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Abstract 

Background: Stable Isotope Resolved Metabolomics (SIRM) is a new biological 
approach that uses stable isotope tracers such as uniformly 13C-enriched glucose ( 13C6
-Glc) to trace metabolic pathways or networks at the atomic level in complex biological 
systems. Non-steady-state kinetic modeling based on SIRM data uses sets of simultane-
ous ordinary differential equations (ODEs) to quantitatively characterize the dynamic 
behavior of metabolic networks. It has been increasingly used to understand the regu-
lation of normal metabolism and dysregulation in the development of diseases. 
However, fitting a kinetic model is challenging because there are usually multiple 
sets of parameter values that fit the data equally well, especially for large-scale kinetic 
models. In addition, there is a lack of statistically rigorous methods to compare kinetic 
model parameters between different experimental groups.

Results: We propose a new Bayesian statistical framework to enhance parameter 
estimation and hypothesis testing for non-steady-state kinetic modeling of SIRM 
data. For estimating kinetic model parameters, we leverage the prior distribution 
not only to allow incorporation of experts’ knowledge but also to provide robust 
parameter estimation. We also introduce a shrinkage approach for borrowing informa-
tion across the ensemble of metabolites to stably estimate the variance of an individual 
isotopomer. In addition, we use a component-wise adaptive Metropolis algorithm 
with delayed rejection to perform efficient Monte Carlo sampling of the posterior dis-
tribution over high-dimensional parameter space. For comparing kinetic model param-
eters between experimental groups, we propose a new reparameterization method 
that converts the complex hypothesis testing problem into a more tractable param-
eter estimation problem. We also propose an inference procedure based on credible 
interval and credible value. Our method is freely available for academic use at https:// 
github. com/ xuzha ng0131/ MCMCF lux.

Conclusions: Our new Bayesian framework provides robust estimation of kinetic 
model parameters and enables rigorous comparison of model parameters 
between experimental groups. Simulation studies and application to a lung cancer 
study demonstrate that our framework performs well for non-steady-state kinetic 
modeling of SIRM data.
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Background
The metabolome comprises the full set of compounds and the biochemical reactions that 
represent the functional phenotypes of living organisms. It changes in response to either 
internal environments (such as mutations or alterations in gene/protein expression) or 
external perturbations (such as altered nutrient supply) which occur during disease pro-
gression. Unraveling the dynamics of changes in the metabolome is a key to elucidating 
molecular regulations at both gene and protein levels that underlie macroscopic phe-
notypes such as individual variations in disease development or drug susceptibility. In 
recent years, a powerful approach, Stable Isotope Resolved Metabolomics (SIRM) [1–
11] has been developed to decipher metabolic networks and changes in disease states, 
which can be linked to altered regulation at gene and protein expression levels. Based 
on mass spectrometry and nuclear magnetic resonance techniques, SIRM uses stable 
isotope tracers such as uniformly 13C-enriched glucose ( 13C6-Glc ) to trace metabolic 
pathways or networks at the atomic level [1, 7, 9, 11–16] in cells, tissues, living organ-
isms, or even human patients, that respond to disease development or drug treatment. 
By determining the atomic position (isotopomers) of stable isotope incorporation into 
relevant metabolites, the enzymes that are involved in the altered biochemical conver-
sion of parent tracers into these metabolites can be systematically identified along with 
their possible allosteric regulator(s). In cancer research, for example, SIRM studies have 
uncovered key reprogrammed metabolic events and regulations in cancer cells and tis-
sues [14, 17–23].

Kinetic modeling analysis is a commonly used approach to quantitatively model meta-
bolic pathway dynamics based on total metabolite profiles and/or tracer data. Many 
kinetic modeling analyses [24–26] focus on the case that the system has achieved both 
metabolic and isotopic steady state. Several statistical and machine learning algorithms 
have been developed to characterize kinetic models and estimate model parameters for 
such models, see Saa and Nielsen [27] and Cuperlovic-Culf [28] for reviews. However, 
the steady state is difficult to achieve in complex biological systems such as mamma-
lian cells, tissues, or in whole bodies [29]. An important development is the extension of 
kinetic modeling analysis to non-metabolic and non-isotopic steady flux analysis based 
on ordinary differential equations (ODEs) that represent the kinetics of individual or 
groups of enzyme-catalyzed reactions within the proposed metabolic networks [30–35]. 
Non-steady-state kinetic models are more realistic and have been increasingly used to 
understand the regulation of normal metabolism, the development of disease, and to 
predict metabolic reactions upon genetic and environmental perturbation [36–39]. Such 
characterization is then necessary for the development of novel therapeutic strategies.

