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Abstract 

Background:  Many studies have shown that structural variations (SVs) strongly impact 
human disease. As a common type of SV, insertions are usually associated with genetic 
diseases. Therefore, accurately detecting insertions is of great significance. Although 
many methods for detecting insertions have been proposed, these methods often 
generate some errors and miss some variants. Hence, accurately detecting insertions 
remains a challenging task.

Results:  In this paper, we propose a method named INSnet to detect insertions using 
a deep learning network. First, INSnet divides the reference genome into continuous 
sub-regions and takes five features for each locus through alignments between long 
reads and the reference genome. Next, INSnet uses a depthwise separable convolu-
tional network. The convolution operation extracts informative features through spatial 
information and channel information. INSnet uses two attention mechanisms, the 
convolutional block attention module (CBAM) and efficient channel attention (ECA) 
to extract key alignment features in each sub-region. In order to capture the relation-
ship between adjacent subregions, INSnet uses a gated recurrent unit (GRU) network 
to further extract more important SV signatures. After predicting whether a sub-region 
contains an insertion through the previous steps, INSnet determines the precise site 
and length of the insertion. The source code is available from GitHub at https://​github.​
com/​eioyu​ou/​INSnet.

Conclusion:  Experimental results show that INSnet can achieve better performance 
than other methods in terms of F1 score on real datasets.

Keywords:  Structural variation, Insertion, Deep learning, Depthwise separable 
convolutional network, Gated recurrent unit

Background
Differences between individuals are usually manifested as single nucleotide varia-
tions (SNVs), small insertions and deletions (indels; < 50  bp), and structural variations 
(SVs; ≥ 50  bp) [1]. SVs are insertions, deletions, duplications, inversions, transloca-
tions, and combinations of these categories that are longer than 50 bp. Although single 
nucleotide polymorphisms (SNPs) are the most common genomic variation, SVs have a 
greater impact than any other class of variation [2]. Many studies have shown that SVs 
have a considerable impact on human diseases and disorders, such as cancer [3] and 
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schizophrenia [4]. Insertions are an important category of SVs that can cause serious 
diseases. For example, X-linked dystonic Parkinson’s disease (XDP) is a neurodegenera-
tive disease caused by retrotransposon insertion [5]. Independent mutation of L1 inser-
tion into exon 14 of the factor VIII gene causes haemophilia [6]. Alu element insertion 
ultimately results in myotonic dystrophy type 2 (DM2) [7]. Insertions are critical to our 
understanding of human genetics and precision medicine. It can be combined with clini-
cal features to help classify diseases and predict the correlation between drugs and dis-
eases [8, 9].

Sequencing technology is very important for the detection of SVs. This technology has 
included Sanger sequencing [10], next-generation sequencing (NGS) technology [11], 
long-read sequencing [12], and circular consensus sequencing (CCS) [13]. NGS technol-
ogy has a high accuracy rate, which can reach 99%, and the sequencing cost is low. How-
ever, the sequencing length is short, only 150–500 bp. As a result, it is still difficult to 
obtain high-quality assembly or alignment results for highly repetitive gene regions when 
using NGS technology. At the same time, second-generation read technology requires 
additional processing of the sequencing samples, and these operations will introduce 
bias into the sequencing results. With the rapid development of long-read sequencing 
technology, the third-generation sequencing technologies of Pacific and Oxford Nano-
pore Company provide opportunities for more comprehensive detection of SVs. The 
average length of sequences resulting from third-generation sequencing is more than 10 
kbp, but this approach has an error rate as high as 5–20%. The latest technology, CCS, 
has improved the accuracy of single-molecule real-time (SMRT) sequencing (PacBio). 
CCS technology produces long reads with an average length of 13.5 kilobases (kb) and 
an accuracy greater than 99% [13]. With advances in sequencing technology, sequencing 
data has enabled the computation of predicting protein–protein interactions (PPIs) [14] 
and gene co-expression module detection [15] have also developed significantly, which is 
of great significance in biology.

