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Abstract 

Background:  Massive amounts of data are produced by combining next-generation 
sequencing with complex biochemistry techniques to characterize regulatory genom‑
ics profiles, such as protein–DNA interaction and chromatin accessibility. Interpretation 
of such high-throughput data typically requires different computation methods. How‑
ever, existing tools are usually developed for a specific task, which makes it challenging 
to analyze the data in an integrative manner.

Results:  We here describe the Regulatory Genomics Toolbox (RGT), a computational 
library for the integrative analysis of regulatory genomics data. RGT provides different 
functionalities to handle genomic signals and regions. Based on that, we developed 
several tools to perform distinct downstream analyses, including the prediction of tran‑
scription factor binding sites using ATAC-seq data, identification of differential peaks 
from ChIP-seq data, and detection of triple helix mediated RNA and DNA interactions, 
visualization, and finding an association between distinct regulatory factors.

Conclusion:  We present here RGT; a framework to facilitate the customization of 
computational methods to analyze genomic data for specific regulatory genomics 
problems. RGT is a comprehensive and flexible Python package for analyzing high 
throughput regulatory genomics data and is available at: https://​github.​com/​Costa​
Lab/​reg-​gen. The documentation is available at: https://​reg-​gen.​readt​hedocs.​io

Keywords:  Regulatory genomics, Motif analysis, Intersection algebra, Visualization, 
Footprinting, Differential peaks

Background
The combination of next-generation sequencing (NGS) with complex biochemistry 
techniques enables profiling of distinct epigenetic and regulatory features of cells in a 
genome-wide manner. Two examples are chromatin immunoprecipitation followed 
by sequencing  (ChIP-seq) for protein–DNA interaction  [1] and assay for transposase-
accessible chromatin using sequencing  (ATAC-seq) for open chromatin  [2]. These 
techniques allow the studying of epigenetic dynamics in cellular processes such as cell 
differentiation  [3, 4] and the characterization of the regulatory landscape of diseases 
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such as human cancers [5]. Analysis of such data typically requires multi-step computa-
tional pipelines that usually include:

•	 low-level methods (read alignment, quality control),
•	 medium-level methods for detection of genomic regions with relevant epigenetic 

signals (processing of genomic profiles, peak calling, differential peak calling, compu-
tational footprinting), and

•	 high-level methods for visual representation and integrative analysis with further 
genomic data (association with gene expression and further epigenetic data, detec-
tion of transcription factor binding sites, and functional enrichment analysis).

Figure 1 gives an example of a common ChIP-seq data analysis pipeline. It includes on 
the low level the use of a read aligner, such as BWA [6]; on the medium level a peak call-
ing method, such as MACS2 [7], for the detection of regions with the presence of poten-
tial protein–DNA interactions; and on the high level a motif match procedure, such as 
FIMO [8], to find transcription factor binding sites inside peaks as well as R functions 
for the visualization of genomic signals, such as Genomics Ranges [9]. A similar pipeline 
for ATAC-seq data analysis is described in Additional file 1: Figure S1.

The definition of analysis pipelines depends on the biological study as well as on the 
used NGS technique. Its complexity, which includes the use of several bioinformatics 
tools that may require command-line usage and/or scripting skills, makes the analysis 
of epigenomics data so far less reproducible and inaccessible to non-experts. Moreover, 

Fig. 1  Example of a typical pipeline for the analysis of a transcription factor ChIP-seq experiment. First, the 
reads are aligned to the genome (step 1, low-level analysis). A peak caller receives these aligned reads as 
input and typically creates an intermediary representation called genomic signal. Based on this genomic 
signal, the peak caller then detects regions with a higher value than the background. These candidate peaks 
represent the regions with DNA–protein interaction sites (steps 2 and 3, medium level). Several downstream 
analyses are then performed, such as the detection of motif-predicted binding sites inside the peaks (step 4, 
high-level analysis) or line plots displaying average genomic signals of other ChIP-seq experiments around 
the predicted peaks or binding sites (step 5, high-level analysis)
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the development of bioinformatics tools for medium-level analysis needs to take into 
account specific characteristics of the used NGS protocols [10, 11]. For example, ChIP-
seq experiments require the computational estimation of the read extension sizes [11]. It 
also requires a signal correction with control experiments, as the local chromatin struc-
ture may influence the ChIP-seq signal [12]. In contrast, footprint analysis of ATAC-seq 
data does not require the estimation of read extension sizes, as the start of the read cor-
responds to the cleavage position. However, ATAC-seq analysis demands the correction 
of Tn5 cleavage bias [13]. Moreover, some aspects, such as PCR amplification artifacts, 
are shared by ChIP-seq and ATAC-seq experiments  [11]. Clearly, the development of 
tools for the analysis of epigenetic data is greatly facilitated by a flexible and easy-to-
handle computational library. This library should support genomic data I/O as well as 
usual pre-processing methods, such as fragment size estimation and the correction of 
sequence bias. Regarding high-level tasks, the library should provide structure to allow 
sequence analysis (i.e. motif matching), interval algebra (i.e. measuring overlap between 
peaks), or associating signals with regions (i.e. line plots showing signal strength around 
peaks).