For statistical analyses of non-steady-state kinetic modeling, current methods [31, 40, 
41] are weighted least squares-based, which seek an optimal set of parameters to mini-
mize the difference between model and the observed data. However, due to the com-
plexity of the model and limited number of replicates, there are usually multiple sets of 
parameter values that fit the data equally well [40]. Without imposing additional con-
straints, it is difficult to unambiguously determine all model parameters. In addition, 
quantifying the uncertainty in parameter estimation is also challenging because the Hes-
sian matrix, which is required to calculate the standard error of parameter estimator, is 
often ill-conditioned. Further, without an accurate characterization of the standard error 
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of parameter estimator, it is difficult to statistically rigorously compare kinetic model 
parameters as well as metabolic flux between different experimental groups, e.g. treat-
ment versus control. Consequently, Fan et al. [41] only compared the point estimate of 
a parameter between groups without providing a quantification of statistical significance 
such as a p-value.

Here we describe a new Bayesian statistical framework for non-steady-state kinetic 
modeling of SIRM data to provide accurate and robust estimation of model parameters 
and to allow rigorous comparison of model parameters between experimental groups. 
For estimation of kinetic model parameters, our Bayesian method incorporates experts’ 
knowledge about the most likely region of model parameters by a prior distribution, 
which yields robust estimates of parameters and avoids retrieving scientifically unreal-
istic parameter values. In addition, we propose a Bayesian shrinkage prior for the vari-
ances of the isotopomer abundances to stabilize their estimation, and thus more reliably 
quantify the uncertainty in kinetic model parameter estimation for limited sample sizes. 
Further, we introduce advanced Markov chain Monte Carlo (MCMC) methods includ-
ing adaptive Metropolis [42–44] and delayed rejection [45, 46] to improve the efficiency 
of posterior sampling under the high-dimensional situation. For comparison of kinetic 
parameters between experimental groups, we propose a novel reparameterization 
method that converts the complex hypothesis testing problem, which involves high-
dimensional integrals, into a more tractable parameter estimation problem. Based on the 
posterior sample of that parameter, a credible interval can be easily constructed to assess 
the null hypothesis. We further propose a credible value to quantify the likelihood for 
the null hypothesis to hold. Simulation studies were conducted to evaluate the accuracy 
of the proposed method in estimating kinetic model parameters and detecting differen-
tiated parameters between experimental groups. By applying our method, we character-
ized the dysregulation of purine synthesis in lung squamous cell carcinoma tissues.

Methods
In this section, we introduce a kinetic model to characterize the dynamics of biochemi-
cal processes. Based on this model, we propose a Bayesian framework to estimate the 
model parameters and conduct hypothesis tests comparing parameter values between 
experimental groups.

A Bayesian kinetic model

Biochemical processes can be described by systems of biochemical reactions, show-
ing how the reactants are transformed and related to the products. The most common 
approach to model the evolution of such a system over time is dynamical system mode-
ling via ODEs. These ODEs characterize the functional relationship between reactants at 
a specific time point t, where the time derivatives quantify the biochemical reaction rates 
between reactants. Specifically, let ytj = (ytj1, . . . , ytjn)

′ be a vector of observed concen-
trations of n isotopomers at time t in independent repeated sample j, j = 1, . . . ,m , and 
µt be a vector of mean concentrations of isotopomers at time t. We consider the follow-
ing model



Page 4 of 20Zhang et al. BMC Bioinformatics  (2023) 24:108

where f  is the formula of a set of pre-specified nonlinear ODEs with respect to µt for dif-
ferent isotopomers, β is a vector of unknown ODE model parameters on the logarithmic 
scale, and δtj is a vector of independent random error terms. The ODE model parameters 
represent the rate constants of the biochemical reactions which are determined by the 
enzyme parameters, such as the Km (the Michaelis-Menten constant) and kcat (the turn-
over number, the number of times each enzyme site converts substrate to product per 
unit time), which are our main parameters of interest. Note that because ODE parame-
ters are always positive, we consider β , the natural logarithm of ODE parameters, for the 
convenience of prior specification and posterior sampling. The error term δtj describes 
the technical and biological variations. It has been suggested that a normally distributed 
additive error term on the logarithm of the data is appropriate when modeling biochem-
ical reactions [47]. Therefore, we assume δtj ∼ N (0,�δ) , where �δ is a diagonal matrix 
with the ith diagonal element being σ 2

i  . Let σ 2 be a vector of the σ 2
i ’s.