Many methods have been developed to call SVs based on different sequencing tech-
nologies. These methods can be commonly divided into the following two categories.

	(i)	 Methods based on short reads produced by NGS technology. There are many SV 
callers that use short reads, such as DELLY [16], LUMPY [17], BreakSeek [18], SIns 
[19] Manta [20], CNVnator [21], PEMer [22] and BreakDancer [23]. These meth-
ods usually call SVs by read depth, discordant read pairs and split reads from align-
ments between short reads and the reference genome. Read depth refers to the 
average number of reads mapped to one position in the reference genome. If the 
alignment distance and orientation of one read pair are different from the expected 
values, the read pair is considered discordant. A split read is a read aligned with 
several parts. Many SV caller, such as CNVnator, PEMer, BreakDancer only use 
one of the above features. This greatly limits the detection of SVs. And DELLY, 
LUMPY, BreakSeek, SIns, Manta all use two or three of the above features to effec-
tively detect SVs. DELLY, LUMPY, and BreakSeek all use combined discordant read 
pairs and split read methods to effectively detect SVs.

	(ii)	 Methods based on long reads produced by third-generation sequencing technolo-
gies. Long reads can span long regions in the reference genome, which can facili-
tate complex variant detection. Many methods take advantage of long reads to 
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call SVs. To overcome the high error rate of the obtained sequences, Sniffles [24] 
adopts a new SV scoring scheme to call SVs based on the size, location, type, and 
coverage of candidates. When calling insertions, Sniffles uses the CIGAR string 
and MD to find the relevant region. SVIM [25] detects SVs by the graph clustering 
method. It mainly finds insertions through inter-alignment and intra-alignment. 
Inter-alignment involves finding the insertion through the CIGAR string. Intra-
alignment reveals variant points through split read information. CuteSV [26] uses 
multiple extraction methods to comprehensively collect signatures of various SVs; 
specifically, it designs clustering and refinement methods to accurately distinguish 
SV features from heterozygous SVs. It also mainly extracts CIGAR strings and split 
read information to call insertions. These tools can use long-read alignment files 
generated by aligners such as NGMLR, minimap2, pbmm2, and BWA-MEM as 
input to call SVs. PbSV is a SV caller for PacBio single molecule real-time sequenc-
ing (SMRT) reads. It uses split reads and intra-signatures to detect SVs. NanoSV 
[27] is a SV caller for nanopore data. It mainly uses split reads to detect SVs.

Although current traditional methods have greatly advanced the detection of SVs, they 
still have some problems. For SV callers based on short reads, although the short reads have 
high accuracy, the length is relatively short. It is difficult to span the insertion region with 
a large length. Therefore, there are some problems about large insertion detection. And 
the results show that DELLY and BreakSeek have better performance in small SVs, and 
LUMPY. For SV callers based on long reads, although the average length of long reads is 
more than 10 kbp, but long reads have a high error rate. How to detect SVs in long reads 
with high error rate is very important. And it is significant to distinguish sequencing errors 
from SV sites. And, none of these advanced tools fully solve the problem of large insertions 
[28].

Deep learning can extract more significant features to solve complex problems and has 
been used to detect SVs. DeepVariant [29] uses a convolutional neural network (CNN) to 
call SNPs and small indels and outperforms all state-of-the-art variant callers. DeepSV [30] 
uses a new visual sequence read method to call long deletions through deep learning. How-
ever, both callers use short-read data to detect variants.