Implementation
We developed RGT in Python by following the object-oriented approach. The core 
classes provide functionalities for handling data structures that are related to ques-
tions about regulatory genomics. Based on the cores, we implemented several compu-
tational tools to perform various downstream analyses (Fig. 2). These include previously 
described HINT tools for ATAC-seq/DNase-seq footprinting  [13–15], the differential 

Fig. 2  Overview of RGT core classes and tools. RGT provides three core classes to handle the genomic 
regions and signals. Each genomic region is represented by GenomicRegion class and multiple regions are 
represented by GenomicRegionSet class. The genomic signals are represented CoverageSet class. These 
classes serve as the core data structures of RGT for handling genomic regions and signals. Based on these 
classes, we developed several tools for analyzing regulatory genomics data as represented by different colors, 
namely, HINT for footprinting analysis of ATAC/DNase-seq data; RGT-viz for finding associations between 
chromatin experiments; TDF for DNA/RNA triplex domain finder; THOR for differential peak calling of ChIP-seq 
data; Motif analysis for transcription factor binding sites matching and enrichment
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peak caller THOR  [16] and a library to characterize triple helix mediated RNA-DNA 
interactions [17]. RGT also includes some functionalities such as motif binding sites pre-
diction and enrichment analysis (Motif Analysis), as well as methods for association and 
visualization of genomic signals (RGT-Viz). We describe below the basic structures and 
the novel Motif Analysis and the RGT-Viz frameworks.

Core classes

Analysis of high-throughput regulatory genomics data is mostly based on the manipula-
tion of two common data structures: genomic signals which represent the abundance 
of sequencing reads on the genome and genomic regions which represents candidate 
regions. In RGT, we implemented three classes, i.e., GenomicRegion, GenomicRegion-
Set, and CoverageSet, to represent a single region, multiple regions, and genomic sig-
nals, respectively. In each of the classes, we implemented several functions to perform 
basic data processing. For example, CoverageSet provides functions for fragment exten-
sion estimation, signal smoothing, GC-content bias correction, and input DNA normali-
zation. These procedures are crucial for the particular downstream analysis of chromatin 
sequencing data, such as peak calling and footprinting. For computational efficiency, 
functions related to GenomicRegionsSet and interval-related algebra have been imple-
mented in C. Moreover, RGT contains I/O functions of common genomic file formats 
such as Binary Alignment Map  (BAM) files for alignments of reads, (big)wig files for 
genomic profiles, and bed files for genomic regions by exploring pysam [18, 19] related 
functions.

These core classes provide a powerful infrastructure for the development of methods 
dealing with regulatory genomics data. As an example of the simplicity, versatility, and 
power of RGT, we include a tutorial on how to build a simple peak caller with less than 
50 lines of codes: https://​reg-​gen.​readt​hedocs.​io/​en/​latest/​rgt/​tutor​ial-​peak-​calli​ng.​
html.

Finding associations between chromatin experiments with RGT‑viz

A typical problem in regulatory genomics is to associate results of distinct experiments, 
i.e. overlap between distinct histone marks or a given histone mark in distinct cells. 
RGT-viz provides a collection of statistical tests and tools for the association and visuali-
zation of genomic data such as genomic regions and genomic signals (Fig. 3a).