Although our interest lies in β , the inference relies heavily on a stable estimate of σ 2 . 
When we assume discrete T time points are observed, the likelihood function of the 
model, L(β , σ 2) , is

where µt is a function of β and t defined in Eq. (1), and �δ contains σ 2 . This model is 
highly nonlinear and the parameters are embedded within the ODEs. It is challenging 
to use the maximum likelihood method directly to obtain model parameter estimations 
since taking derivatives with respect to the parameters within ODEs is not trivial, though 
it can be done numerically, or explicitly for known function forms such as Hill equation 
or the Michaelis-Menten equation). Bayesian methods are valuable alternatives to obtain 
posterior samples of parameters without the need to take derivatives. They also provide 
a natural and principled way to combine the observed data with experts’ prior knowl-
edge and information about the parameters, which is the key to achieve robust param-
eter estimation for a complex system with a limited sample size. Let p(β) and p(σ 2) be 
priors of β and σ 2 , respectively, and assume that they are independent with each other, 
the joint posterior distribution of β and σ 2 is

where y = (ytj) is the observed data across time point t = 1, . . . ,T  and replicate 
j = 1, . . . ,m.

Prior specification

We assume that the prior distribution of β is a truncated multivariate normal distri-
bution. Specifically, we first consider a multivariate normal distribution with mean 
ξ and covariance matrix � , where values of ξ and � are specified based on experts’ 

(1)
log ytj = logµt + δtj ,

dµt

dt
=f (µt;β , t),

|�δ|
−mT

2 exp −
1

2

T

t

m

j=1

(log ytj − logµt)
′

�−1
δ (log ytj − logµt) ,

p(β , σ 2|y) ∝ L(β , σ 2)p(β)p(σ 2),
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knowledge and using literature data and databases such as BRENDA [48]. We then 
further constrain the distribution within a reasonable value range between ζ l and ζ u , 
which are also specified by experimentalists, to rule out some extreme values that 
are not biologically possible, and thus enhances the robustness of our method under 
the high-dimensional situation. Note that we do not require the experts to specify 
very narrow ranges. The ranges are determined by the amount of information avail-
able about each enzyme. If there is extensive information about an enzyme under 
different conditions, a relatively narrow range will be specified, whereas for less well 
characterized enzymes, a wider range will be used.

When only a limited number of replicates are collected for an individual isoto-
pomer, it is unlikely to provide a stable estimate of σ 2

i  without any regulation. We 
consider a Bayesian shrinkage approach that assumes a common prior for all σ 2

i ’s, 
which regulates the variance estimate by borrowing information from the ensemble 
of isotopomers. This approach has been shown to provide a more stable estimate 
of the variance in transcriptomics studies [49]. Importantly, a stable estimate of the 
variance can also enhance the estimation of β . Specifically, we assume the common 
prior is an inverse gamma distribution with shape parameter α∗ and scale parameter 
κ∗ . The hyperparameters α∗ and κ∗ are empirically determined based on the sample 
variances of all isotopomers, i.e.

where s2it = {
∑m

j=1(log ytji −
∑m

j=1 log ytji/m)2}/(m− 1) denotes the sample variance 
over m replicates for each isotopomer i at time point t, s̄2 = (

∑T
t=1

∑n
i=1 s

2
it)/(nT ) 

stands for the average of all sample variances across time and isotopomer.
To demonstrate how the priors impact parameter estimation, consider the loga-

rithm of the posterior

The above formula is a penalized log-likelihood function from a frequentist point of 
view, where a penalty term −(β − ξ)

′
�−1(β − ξ) is introduced to penalize β value that 

is far away from its prior mean ξ . Likewise, a penalty term (−α∗ − 1) log σ 2
i − κ∗/σ

2
i  

is to penalize σ 2
i  values far away from the overall empirical mean. Therefore, by using 

the prior distribution to regularize the parameter estimation, our method reduces the 
chances of getting extreme or implausible estimated values for those parameters.

α∗ =

(

1

nT

T
∑

t=1

n
∑

i=1

s2it

)2/{

1

nT − 1

T
∑

t=1

n
∑

i=1

(s2it − s̄2)2
}

+ 2,

κ∗ =

(

1

nT

T
∑

t=1

n
∑

i=1

s2it

)

(α∗ − 1),

log p(β , σ 2|y) ∝−mT log |�δ| −

T
∑

t

m
∑

j

(log ytj − logµt)
′

�−1
δ

(log ytj − logµt)− (β − ξ)
′

�−1(β − ξ)

+ 2

n
∑

i

{

(−α∗ − 1) log σ 2
i −

κ∗

σ 2
i

}

.
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Inferring posterior distribution

Point estimates and credible intervals for model parameters are obtained from the posterior 
distribution using MCMC methods. We use the Gibbs sampling [50] to iteratively sample 
each element of β and σ 2 from its conditional posterior distribution given all other param-
eters. In the next two subsections, we describe methods to sample from those conditional 
posterior distributions.