As deep learning networks can learn very large and more complex features from large 
datasets more efficiently than ever before, they have achieved great success in many fields. 
The strong fitting ability of deep learning networks is expected to improve the detection 
of insertion regions. In this work, we introduce INSnet, a method for detecting insertions 
based on a deep learning network. INSnet uses alignments between long reads and the 
reference genome as input and uses depthwise separable convolution [31], an attention 
mechanism, and a bidirectional gated recurrent unit (GRU) network to effectively detect 
insertion regions of different sizes [32]. Experimental results show that INSnet achieves 
better insertion detection results than Sniffles, SVIM, and cuteSV. Moreover, INSnet 
achieves a high F1 score on different real datasets.
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Methods
INSnet is an insertion detection method based on long reads and a deep learning net-
work that can effectively detect insertions. It is mainly divided into four steps. (i) Gen-
erating the alignment feature matrix. INSnet uses the alignment file between long reads 
and the reference genome as input. It splits the reference genome into sub-regions of the 
same length. For each sub-region, it generates an alignment feature matrix. (ii) Extract-
ing variant features. INSnet adopts a depthwise separable convolutional network and 
two attention mechanisms to obtain the variant feature for each sub-region. (iii) Deter-
mining sub-regions containing insertions. INSnet uses the variant features among con-
tinuous sub-regions through the bidirectional GRU neural network to determine the 
sub-regions that contain insertions. (iv) Estimating the insertion site and length. For 
each sub-region detected in the previous step, INSnet finds the exact insertion site and 
length according to the alignments on the sub-regions. The four steps are shown in 
Fig. 1.

Generating the alignment feature matrix

INSnet uses the alignment file as input to extract alignment features. INSnet first divides 
the reference genome into n sub-regions with the same length of 200 bp. For each site 
in a sub-region, INSnet extracts five features and generates a 5-tuple (readdepth, readls, 
readrs, readsr, readic). Readdepth denotes the read coverage of the site. Readls denotes the 
count of left soft-clip breakpoints at this site (An example is shown in the Additional 
file  1: Fig. S1). Readrs denotes the count of right soft-clip breakpoints at this site (An 
example is shown in the Additional file 1: Fig. S2). Readsr denotes the number of split 
alignments at this site. Readic denotes the count of the insertion in the CIGAR string (‘I’ 
operation in the CIGAR string).

For a sub-region, INSnet can generate an alignment feature matrix with 200 rows and 
5 columns. If the length of a sub-region is less than 200 bp, the corresponding column of 
the matrix is filled with 0. Then for each row of an alignment feature matrix, INSnet pre-
processes it using Z score normalization [33]. The z score makes the values in the same 
column have a mean of 0 and a standard deviation of 1. This operation preserves the 
shape properties of the original features, improves the training speed of the deep learn-
ing model, and increases the accuracy. The Z score can be represented by the equation:

Extracting variant features

Due to the large amount of data, directly using the traditional fully connected neural 
network will require a substantial number of parameters and increase the computa-
tional cost. INSnet uses a CNN to extract variant features for each alignment fea-
ture matrix. INSnet first uses only one layer of traditional convolution [34] and max 
pooling to extract variant features. Then, INSnet uses a depthwise separable CNN 
[31]. Compared with traditional convolution, the depthwise separable convolution 
consists of two steps: depthwise convolution and pointwise convolution. Depthwise 

(1)z − score(x) =
x−Mean

Standard− Deviation
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convolution uses a convolution kernel for each channel of the input feature map and 
then splices the outputs of all convolution kernels to obtain its final output. Pointwise 
convolution is a 1 × 1 convolution that is used to change the number of feature chan-
nels. Depthwise separable convolution can further reduce the number of parameters.

Fig. 1  The workflow of INSnet. a Generating the alignment feature matrix. b Extracting variant features. c 
Determining sub-regions containing insertions. d Estimating the insertion site and length
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The convolution operation extracts informative features through spatial informa-
tion and channel information. Therefore, INSnet uses two attention mechanisms, 
the convolutional block attention module (CBAM) [35] and efficient channel atten-
tion (ECA) [36], to further process the features. The CBAM uses channel and spa-
tial attention modules to increase the expressiveness of features through an attention 
mechanism. The specific calculation formula is shown in (2).

F refers to the feature after convolution and max pooling, and F″ refers to the result 
of passage through the 1D channel attention module C and the 2D spatial attention 
module S. ⊗ indicates elementwise multiplication.