In the tests of regions versus regions, a set of reference and query regions, both in BED 
format, are required as inputs. The aim is to evaluate the association between the refer-
ence and the query. For this, RGT-viz provides the following tests:

•	 Projection test This test compares a query set, i.e. ChIP-seq of transcription factors 
with a larger reference set, i.e. ChIP-seq peaks of a regulatory region (H3K4me3 or 
H3K4me1 marks). It estimates the overlap of the query to the reference and contrasts 
with the coverage of the reference in the complete genome. A binomial test is then 
used to indicate if the coverage of the query in the reference is higher than the refer-
ence of the reference to the genome [20] (Additional file 1: Fig. S2a).

•	 Intersection Test This test is based on measuring the intersection between a pair of 
genomic regions and comparing it to the expected intersection on random region 

https://reg-gen.readthedocs.io/en/latest/rgt/tutorial-peak-calling.html
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sets. Random regions are obtained by evaluating permutations (with size equal to 
the input regions) of the union of regions in the pair of queries  [21]  (Additional 
file 1: Fig. S2b). The statistical test is based on empirical p-values.

•	 Combinatorial Test The combinatorial test is appropriate for two-way compari-
sons. For example, you want to check the proportion of peaks of two (or more) 
transcription factors on two (or more) cell types. For this, it creates a background 
distribution per reference sets (cells) by considering the union of all query sets 
(TFs) in that cell. It then creates count statistics per cell and compares if the num-
ber of binding sites in a cell for a given TF is higher than in another cell by using a 
Chi-squared test (Additional file 1: Fig. S2c).

•	 Jaccard Measure This measures the amount of overlap between the reference and 
the query using the Jaccard index (also called Jaccard similarity coefficient)  [22]. 
Given two region sets A and B, it measures the ratio of intersecting base pairs in 
relation to the regions associated with the union of A and B. Through this Jaccard 
index, the amount of intersection can be expressed by a value between zero to 
one (Additional file 1: Fig. S2d). This test explores a randomization approach, i.e. 
random selection of genomic region sets with the same number/size regions, to 
estimate empirical p-values.

Fig. 3  Overview of RGT-viz and motif analysis. a RGT-viz provides several tests for regions versus regions 
and visualization tools for regions versus signals by taking BED and BAM files as input. b Motif matching 
detects binding sites for a set of TFs against multiple genomic regions. The motifs were collected from public 
repositories such as UniPROBE, JASPAR, and HOCOMOCO. The position weight matrix (PWM) for each TF is 
used to calculate a binding affinity score per position. The genomic regions are usually obtained by peak 
calling based on ChIP-seq or ATAC-seq data
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Another important functionality is the visualization of distinct genomic signals, as 
described below. To visualize the signals in different regions, the following tools are 
provided:

•	 Boxplot It compares the number of fragments from different ChIP-seq experiments 
on the given region set. This can be used for example to contrast the signal of distinct 
ChIP-seq TFs over promoter regions (H3K4me3 peaks). Conceptually, the genera-
tion of a boxplot is simply counting the number of reads within the region set and 
then plotting these counts in boxplot (Additional file 1: Fig. S3a). RGT-Viz provides 
functionalities to normalize the individual libraries regarding library sizes.

•	 Lineplot and heatmap Line plot and heatmap are used to display the distribution 
of reads within a given region set. Specifically, each region is first extended with 
the given window size which defines the boundaries for plotting. Next, the cover-
age of reads on the given regions is calculated based on the given bin size and step 
size. Finally, the line plot or heatmap is generated. The line plot shows average sig-
nals over all regions in the region set while the heatmap displays the signals of all 
regions (Additional file 1: Fig. S3b-c).

Transcription factor motif matching and enrichment with motif analysis

Motif analysis is a framework to perform transcription factor motif matching and motif 
enrichment. Motif matching aims to find transcription factor binding sites (TFBSs) for a 
set of TFs in a set of genomic regions of interest (Fig. 3b). For this, RGT has its own class, 
i.e., MotifSet for storing TF motifs from known repositories, such as UniPROBE  [23], 
JASPAR  [24] and HOCOMOCO  [25]. In addition, users are also allowed to add new 
motif repositories. RGT uses an efficient Motif Occurrence Detection Suite (MOODS) 
algorithm to find binding site locations and bit-scores [26]. Note that MOODS was orig-
inally implemented in C++ and we have adapted it to a Python package (https://​pypi.​
org/​proje​ct/​MOODS-​python/). Next, RGT uses a dynamic programming algorithm [27] 
to determine a bit-score cut-off threshold based on the false positive rate of 10−4 . The 
predicted binding sites can be obtained with p values between 10−5 and 10−3.