Posterior sampling for kinetic parameters

The conditional posterior sample of a kinetic parameter is obtained by using MCMC 
because that posterior has no analytic expression due to the complexity of the ODEs. Since 
the dimension of parameters is high, the standard Metropolis-Hastings algorithm is inef-
ficient and may yield low rates of acceptance and poor mixing of the chain [44]. To improve 
efficiency, we opted to implement advanced MCMC methods including component-wise 
adaptive Metropolis [42–44] and delayed rejection [45, 46].

The adaptive Metropolis [43] tunes the covariance matrix of the proposal distribution in 
the Metropolis-Hastings algorithm based on the past sample path of the chain and auto-
matically adapts the proposal distribution towards the target distribution. Based on the 
adaptive Metropolis algorithm, our proposal distribution for the ith element of the param-
eter vector, βi , at the (l + 1)th iteration is

where the variance of the proposal distribution is

where Cl
ii is the (i, i) element of Cl , Cl

i,−i is the ith row of Cl after removing the ith column, 
Cl
−i,i is the ith column of Cl after removing the ith row, and Cl

−i−i is the submatrix of Cl 
leaving out the ith row and the ith column with

The matrix Cl is fixed at C0 for the first l0 iterations and adaptive to the covariance of 
the past sample β1, . . . ,β l afterwards. The specifications of C0 , sd and ǫ are provided in 
Additional file 1.

The delayed rejection [45, 46] modifies the standard Metropolis-Hastings algorithm by 
delaying the rejection of proposed moves to improve MCMC efficiency in the Peskun sense 
[51]. When a candidate generated from the proposal distribution is rejected in Metropolis-
Hastings, instead of advancing time and retaining the same position, a second candidate 
move is proposed with the acceptance probability adjusted to preserve the reversibility of 
the Markov chain relative to the target distribution. Specifically, when the proposed β∗

i  is 
rejected, we will do a further Metropolis step with scaled covariance, i.e.

q(β∗
i |β

l
i ) = N (β l

i ,D
l
i),

Dl
i = Cl

ii − Cl
i,−iC

l
−i−i

−1
Cl
−i,i,

Cl =

{

C0, l ≤ l0,

sdcov(β
1, . . . ,β l)+ sdǫId , l > l0.

q′(β∗∗
i |β l

i ,β
∗
i ) = N (β l

i , γD
l
i)
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where γ is the scale parameter for delayed rejection. A detailed description of the com-
ponent-wise adaptive Metropolis algorithm with delayed rejection is provided in Addi-
tional file 1.

Posterior sampling for error variances

The prior of σ 2
i  , an inverse gamma distribution with shape parameter α∗ and scale 

parameter κ∗ , is a conjugate prior based on model (1). In Additional file 1, we show that 
the conditional posterior distribution of σ 2

i  given β is an inverse gamma distribution with 
shape parameter α∗ +mT/2 and scale parameter κ∗ +

∑T
t=1

∑m
j=1(log ytji − logµti)

2/2 , 
where µti is the underlying concentration corresponding to the ODE in model (1) 
given the current value of β . The posterior sample of σ 2

i  is directly obtained from this 
distribution.

Comparison of kinetic model parameters between experimental groups

A primary goal of many metabolomic studies is to identify metabolic alterations in 
response to disease development or drug treatment by comparing kinetic model param-
eters between two experimental groups, e.g. cancer vs. normal or drug-treated vs. con-
trol. Let β(1) and β(2) be kinetic parameters in two experimental groups, respectively. We 
focus on the situation of assessing whether the value of a specific kinetic model param-
eter, e.g. the kth parameter, is equal between experimental groups. Our hypothesis test-
ing problem is:

A standard Bayesian hypothesis testing requires calculation of the following Bayes factor,

where β(1)
−k and β(2)

−k are vectors of parameters in β(1) and β(2) excluding β(1)
k  and β(2)

k  , 
respectively, and β∗

k denotes the common value of β(1)
k  and β(2)

k  under H0 . The Bayes fac-
tor involves intimidatingly high dimensional integrals that are very difficult to compute 
with a reasonable accuracy. To address the hypothesis testing problem while circum-
venting the high-dimensional integration, we propose the following reparameterization:

The hypothesis testing problem then becomes

Importantly, this hypothesis testing can be converted into a parameter estimation prob-
lem, where we first estimate ηk by obtaining its posterior distribution, and then check 
the likelihood of ηk = 0 by constructing a credible interval and further calculating the 
tail probability under its posterior distribution.