The CBAM uses average pooling and max pooling to aggregate features and uses 
two-dimensional convolution to calculate spatial attention, which is computation-
ally expensive. Therefore, after using a CBAM module, INSnet uses the ECA module, 
which avoids dimension reduction and captures cross-channel information in an effi-
cient way. ECA is efficiently implemented using only one fast 1D convolution of size 
k. The specific calculation formula is as follows:

C1D represents one-dimensional convolution, k represents the size of the convolu-
tion kernel, y represents the input feature after global average pooling, and σ passes 
through the sigmoid activation function to obtain the final weight w. The weights are 
multiplied by the corresponding elements of the original input feature to obtain the 
final output feature. After each layer of convolution, the elu [37] activation function is 
used to increase nonlinearity.

Determining sub‑regions containing insertion

Due to the limitations of alignment tools and sequencing technologies, there will be 
false alignments, which possibly cause some errors in the variant features. The length 
of each sub-region is only 200  bp, and the variation information may be expressed 
in adjacent regions. The continuous variant information of these sub-regions can be 
used to detect insertions. For example, the adjacent sub-regions of some insertion 
variations also contain soft-clipped breakpoint information. Therefore, it is crucial to 
capture the association among continuous sub-regions. INSnet uses a two-layer bidi-
rectional GRU neural network [32], which solves the long-term dependence of tra-
ditional recurrent neural networks (RNNs) [38] and has fewer parameters and less 
computation than the commonly used LSTM [39].

Finally, the prediction is made through three fully connected layers, and the drop-
out layer is set. The last fully connected layer adopts a sigmoid activation function. If 

(2)
F
′
= C(F)⊗ F

F
′′
= S F

′
⊗ F

′

(3)w = σ
(

C1Dk

(

y
))

(4)elu =

{

ex − 1 x < 0
x x ≥ 0
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the predicted result is greater than 0.5, the sub-region is inferred to contain an inser-
tion, and if it is less than 0.5, the sub-region is normal.

Estimating the insertion site and length

After predicting whether a sub-region contains an insertion through previous steps, 
INSnet determines the precise site and length of the insertion. First, INSnet traverses all 
CIGAR strings in the alignments around this sub-region and saves the position where 
I ≥ 50 bp as a sub-insertion triple (Chr, Refstart, SVlen). Chr indicates which chromosome 
it belongs to, and Refstart indicates the insertion site in the reference. SVlen indicates the 
length of the insertion. Because there are usually many long reads aligned in the sub-
region, we can obtain multiple sub-insertion triples.

In addition, due to sequencing errors and alignment tool bias, a large insertion may 
be split into multiple smaller parts aligned in the sub-region. Therefore, if the dis-
tance between two sub-insertion triples is smaller than 30  bp, they are merged into 
one large insertion region. For example, for two sub-insertion triples (Chr1, Refstart1, 
SVlen1) and (Chr2, Refstart2, SVlen2), if chr1 and chr2 belong to the same chromosome 
and Refstart2 − Refstart1 < 30, then a new sub-region triple is constructed: (Chr1, Refstart1, 
Refstart2 − Refstart1 + SVlen2).

Next, for a soft-clipped long read in the sub-region, INSnet records the information 
as a hextuple sub-seg(Chr, Refstart, Refend, Readstart, Readend, stands). Chr indicates which 
chromosome it belongs to. Refstart and Refend indicate the starting and ending positions 
in the reference. Readstart and Readend indicate the starting and ending positions in the 
read. An example is shown in Fig. 2.

If one long read has two soft-clipped alignments, the two alignments have the same 
chromosome and the same direction and the following formula is satisfied, the read is 
considered to be a potential insertion region.

At this time, both Refend1 and Refstart2 may be the sites of insertion. INSnet then detects 
whether they are in the sub-region containing the insertion predicted by the neural 

(5)(Refend1 − Refstart2)− (Readend1 − Readstart2) ≥ 50

Fig. 2  An example of soft-clipped alignment. There is an insertion in the human sample. One long read has 
two soft-clipped alignments. For this long read, the region [refstart1 refend1] in the reference is aligned with 
the region [readstart1, readend1] in it, and the region [refstart2 refend2] in the reference is aligned with the region 
[readstart2, readend2] in it. The two green parts represent soft-clipped
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network. Either Refend1 or Refstart2 belongs to the predicted sub-region, and it is recorded 
as an insertion.

