.g., disease), 
and preservation of the resulting modules is assessed in the randomized test set (e.g., 
wildtype) by performing module preservation analysis and retrieving Zsummary values. 
Since Zsummary preservation scores tend to be higher for larger modules [5], the null dis-
tribution of preservation scores must be calculated using modules of comparable sizes. 
Therefore, in each permuted set, we first remove modules driven by single samples (see 
Materials and Methods) as these outlier modules reflect noise, and we then select the 
preservation score of the module whose size is closest to the module of interest. This 
allows us to compute an empirical distribution of preservation scores under the null 
hypothesis where phenotype has no effect on preservation. A p value is computed by 
taking the proportion of preservation scores that are lower than or equal to the observed 
score (e.g., one-tailed), as this reflects biological relevance under these conditions.

To illustrate, we applied this permutation procedure to the astrocyte Ribotag data, 
where we sought to determine if the dM15 module from the EAE network had lower 
preservation in the wildtype network than expected by chance (see Results). To answer 
this question, we performed 2000 permutations of the procedure described above. For 
each permutation, we constructed the reference network from twenty randomly selected 
samples, tested for network preservation in the remaining sixteen samples, filtered out 
modules driven by single samples, and extracted the preservation score of the mod-
ule whose size was closest to dM15 (303 genes) in that network (the resulting modules 
ranged from 225 to 366 genes in size). This generated a null distribution of preserva-
tion scores assuming that EAE status has no effect on network preservation. Out of 
2000 permutations, there were 39 scores lower than or equal to the observed score for 
dM15 (9.16), which corresponds to a p value of 0.0195 (Fig. 2b) thus indicating biological 
significance.

Analysis of reactive astrocyte markers

36 of the 37 reactive astrocyte markers from Liddelow et al. [13] were used here because 
Ugt1a1 was not expressed in any sample from the astrocyte Ribotag dataset. Differential 
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co-expression analysis was performed using dcanR [11], which applies Fisher’s transfor-
mation to transform correlation coefficients to z-scores and tests for a significant differ-
ence in z-scores using the z-distribution. For consistency with the WGCNA networks, 
we used Pearson correlation as a measure of co-expression for this analysis as well.

Estimating the minimum number of biological samples required for reliable module 

preservation analysis

We independently validated that the number of biological replicates used for module 
preservation analysis in this paper are sufficient to obtain reliable preservation scores 
of network preservation (see Additional file  1: Fig. S1). Using a large dataset of 100 
wildtype mouse hippocampus samples [19, 20], we randomly selected 50 samples to 
build a reference network. We tested for network preservation in the other half of the 
dataset (n = 48, two sample outliers were removed). After excluding modules driven by 
single samples, all large modules (> 150 genes) were strongly preserved (Zsummary > 10) 
and all small modules (< 150 genes) were fairly preserved (Zsummary > 8). This is as 
expected as the test samples were selected from the sample phenotypic group used to 
build the reference network, so all modules should be preserved. We defined these pres-
ervation statistics as the ground truth and asked how small we could make the sample 
groups until the resulting conclusions deviated from these classifications. We developed 
a scoring scheme, where modules with Zsummary < 2 receive a 0, modules with Zsummary > 2 
but Zsummary < 10 receive a 1, and modules with Zsummary > 10 receive a 2 and accuracy is 
measured by the percent difference between the module preservation score of the sub-
sample relative to the ground truth. This scoring scheme takes into account the degree 
to which conclusions of preservation differ. We randomly sampled 100 combinations of 
24 samples from the 48 test samples and repeated network preservation (see Additional 
file 1: Fig. S1). We repeated this procedure with sample sizes of 15, 12, 10, 8, and 5 and 
found that 12 biological samples was the lowest number of samples that could be used 
while retaining a high classification accuracy (90%).

multiWGCNA of astrocyte‑specific Ribotag data from EAE mouse model

Astrocyte-specific RNA-seq from various regions of the mouse CNS was retrieved from 
GSE100329. Raw counts were converted to RPKM and log2 transformed. MultiWGCNA 
was performed using a soft threshold power of 12, a minimum module size of 100 genes, 
and merge cut height of 0 (no merging) for all seven networks (the combined network, 
the disease status networks, and the region-specific networks).

multiWGCNA of entorhinal cortex timecourse data from rTg4510 mouse model

RNA-seq from entorhinal cortex of mice with tau pathology (rTg4510) at various ages 
was retrieved from GSE125957. The data was processed and WGCNA was performed 
using the same function and parameters as Castanho et  al. [6] described (https://​git.​
exeter.​ac.​uk/​ic322/​ad-​mice-​rna-​seq-​cell-​repor​ts). Briefly, genes with a count sum of less 
than 7 were removed and the sample outlier, S19, was dropped. For network construc-
tion, the blockwiseModules function was run with a soft threshold power of 10, a mini-
mum module size of 30 genes, a max block size of 25,000, and a merge cut height of 

https://git.exeter.ac.uk/ic322/ad-mice-rna-seq-cell-reports
https://git.exeter.ac.uk/ic322/ad-mice-rna-seq-cell-reports
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0.25. The resulting combined network yielded modules identical to those reported by 
Castanho et al. [6].

Filtering modules in multiWGCNA

Modules that are driven by a single sample were filtered out as outlier modules in the 
multiWGCNA workflow. We define an outlier module as any module where the vari-
ance of module eigengenes is less than 0.02 upon removing the sample with the largest 
absolute module eigengene. We find that this method performs better than interquartile 
range or z-score based methods for identifying outlier modules.

Availability and requirements

Project name: multiWGCNA
Project home page: https://​github.​com/​fogel​lab/​multi​WGCNA
Operating system(s): Platform independent
Programming language: R
Other requirements: none
License: GNU GPL 3
Any restrictions to use by non-academics: none

Abbreviations
EAE	� Experimental autoimmune encephalitis
GO	� Gene ontology
RNA-seq	� RNA-sequencing
ST	� Secondary trait
WGCNA	� Weighted gene co-expression network analysis
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