Specifically, we jointly model data from the two experimental groups with the repa-
rameterization in effect:

H0 : β
(1)
k = β

(2)
k vs. H1 : β

(1)
k �= β

(2)
k .

∫

. . .
∫

p(log y|β
(1)
−k ,β

(2)
−k ,β

∗
k )p(β

∗
k ,β

(1)
−k ,β

(2)
−k)dβ

∗
k dβ

(1)
−kdβ

(2)
−k

∫

. . .
∫

p(log y|β(1),β(2))p(β(1),β(2))dβ(1)dβ(2)
,

ηk = β
(1)
k − β

(2)
k .

H0 : ηk = 0 vs. H1 : ηk �= 0.
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where variables/parameters are defined similarly as before with an additional super-
script to indicate the experimental group. We assume that δ(1)tj  and δ(2)tj  are independent 
and their ith elements follow normal distributions with mean 0 and variance σ 2

i,(1) and 
σ 2
i,(2) , respectively.
The prior of β(1) and β(2)

−k are specified based on the expert’s knowledge and the 
prior of each σ 2

i,(1) , σ
2
i,(2) is specified by an inverse gamma distribution using the shrink-

age approach. The prior of ηk is specified as a normal distribution with mean zero and 
variance equal to the variance of β(1)

k  . With some simple modification of the MCMC 
algorithm proposed in the last subsection, we obtain posterior samples of parameters 
(β

(1)
−k ,β

(2)
−k ,β

(1)
k , ηk , σ

2
(1), σ

2
(2)) with an additional sampling step for ηk . We then perform 

the hypothesis testing based on the posterior credible interval of ηk , where the two spe-
cific kinetic model parameters are considered as different if the 95% credible interval of 
ηk does not cover 0. To further quantify the level of evidence supporting the null hypoth-
esis, we investigate the highest level of credible interval that does not cover 0 and define 
a credible value

where HDIα denotes the highest density interval of level α under the posterior distribu-
tion of ηk . This credible value reflects how extreme the null value is with respect to our 
posterior belief about ηk . In other words, it can be used as an empirical rule regarding 
how likely the null hypothesis value is correct. A similar idea has recently been investi-
gated in simpler models in clinical trial studies [52]. As we will show in the simulation 
studies subsection, the distribution of the above credible values is concentrated around 
zero when the true values for β(1)

k  and β(2)
k  are different, while it is much more scattered 

between zero and one when the true values for β(1)
k  and β(2)

k  are the same. Thus, the cred-
ible value has a similar behavior as the frequentist’s p-value. We consider a credible value 
< 0.05 as statistically significant. As the credible value is calculated based on HDIα that 
can reflect deviation of ηk from zero in either positive or negative direction, our test is a 
two-sided test.

The proposed algorithm could be applied in other scenarios (e.g. whether there is a dif-
ference in metabolic flux between groups) when the object of interest concerns the com-
parison of multiple kinetic parameters, more details are given in the Discussion section.

Results
Real data analysis

We validated our proposed Bayesian framework by using published data in [41]. Fan 
et al. [41] employed multiplexed SIRM (i.e. multiple labeled substrates in the same 

log y
(1)
tj = logµ

(1)
t + δ

(1)
tj ,

log y
(2)
tj = logµ

(2)
t + δ

(2)
tj ,

dµ
(1)
t

dt
=f (µ

(1)
t ;β

(1)
(−k),β

(1)
k , t),

dµ
(2)
t

dt
=f (µ

(2)
t ;β

(2)
(−k),β

(1)
k , ηk , t),

p = 1− max
0≤α≤1,0/∈HDIα

α,
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experiment) to track the metabolism of 13C6-Glc, D2-glycine, 13C2-glycine, and D3-serine 
into purine nucleotides in thin slices of cancerous and matched noncancerous lung tis-
sues freshly resected from a patient with lung squamous cell carcinoma. The data include 
abundances of isotopologues of serine and glycine and purine nucleotides in cancer and 
non-cancer tissue slices of that patient with three replicates, in both the tissue and the 
medium. Kinetic models were constructed and a weighted least square-based method 
was used to estimate model parameters. Fan et al. [41] considered a model with three 
distinct pools of cytoplasmic Ser/Gly (Fig. 1), where one pool is derived from 13C6-Glc, 
the second is from exogenous D3-Ser or D2-Gly, and the third is from unlabeled sources. 
However, no statistical confidence interval or p-value was available due to the limitation 
of the weighted least squares-based method used in that paper. In this subsection, we 
use our proposed methods to reanalyze the data and provide more rigorous statistical 
inference. Initial ranges of kinetic parameters (Additional File 2: Table S1) were taken 
from literature sources for the appropriate human isoforms [48, 53].