The potential insertions found above are all recorded in the form of triples (Chr, 
Refstart, SVlen). If the distance between two triples is less than 1500 bp, the two triples are 
considered to be the same insertion and are stored in the same cluster. After processing 
all the triples, INSnet can obtain multiple clusters, and one cluster corresponds to an 
insertion. The insertion site is the median value of Refstart in one cluster, and the length 
of the insertion is the median value of SVlen in this cluster.

Model training

To train the model, we should know the exact site of insertion in the reference. The 
Genome in a Bottle Consortium (GIAB) [40] has supplied the sites of SVs for HG002, 
which have been widely used in other SV callers based on deep learning. The sites and 
types of SVs are available from https://​ftptr​ace.​ncbi.​nlm.​nih.​gov/​giab/​ftp/​data/​Ashke​
nazim​Trio/​analy​sis/​NIST_​SVs_​Integ​ration_​v0.6/​HG002_​SVs_​Tier1_​v0.6.​vcf.​gz. We 
extract only insertion sites from this file for training INSnet.

First, we will align the CLR dataset and Nanopore dataset against the reference 
genome and generate the alignment matrix for each sub-region. If one alignment matrix 
corresponds to an insertion site, it is labelled 1; otherwise, it is labelled 0. Next, one hun-
dred continuous alignment matrixes will be treated as one sample. After obtaining all 
samples, we divide the samples into a training set, test set and validation set. The sam-
ples of chromosomes 1–10 for HG002 are used as the training set, the samples of chro-
mosome 11 are used as the validation set, and the remaining samples of chromosomes 
12–22 are used as the test set. After completing training, INSnet can be validated on 
the test set. The SV sites and types of NA19240 are also available from NCBI dbVAR: 
https://​ftp.​ncbi.​nlm.​nih.​gov/​pub/​dbVar/​data/​Homo_​sapie​ns/​by_​study/​vcf. The samples 
of chromosomes 1–22 for NA19240 are only used for testing. When using the CLR or 
Nanopore dataset to call insertions, users can use this trained model.

Because the characteristics of the CCS dataset differ from those of the CLR and Nano-
pore datasets, we generate another training set, validation set and test set by the method 
described above. When using the CCS dataset to call insertions, this trained model is 
adopted.

We use a computer with the following configuration for model training: 12-core 
24-thread CPU (Intel(R) Xeon(R) Silver 4214 CPU @ 2.20  GHz) and an RTX 3090 
graphics card.

Model prediction

To ensure that as many insertions as possible are found, when using the deep learning 
network for insertion prediction, we make four sets predictions. INSnet will set a slid-
ing window (default 50  bp) and perform prediction four separate times. For example, 
the first prediction is for sub-regions [0, 200], [200, 400], and [400,600]. The sub-regions 
in the second prediction are [50, 250], [250, 450] and [450, 650]. The sub-regions in 
the third prediction are [100,300], [300,500], and [500,700], and the sub-regions in the 
fourth prediction are [150,350], [350,550], and [550,750]. We keep the sub-regions that 
are considered to contain an insertion in any prediction.