The motif enrichment module evaluates which transcription factors are more likely 
to occur in certain genomic regions than in ”background regions” based on the motif-
predicted binding sites (MPBS) from motif matching. To determine the significance, we 
performed Fisher’s exact test for each transcription factor and corrected the p values 
with the Benjamini–Hochberg procedure. More specifically, we provided three types of 
tests:

•	 Input regions versus Background regions In this test, all input regions are verified 
against background regions that are either user-provided or randomly generated 
with the same average length distribution as the original input regions.

•	 Gene-associated regions versus Non-gene-associated regions In this test, we would like 
to check whether a group of regions that are associated with genes of interest (e.g. 
up-regulated genes) is enriched for some transcription factors versus regions that are 
not associated with those genes. The input regions are divided into two groups by 

https://pypi.org/project/MOODS-python/
https://pypi.org/project/MOODS-python/
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performing gene-region association that considers promoter-proximal regions, gene 
body, and distal regions. After the association, we perform a Fisher’s exact test fol-
lowed by multiple testing corrections as mentioned in the previous analysis type.

•	 Promoter regions of input genes versus Background regions In this test, we take all 
provided genes, find their promoter regions in the target organism, and create a “tar-
get regions” BED file from those. A background file is created by using the promoter 
regions of all genes not included in the provided gene list. Next, motif matching is 
performed on the target and background regions and a Fisher’s exact test is executed.

Finally, the enrichment regions are provided in an HTML interface.

Additional tools based on RGT​

Several additional tools that explored and extended classes from RGT to tackle spe-
cific regulatory genomics problems are available. HINT is a framework that uses open 
chromatin data to identify the active transcription factor binding sites (TFBS). We origi-
nally developed this method for DNase-seq data [14, 15] and later extended it to ATAC-
seq data by taking the protocol-specific artifacts into account  [13]. Footprint analysis 
requires base pair resolution signals in contrast to peak calling problems, which are 
based on signals on windows with more than 50 bps. Therefore, HINT has a Genom-
icSignal class, which deals with ATAC-seq, and DNA-seq signals such as cleavage bias 
correction, base pair counting, and signal smoothing. Moreover, HINT makes use of 
the previously described motif-matching functionality provided by RGT to characterize 
motifs related to ATAC-seq footprints. These can be explored in differential footprint-
ing analysis to detect relevant TFs associated with different biological conditions. This 
method has been widely used to study, among others, cell differentiation  [13, 28] and 
diseases [29–32].

THOR is a Hidden Markov Model-based approach to detect and analyze differen-
tial peaks in two sets of ChIP-seq data from distinct biological conditions with repli-
cates [16]. As a first step, THOR needs to create and normalize ChIP-seq signals from 
distinct experiments. Among others, THOR extended functionalities of the base class 
CoverageSet to a MultipleCoverageSet class to deal with multiple signals at a time and 
to provide global normalization methods, such as trimmed means of M-values (TMM). 
Finally, Triplex Domain Finder (TDF) characterizes the triplex-forming potential 
between RNA and DNA regions  [17]. TDF explores functionality provided by RGT/
RGT-viz to build statistical tests for characterizing DNA binding domains in lncRNAs.

Results
Investigating dendritic cell development with RGT‑viz

We here provided a case study using RGT-viz to investigate dendritic cell (DC) 
development (Fig. 4a). We collected ChIP-seq data of the transcription factors PU.1 
and IRF8, and five histone modifications (i.e., H3K4me1, H3K4me3, H3K9me3, 
H3K27me3, and H3K27ac) for each of the cell types [4, 16, 33, 34] (Additional file 1: 
Table S1). PU.1 is one of the master regulators of hematopoiesis and is expressed by 
all hematopoietic cells [35] and IRF8 is believed to co-bind with PU.1 to control the 
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differentiation of DC progenitors  towards specific DC sub-types [4, 36]. We mapped 
the sequencing reads to mm9 using BWA [6] and called the peaks with MACS2 [7].

We performed an intersection test between PU.1 and IRF8 peaks from differ-
ent cell types to check for PU.1 and IRF8 co-binding during DC differentiation. Of 
note, IRF8 ChIP-seq only detected peaks in classical and plasmacytoid DC (cDC and 
pDC, respectively), as this TF is not expressed in multipotent progenitor (MPP) and 
expressed only at low levels in common DC progenitors (CDP).