Kinetic parameter estimation

Following our proposed method, we obtained the posterior samples for all the β param-
eters in model (1) based on 5500 MCMC iterations after 7500 burn-in iterations. The 
convergence of the MCMC chains was examined by the Geweke test (Additional File 2: 
Table S2). By inserting the β values into model (1), we estimated the 24-hour concentra-
tions of isotopologues. Fig. 2 compares those estimated log concentrations ± posterior 
standard deviations with mean log concentration ± standard deviation in the observed 
data for cancer and non-cancer groups, respectively. The estimated concentrations were 
very close to the observed ones for most isotopologues except for some low abundance 
ones. Likewise, the variations under the proposed model were also comparable to those 
presented by the observed data for most isotopologues except for some low abundance 
ones. These results indicate that our estimators perform well.

We next investigated the posterior mean and standard deviation over time for two 
fluxes, VfGlc−SerPool1−13C0−13C0D000 and VfGlc−SerPool1−13C1−13C3D000 , from the cancer 

Fig. 1 Tracer labeled three-pool purine synthesis process
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group, as shown in Fig. 3. Based on Fig. 1, we had a non-zero concentration for labeled 
Glc in medium and unlabeled Glc in the cytoplasm at time zero. On the one hand, the 
labeled Glc concentration in the cytoplasm increased with time, and the forward flux 
from labeled Glc to labeled Ser in cytoplasm also tended to increase. On the other hand, 
the unlabeled Glc’s concentration decreased owing to the activity of forward reactions 
to other metabolites; similarly the forward flux from unlabeled Glc to unlabeled Ser in 
cytoplasm tended to decrease too, as expected for actively metabolizing cells.

Group comparison

We compared each kinetic model parameter between cancer and non-cancer tissues 
based on our proposed hypothesis testing procedure. Specifically, we calculated the 
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95% credible interval for the difference in parameter value between cancer and non-
cancer tissues and checked whether it covered zero. A credible value was further cal-
culated to quantify the significance level of the test. We obtained the posterior samples 
based on 2000 MCMC iterations after 5500 burn-in iterations. The convergence of the 
MCMC chains was examined by the Geweke test (Additional File 2: Table S3). Results 
are shown in Fig.  4. We found that the forward flux from glucose to serine in pool 1 
( Kf−GLC−SerPool1 ) is significantly higher in cancer than non-cancer tissues (credible 
value<0.001). This result is consistent with the result reported in [41], providing evi-
dence for the validity of our method. Further, compared to [41], our method is able to 
infer the difference in kinetic model parameters in a statistically rigorous way.

Simulation studies

We conducted simulation studies to evaluate the performance of our method. Data 
were simulated based on Model (1) with parameters specified according to the real data 
from [41]. Specifically, we considered the three-pool model, which contains 608 ODEs 
and 52 parameters, from [41] and borrowed the kinetic parameter estimates from [41] 
and accordingly set the true values of β in our simulations. As to the variances of the 
assumed normally distributed data errors, we borrowed the variation information in 
the real data with three replicates in [41] and randomly generated the σ 2 values from 
an inverse Gamma distribution which took the shrinkage mean and variance of the real 
data replicates’ variation as the mean and variance. These randomly generated values 

Parameter
Kf_GLC_SerPool1
Kf_SerPool3_Synthesis
Kf_SerPool3_Degradation
Kf_GlyPool3_Synthesis
Kf_GlyPool3_Degradation
Kf_SerPool1_GlyPool1
Kr_SerPool1_GlyPool1
Kf_Ser_Transport
Kr_Ser_Transport
Kf_Gly_Transport
Kr_Gly_Transport
Kf_SerPool2_SerPoolMitochon
Kr_SerPool2_SerPoolMitochon
Kf_GlyPool2_GlyPoolMitochon
Kr_GlyPool2_GlyPoolMitochon
Kf_SerPoolMitochon_GlyPoolMitochon
Kr_SerPoolMitochon_GlyPoolMitochon
Kf_GlyPool1_CO2
Kr_GlyPool1_CO2
Kf_GlyPoolMitochon_CO2
Kr_GlyPoolMitochon_CO2
Kf_PRPP1_GAR
Kf_SerPool2_GlyPool2
Kr_SerPool2_GlyPool2
Kf_GlyPool2_CO2
Kr_GlyPool2_CO2