https://ftptrace.ncbi.nlm.nih.gov/giab/ftp/data/AshkenazimTrio/analysis/NIST_SVs_Integration_v0.6/HG002_SVs_Tier1_v0.6.vcf.gz
https://ftptrace.ncbi.nlm.nih.gov/giab/ftp/data/AshkenazimTrio/analysis/NIST_SVs_Integration_v0.6/HG002_SVs_Tier1_v0.6.vcf.gz
https://ftp.ncbi.nlm.nih.gov/pub/dbVar/data/Homo_sapiens/by_study/vcf
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Results
INSnet benchmarks three state-of-the-art SV callers, Sniffles (2.0.6), SVIM (1.4.2), 
and CuteSV (1.0.13). Truvari (1.2.0) [41] is used to validate the results and obtain the 
evaluation metrics: recall, precision and F1 scores. Well-studied samples of HG002 and 
NA19240 are used for training and testing. For HG002, we use CLR and CCS data of 
Pacific Biosciences and sequencing data from Oxford Nanopore Technologies. For 
NA19240, we use CLR sequencing data. To test the sensitivity of SV callers for different 
sequencing coverage levels, we downsample the HG002 CLR data to obtain 35X, 20X, 
10X, and 5X datasets. HG002 CCS data are downsampled to 10X and 5X datasets. We 
downsample HG002 ONT data to obtain 20X, 10X, and 5X datasets. For INSnet, SVIM 
and cuteSV, we set different support read parameters for different coverage. For the CLR 
and ONT datasets, support read is set to 10 for datasets with coverage greater than 40X. 
For the 35X, 20X, 10X, and 5X datasets, the support read is set to 5, 4, 3, and 2, respec-
tively. For the 28X, 10X, and 5X CCS datasets, the support read is set to 3, 2, and 1, 
respectively. The details of the datasets are shown in the Additional file 1: Table S1.

HG002 evaluation results for different callers based on the CLR dataset

First, we benchmark Sniffles, SVIM, cuteSV, and INSnet on the test data (chromosomes 
12–22 for HG002) using the CLR dataset. The benchmark result is shown in Table 1.

INSnet has the highest recall and F1 score for all datasets with different coverage lev-
els. For the 69X dataset, the F1 score is 2.3% higher than the second best score. This 
proves that INSnet can have a good effect when coverage is high. To examine the per-
formance of callers on datasets with different coverage levels, we randomly downsample 

Table 1  Performance comparison of SV callers on CLR dataset about HG002

Coverage INSnet cuteSV SVIM Sniffles

CLR

69X

 Precision 0.9346 0.9247 0.9421 0.5849

 Recalll 0.915 0.879 0.7967 0.8876

 F1 0.9247 0.9012 0.8633 0.7051

35X

 Precision 0.9095 0.9194 0.9204 0.5806

 Recall 0.8644 0.8596 0.7961 0.8741

 F1 0.8864 0.8762 0.8538 0.6977

20X

 Precision 0.9084 0.8386 0.8366 0.5169

 Recall 0.7838 0.8107 0.7547 0.8402

 F1 0.8415 0.81 0.7936 0.64

10X

 Precision 0.8822 0.9502 0.934 0.2906

 Recall 0.6122 0.575 0.5223 0.7149

 F1 0.7228 0.7062 0.6715 0.4132

5X

 Precision 0.7643 0.6996 0.5988 0.4264

 Recall 0.3943 0.4271 0.3911 0.4164

 F1 0.5202 0.5201 0.4732 0.4213
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the HG002 CLR data to test sensitivity under different coverage levels. On the 35× 
dataset, INSnet’s F1 score is improved by 1% over that of cuteSV. At the same time, the 
recall is only less than 1% lower than that of Sniffles, but the precision of Sniffles is only 
58.06%, while INSnet’s precision is as high as 90.95%. On the 20× dataset, INSnet’s F1 
score is 3% higher than that of cuteSV and has the highest precision. On the 10X dataset, 
INSnet’s F1 score is 1.66% higher than that of cuteSV. Although Sniffles has the highest 
recall, the precision is only 29%. INSnet has the second highest recall and high precision. 
Due to the high error rate of long read, more reads are needed to ensure the accuracy 
of data and call SV. Therefore, as coverage decreases, it is difficult to distinguish false 
SVs generated by sequencing errors from true SV. At the same time, the variation infor-
mation contained in the low coverage data is not obvious, and the detection of inser-
tion becomes more difficult. Common SV caller, such as Sniffles, SVIM, CuteSV will also 
encounter the same problem. Therefore, in the 10X data, the results obtained by INSnet 
is low. On the 5× dataset, although the F1 score of INSnet is similar to that of cuteSV, 
the precision is much higher than that of cuteSV. This proves that INSnet can achieve 
good results with CLR data under different coverage levels.