This test reveals that PU.1 and IRF8 are significantly associated in all cell types, 
while the co-binding was two times higher as measured by χ2 statistics in cDC than 
pDC. Moreover, we observed that  overlap of binding sites of cDC IRF8 peaks is 
already quite high with CDP PU.1 peak. This indicates that PU.1 binding prepares the 

Fig. 4  Case study of RGT-viz and motif analysis for DC development. a Dendritic cell development. DC 
develop from multipotent progenitors (MPPs), which commit into DC-restricted common dendritic cell 
progenitors (CDP). CDP differentiate into classical DC (cDC) and plasmacytoid DC (pDC). b Intersection test 
shows that the IRF8 binding sites in cDC and pDC are associated with the PU.1 binding sites in MPP, CDP, cDC, 
and pDC. c Line plots showing genomic signals of different histone modifications on the PU.1/IRF8 peaks in 
cDC. d Screenshot showing the top 5 TFs identified by motif enrichment analysis from the overlapping peaks 
between PU.1 and IRF8 in cDC cells
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chromatin for IRF8 binding already in CDP, showing DC priming in CDP (Fig. 4b and 
Additional file 1: Table S2).

We next asked if the co-binding regions are associated with different regulatory regions 
(enhancers vs. promoters). For this, we defined the set of peaks with both PU.1. and IRF8 
binding, or only with PU.1. or only IRF8 binding in cDC and pDC cells by using intersect 
and subtracting functions from the core class GenomicRegionSet of RGT. We then gen-
erated line plots of PU.1, IRF8, H3K4me1, and H3K4me3 on these three sets of regions 
in cDC (Fig. 4c). We observed that peaks with PU.1-IRF8 co-binding have higher ChIP-
seq peaks for either factor indicating that co-binding strengthens the binding affinity of 
both TFs. Moreover, H3K4me1 signals are strong for PU.1 and IRF8 co-binding, while 
IRF8 only has stronger H3K4me3 marks. This suggests an association of PU.1 and IRF8 
co-binding with enhancers, while IRF8 exclusive binding is more associated with pro-
moters. These examples demonstrate how RGT-Viz can be used to explore associations 
and interpretation of genomic data.

We next performed motif matching and enrichment analysis on the PU.1 and IRF8 
co-binding peaks in cDC (Fig. 4d). We observed that PU.1 (and ETS family) motifs were 
ranked at the top and an IRF family motif at fifth (IRF1; MA0050.2.IRF1). This dem-
onstrates how motif analysis can recover expected regulatory players from regulatory 
sequences.

Discussion
We presented the regulatory genomics toolbox (RGT), a versatile toolbox for analyz-
ing high-throughput regulatory genomics data. RGT was programmed in an oriented-
object fashion and its core classes provided functionalities to handle typical regulatory 
genomics data: regions and signals. Based on these core classes, RGT built distinct regu-
latory genomics tools, i.e., HINT for footprinting analysis, TDF for finding DNA–RNA 
triplex, THOR for ChIP-seq differential peak calling, motif analysis for TFBS matching 
and enrichment, and RGT-viz for regions association tests and data visualization. These 
tools have been used in several epigenomics and regulatory genomics works to study cell 
differentiation and regulation [28, 31, 37–42].

There are several methods providing functionality similar to RGT but they mostly 
focus on a subset of problems tackled by RGT  (Additional file  1: Table  S3). Bedtools 
is a well-known and efficient C tool for interval algebra. However, it provides no func-
tionalities related to statistical tests, motif analysis, and visualization. Visualization and 
genomic signal processing are provided by the python-based Deeptools [43]. However, it 
lacks functionality related to interval algebra or motif analysis. pyDnase is a for genomic 
signal processing but with a focus on problems related to genomic footprinting  [44]. 
Also, previous tools focus on providing command-line interfaces, while RGT provides 
both programming and command-line interfaces. Regarding R language, Genomi-
cRanges is a library for interval algebra  [45], while motif matching can be performed 
with motifmatchr [46]. We are not aware of any framework for genomic signal process-
ing in R. Altogether, RGT is the most complete framework for chromatin sequencing 
data manipulation, which we are aware of.
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We envision that RGT can facilitate the development of computational methods for 
the analysis of high-throughput regulatory genomics data as a powerful and flexible 
framework in the future.
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