Credible Value
0

0.73
0.3

0.955
0.96

0.225
0.97

0.275
0.855

0.75
0.35

0.485
0.95
0.83

0.845
0.995

0.59
0.995
0.155
0.985
0.985

0.99
0.995

0.19
0.92

0.915

−2 −1 0 1 2 3

Fig. 4 Comparison of each kinetic parameter between lung cancer and non-cancer tissues. The first column 
lists parameter names, the second column lists credible values and the third column lists 95% credible 
intervals for the differences in parameter values between cancer and non-cancer tissues
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were taken as the true values of the data error variances in our simulation studies. Then 
our simulated concentration data were generated accordingly based on the assumed 
normal distributed errors.

Parameter estimation

Our first set of simulations evaluated the performance of our proposed parameter esti-
mation method. We simulated data with 3 replicates based on the cancer data from 
[41]. We applied our method to generate posterior samples from 15,000 MCMC itera-
tions, where the adaptive sampling started after 3000 burn-in iterations and the delayed 
rejection started after another 1000 iterations. The simulations were repeated 30 times, 
i.e. 30 seperate datasets were generated. We examined the difference between the esti-
mated parameter value (posterior mean) and true value. Figure 5 plots the averaged dif-
ference across 30 simulation runs ± 2 se, indicated by a gray box, for each of the 52 
kinetic parameters, where se is the standard error of the difference between estimated 
and true parameter values across 30 simulation runs. Almost all of the boxes (51 out of 
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Fig. 5 Difference between estimated and true parameter values. Each box presents result for one kinetic 
parameter. The thick black line in the middle of a box indicates the averaged difference between estimated 
and true parameter values across 30 simulation runs. The top and bottom of the box indicate averaged 
difference ± 2 se, respectively. The horizontal red line at zero indicates the target value (no difference 
betweeen estimated and true values)
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52) covered zero, indicating that the true parameter value was within 2 se of the esti-
mated values. The one exception was β27 , where the true value was outside 2 se. But it 
was still within 2.5 se of the averaged estimated value. In summary, our estimated values 
were close to true values relative to the standard errors of the estimated values. There-
fore, the simulation results demonstrate that the performance of our estimation method 
was satisfying.

Group comparison

Our second set of simulations assessed the performance of the hypothesis testing 
method. Data were simulated following the same procedure as the first set of cancer 
simulations (superscripted by (1)), except that a second non-cancer experimental group 
(superscripted by (2)) was added. We tested the hypothesis of β(1)

10 = β
(2)
10  and considered 

the following three scenarios: β(1)
10 = β

(2)
10  , β(2)

10 = β
(1)
10 − 0.2 , and β(2)

10 = β
(1)
10 − 0.35.

We applied our proposed testing method, which converts the testing problem into 
one problem of estimating η10 = β

(1)
10 − β

(2)
10  and rejects the null hypothesis if the 95% 

credible interval of η10 does not cover zero, or equivalently, the credible value is smaller 
than 0.05. For every simulation, we used 3000 burn-in steps before heading into adaptive 
phase, and after further 1000 steps, we added delayed rejection. The simulations were 
repeated 20 times (i.e. 20 datasets were generated) for each scenario and the posterior 
samples contained 10,000 steps in total. Under the first scenario where the null hypoth-
esis held (Fig. 6A and B), the 95% credible interval covered 0 and thus did not reject the 
null hypothesis in most of the 20 simulations. The distribution of credible value over 20 
simulations was dispersed with many of them having large values, also suggesting the 
null hypothesis was likely to hold. Under the second scenario where there was a moder-
ate difference between β(1)

10  and β(2)
10  (Fig. 6C and D), the 95% credible interval did not 

cover 0 in most simulations and the distribution of credible value was very concentrated 
around small values, both suggesting the null hypothesis was unlikely to hold. Under 
the third scenario where the true difference was larger (Fig. 6E and F), the 95% credible 
interval did not cover 0 in almost all simulations and the distribution of credible values 
all approached to zero value, both strongly suggesting that the null hypothesis should be 
rejected. In summary, our proposed reparameterization method for hypothesis testing 
tended to not rejecting the null hypothesis under the scenario that the null hypothesis 
held, and rejecting the null hypothesis under the scenarios that the null hypothesis did 
not held. Therefore, these simulation results indicate that our hypothesis testing method 
was well performed.