HG002 evaluation results for different callers based on the ONT dataset

We further benchmark Sniffles, SVIM, cuteSV, and INSnet on the test data (chromo-
somes 12–22) using the ONT dataset. The benchmark result is shown in Table 2. INSnet 
achieves the highest F1 score at 48 × coverage and has the highest precision. Then, we 
also randomly downsample the ONT data to 20X, 10X, and 5X coverage. On the 20× 
data, INSnet has the highest F1 score and the highest precision. On the 10× and 5× 
data, the INSnet results are only slightly worse than those from Sniffles. This proves 
that INSnet can also perform well on ONT data. Due to the different sequencing tech-
nologies of Oxford Nanopore Technologies (ONT) and PacBio Continuous Long Reads 

Table 2  Performance comparison of SV callers on ONT dataset about HG002

Coverage INSnet cuteSV SVIM Sniffles

ONT

48X

 Precision 0.9012 0.8865 0.7883 0.8889

 Recall 0.8585 0.8531 0.8273 0.8693

 F1 0.8793 0.8695 0.8073 0.879

20X

 Precision 0.8893 0.8615 0.6754 0.8419

 Recall 0.8467 0.83 0.8316 0.8623

 F1 0.8675 0.8455 0.7454 0.852

10X

 Precision 0.8827 0.87 0.7306 0.8243

 Recall 0.7531 0.7488 0.7133 0.8305

 F1 0.8128 0.8049 0.7218 0.8274

5X

 Precision 0.8519 0.8423 0.6937 0.8645

 Recall 0.6628 0.6321 0.6213 0.6659

 F1 0.7232 0.7222 0.6555 0.7524
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(CLR), the accuracy of the data is also different. Compared with CLR data, ONT data 
has a higher sequencing error rate [42], which possibly infect the accuracy of the fea-
ture extracted from alignment file by INSnet In the high-coverage ONT data, INSnet 
achieved the highest F1 score in the coverage of 48× and 20×. Insertion detection 
becomes more difficult as data coverage decreasing.

NA19240 evaluation results about different callers based on CLR dataset

To test the performance of INSnet on other datasets, we also use the more challenging 
NA19240 dataset. The ground-truth call sets are collected from the NCBI dbVAR data-
base. The results are shown in Table 3. On the NA19240 dataset, INSnet has the highest 
recall and F1 scores, where the recall is 2.79% higher than the second best (cuteSV) and 
the overall F1 is 1% higher than that of cuteSV. This shows that INSnet can have good 
sensitivity for different datasets and can achieve better results than other tools.

The performance for insertions with different length

To validate the performance of SV callers for insertions with different lengths, we clas-
sify the insertions into five intervals, [50, 200], [200, 500], [500, 1000], [1000, 5000], and 
[5000,]. The insertion benchmark results with different lengths for the 69X dataset are 
shown in Table 4. INSnet can achieve above-average F1 scores in each interval. Among 
them, in the insertion interval of 1000–5000, the F1 score of INSnet (0.9142) is 14% 
higher than that of the second-best tool, cuteSV (0.7735). The recall of INSnet (0.9142) 
is 26% higher than that of the second-best, cuteSV (0.6524). In the interval greater than 
5000, Sniffles, SVIM, and cuteSV all find few variant sites. The recall of Sniffles is 0.2292, 
but its precision is only 0.0399. The precision of cuteSV reaches 1, but the recall is only 
0.1458. The precision of INSnet reaches 0.8888, the recall reaches 0.5, and the F1 score is 
nearly 40% higher than the second best score. Experiments show that INSnet can obtain 
good results in each interval, especially in detecting large insertions.

The influence of support read on INSnet

We further evaluate the parameter, support read, for INSnet on the CLR 69X dataset 
about HG002. The support read parameter refers to the minimum support reads of the 
insertion to be called. As shown in Table 5, setting different values of support read will 
result in different precision, recall, and F1 score. When the support read is larger, the 
sensitivity is reduced and the accuracy is improved. When the support read is smaller, 
accuracy decreases and sensitivity increases.

Table 3  The performance  on CLR dataset about NA19240

Coverage INSnet cuteSV SVIM Sniffles

CLR

41X

 Precision 0.4719 0.6276 0.4163 0.4679

 Recalll 0.2033 0.1754 0.0305 0.1754

 F1 0.2842 0.2742 0.0568 0.2551
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HG002 evaluation results about different callers for CCS dataset

Due to its high accuracy for the CCS data, INSnet is specifically trained based on the 
CCS dataset. We also benchmark Sniffles, SVIM, cuteSV, and INSnet on the test data 
(chromosomes 12–22) by using CCS datasets. We randomly downsample the CCS data-
set to 10X and 5X coverage. Table 6 shows that INSnet performs the best on all three 
datasets. For the 28× dataset, the F1 score improves by 0.7% over that of Sniffles, and 
INSnet has the highest precision. For the 10× data, the F1 score improves by nearly 1.5% 
over that of Sniffles. On the 5× data, the F1 score is 4% better than that of SVIM. This 
proves that INSnet has good performance for CCS datasets with different coverage.

The model classification result

We evaluated the classification ability of the model. For HG002, we alse use CLR, ONT 
and CCS data. And we randomly downsample the HG002 CLR data to obtain 35X, 20X, 

Table 4  The performance of insertions in different sizes on 69× data about HG002

Phase INSnet cuteSV SVIM Sniffles

CLR69X

50–200

 Precision 0.8961 0.8639 0.8958 0.3106

 Recall 0.8817 0.9458 0.9421 0.9126

 F1 0.8888 0.903 0.9184 0.463

200–500

 Precision 0.9337 0.9506 0.6964 0.9108

 Recall 0.9173 0.9155 0.8803 0.9525

 F1 0.9254 0.9327 0.7776 0.9312

500–1000

 Precision 0.8276 0.9207 0.9226 0.8617

 Recall 0.8484 0.7626 0.7222 0.8182

 F1 0.8379 0.8343 0.8102 0.8394

1000–5000

 Precision 0.9142 0.95 0.9592 0.2327

 Recall 0.9142 0.6524 0.2017 0.4893

 F1 0.9142 0.7735 0.3333 0.3154

5000-

 Precision 0.8888 1 0 0.0399

 Recall 0.5 0.1458 0 0.2292

 F1 0.64 0.2545 0 0.0679

Table 5  The performance of different support read on hg002 69X data

Coverage Support ≥ 1 Support ≥ 3 Support ≥ 5 Support ≥ 7 Support ≥ 10

CLR

69X

 Precision 0.5934 0.7235 0.8267 0.8877 0.9346

 Recalll 0.9279 0.9274 0.9263 0.9225 0.915

 F1 0.7239 0.8128 0.8737 0.9048 0.9247
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10X, and 5X datasets. HG002 CCS data are downsampled to 10X and 5X datasets. We 
downsample HG002 ONT data to obtain 20X, 10X, and 5X datasets. The detailed exper-
imental results are provided in the Additional file 1: Tables S2, S3 and S4.

Discussions and conclusion
In this study, we developed INSnet, a deep learning-based method for detecting inser-
tions. INSnet collects different features in the alignments between long reads and a ref-
erence genome, analyses the features through depthwise separable convolution and two 
attention mechanisms, and then uses a bidirectional GRU network and fully connected 
layers to determine the sub-regions that contain an insertion. We test the performance 
of INSnet on several datasets and compare it with three state-of-the-art tools. INSnet 
can find insertions with good performance on different datasets and under different cov-
erage levels.

In this paper, we consider only insertions, but there are other types of variations, such 
as deletions, inversions, and copy number variations, that cannot be called. In addition, 
INSnet is currently unable to call genotypes. We will address these issues in future work.
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