Discussion
Our method has close points of contact with [54], where the authors developed a 
novel Bayesian approach for the inference of ODEs for characterizing transcription 
factor activities based on gene expression data. Our method extends this Bayesian 
idea in multiple ways. First, we propose a new reparameterization method and cred-
ible value-based procedure that enables Bayesian hypothesis testing for comparing 
kinetic parameters between experimental groups. Second, we introduce component-
wise adaptive Metropolis and delayed rejection methods to improve the MCMC 
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Fig. 6 The 95% credible interval of β(1)
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 and distribution of the credible value for testing the 
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= β

(2)
10

 under the following three scenarios: (A) and (B), β(1)
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= β
(2)
10

 ; (C) and (D), 

β
(1)
10

− β
(2)
10

= 0.2 ; and (E) and (F), β(1)
10

− β
(2)
10

= 0.35 . A red line indicates the true value of β(1)
10

− β
(2)
10

 and 

an orange line at zero indicates the value of β(1)
10

− β
(2)
10

 under the null hypothesis. Results are based on 20 
simulation runs
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efficiency for complex ODE model systems with high-dimensional parameters. Third, 
we propose a Bayesian shrinkage prior to stablize variance parameter estimation 
under limited sample size.

Our hypothesis testing method for comparing kinetic model parameters can be 
extended to identify the between-group difference in metabolic flux, which is the net 
rate of flow of atoms or metabolic subunits through a metabolic pathway or network 
segment. Based on the kinetic model, the flux can be expressed as a function of t 
and βk , where βk is a sub-vector of β that are related to the isotopic flow through 
the kth metabolite. To determine whether the flux stays the same between experimen-
tal groups, it is sufficient to evaluate whether β(1)

k  and β(2)
k  are equal, where β(1)

k  and 
β
(2)
k  are values of βk in the two groups, respectively. Consider the reparameteriza-

tion that ηk = β
(2)
k − β

(1)
k  , the aforementioned hypothesis testing problem becomes 

H0 : ηk = 0 vs. H1 : ηk �= 0 . We can jointly model data from the two experimental 
groups and obtain posterior samples of ηk . The 95% highest density credible region 
of ηk can then be constructed to assess whether the null hypothesis holds. A credible 
value can also be defined to quantify the level of evidence supporting the null hypoth-
esis. Given the straightforward extension to comparing a vector of parameters, tech-
nical difficulties remain in constructing multi-dimensional credible regions. Some 
successes have been found in the bivariate case [55] or log-concave posterior distri-
butions [56]. However, these algorithms cannot be used in our case since neither the 
explicit form nor the log-concavity property of the posterior distribution is known. In 
addition, our current testing strategy is biologically informative because each kinetic 
parameter in the ODEs is biologically meaningful. The pathway flux can be controlled 
mainly by one or several enzymes in the pathway, and the ranking of the enzymes by 
the significance level of their corresponding β ’s helps determine the relative impor-
tance of each enzyme in the pathway for flux control (e.g. [40, 57]). This also allows 
testing of a specific hypothesis that a particular enzyme contributes most to flux con-
trol, which would then be a potential therapeutic target.

The credible value approach is easy to implement and practically valid based on sim-
ulation studies and real data analysis. Its theoretical performance needs further inves-
tigation. We refer to [58] and postulate that the credible value has an asymptotically 
uniform distribution when the null hypothesis is true, that is, the parameters are iden-
tical between cancer and non-cancer group. Further, Xie and Singh [58] demonstrated 
the asymptotic equivalence of posterior distribution with confidence distribution, which 
supports our approach of doing hypothesis testing through evaluating the “significance” 
of null hypothesis under any confidence distribution, and thus through credible value.

An alternative MCMC algorithm, the geometric based sampling methods (mMALA 
and RMHMC included) [59, 60] may be considered for our model. Those methods, 
shown to be more efficient than the standard Metropolis-Hastings algorithm and can 
effectively handle highly correlated samples [59, 60], could be more suitable for applica-
tions when the dynamic system presents partially unidentifiable structures commonly 
seen in biochemical networks [61]. Implementating these methods relies on a fast and 
accurate solver for the auxiliary sensitivity equations (Eq. (2.1) in [61]) at each sampling 
iteration, which remains to be explored given the large number of ODE equations and 
dimension of parameters in our application. This will be our interest as a future research.
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Conclusions
In this paper, we have developed a Bayesian framework for non-steady-state kinetic 
modeling analysis of SIRM data. By using prior distributions to incorporate biologi-
cal knowledge and integrate information across metabolites, our method provides 
robust estimation of model parameters. By introducing a new reparameterization and 
credible value-based inference procedure, our method allows comparison of kinetic 
model parameters between experimental groups in a statistically rigorous way. Real 
data analysis and simulation studies demonstrate that our framework performs well 
in practical situations.
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