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Abstract

Background: Searching for immunotherapy-related markers is an important research
content to screen for target populations suitable for immunotherapy. Prognosis-related
genes in early stage lung cancer may also affect the tumor immune microenvironment,
which in turn affects immunotherapy.

Results: We analyzed the differential genes affecting lung cancer patients receiving
immunotherapy through the Cancer Treatment Response gene signature DataBase
(CTR-DB), and set a threshold to obtain a total of 176 differential genes between
response and non-response to immunotherapy. Functional enrichment analysis found
that these differential genes were mainly involved in immune regulation-related
pathways. The early-stage lung adenocarcinoma (LUAD) prognostic model was con-
structed through the cancer genome atlas (TCGA) database, and three target genes
(MMP12, NFE2, HOXC8) were screened to calculate the risk score of early-stage LUAD.
The receiver operating characteristic (ROC) curve indicated that the model had good
prognostic value, and the validation set (GSE50081, GSE11969 and GSE42127) from the
gene expression omnibus (GEO) analysis indicated that the model had good stability,
and the risk score was correlated with immune infiltrations to varying degrees. Multi-
type survival analysis and immune infiltration analysis revealed that the transcriptome,
methylation and the copy number variation (CNV) levels of the three genes were cor-
related with patient prognosis and some tumor microenvironment (TME) components.
Drug sensitivity analysis found that the three genes may affect some anti-tumor drugs.
The mRNA expression of immune checkpoint-related genes showed significant differ-
ences between the high and low group of the three genes, and there may be a mutual
regulatory network between immune checkpoint-related genes and target genes.
Tumor immune dysfunction and exclusion (TIDE) analysis found that three genes
were associated with immunotherapy response and maybe the potential predictors to
immunotherapy, consistent with the CTR-DB database analysis.

Conclusions: From the perspective of data mining, this study suggests that MMP12,
NFE2, and HOXC8 may be involved in tumor immune regulation and affect immuno-
therapy. They are expected to become markers of immunotherapy and are worthy of
further experimental research.

Keywords: Lung adenocarcinoma, Immunotherapy, Prognostic analysis, Tumor
microenvironment
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Introduction

Lung cancer is the malignant tumor with the second highest incidence and the high-
est mortality in the world [1, 2]. According to the GLOBOCAN analysis report of the
global tumor epidemiological statistics in 2020, the number of new cases of lung cancer
worldwide reached 2.207 million, second only to breast cancer; the number of deaths
reached 1.796 million, ranking first among all cancer types. LUAD is the most com-
mon pathological type of non-small cell lung cancer (NSCLC). For driver gene-negative
advanced NSCLC, the median progression free survival of traditional platinum-based
doublet chemotherapy is only 4—6 months, and the median overall survival is only
10-12 months [3], and immunotherapy can bring survival benefit to driver gene-nega-
tive advanced NSCLC. Researchers [4] predicted that the advent of immunotherapy will
further improve the survival outcomes of lung cancer patients, especially for advanced
NSCLC with negative driver gene mutations. The food and drug administration (FDA)
approved the first immune checkpoint inhibitors (ICIs) for the treatment of lung can-
cer in 2015. Over the past few years, the number of ICIs approved and applied in the
clinic has gradually increased, and a few other ICIs are currently in clinical development
[5], and peptides and small peptides targeting programmed cell death ligand 1 (PD-L1I)
have also been designed. molecules whose purpose is to block checkpoints and activate
T-cell-based immunotherapy [6]. For patients with advanced NSCLC with tumor pro-
portional score(TPS) of PD-LI1>1%, immune monotherapy can significantly improve
the progression-free survival (PFS) and overall survival (OS) of patients compared with
chemotherapy, especially for patients with TPS > 50%, while immunotherapy combined
with chemotherapy significantly prolonged PFS and OS of patients with PD-LI negative
and driver-gene-negative advanced non-squamous NSCLC [7-10]. Positive responses
to immunotherapy often rely on the interaction of tumor cells with immune regulation
within the TME. The tumor microenvironment plays an important role in suppressing or
enhancing immune responses. Understanding the interaction between immunotherapy
and TME is not only the key to dissect the mechanism of action, but also of great signifi-
cance to provide new methods for improving the efficacy of current immunotherapy [11,
12]. Since the main cell components that maintain the immunosuppressive microenvi-
ronment also play an anti-tumor role in the early stage of tumor progression, the immu-
notherapy strategy targeting TME can stimulate or restore the inherent anti-tumor
ability of the immune system, reshape the positive TME, and produce a comprehensive
response effect. Therefore, drug development for TME is also accelerating, including
targeting hypoxia inducible factor-1 a, tumor matrix, angiogenesis and tumor related
macrophages [13—15]. In addition, recent research on nano drug delivery systems based
on the unique characteristics of TME is expected to enhance anti-tumor therapy [16].
Although ICIs have shown excellent efficacy in NSCLC, their efficacy varies widely, only
a subset of patients, especially those with high PD-L1 expression, benefit from long-term
responses, and a large proportion of patients do not show obvious curative effect or drug
resistance. For these reasons, it is necessary to combine the gene landscape of tumor
immunotherapy to discover and search for potential molecules and mechanisms affect-
ing immunotherapy, to screen target populations, and to guide individualized treatment.
Obviously, even if no intervention is given after surgery for early-stage lung cancer,
a good survival benefit can still be obtained. This is not only related to the biological
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characteristics of the tumor, but also the immune function may play a huge role in pre-
venting tumor recurrence or distant metastasis. In recent years, machine learning and
deep learning algorithms have been used to train many models represented by feature
gene sets to predict the prognosis of NSCLC patients based on high-throughput gene
expression data and survival data, including the short-term efficacy and long-term sur-
vival prediction of immunotherapy. However, the prediction effect is uneven and there
is no unified measurement standard, so there are limitations in clinical transformation
and popularization [17, 18]. Therefore, we tried to find differential genes that may affect
the response to immunotherapy, construct target genes that have a significant impact
on the prognosis of early-stage lung cancer, and then analyze the relationship between
the multi-omics changes of these genes and the tumor microenvironment of all stages of
LUAD.

Materials and methods
Immunotherapy response differential genes (ImTRDG)
The overall process of the article is shown in Fig. 1.

The mRNA and clinical data of NSCLC patients treated with anti-PD-1/PD-L1 were
collected through the CTR-DB (http://ctrdb.cloudna.cn/home) [19] website, including
GSE135222 [20] and GSE126044 [21] data sets from the GEO database, according to the
response to immunotherapy, they were divided into responder [CR (complete response)
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and PR (partial response)] and non-responder [SD (stable disease) and PD(progressive
disease)], the patient responses in the CTR-DB calibrated in accordance to RECIST v1.1
criteria, and the differences in mRNA expression between responder and non-responder
groups were analyzed and compared. Differential genes were screened by setting the
threshold adjusted P value< =0.05 and |logFC|>=2, and the target genes were deter-
mined according to the AUC (Area under roc Curve) value> =0.7.

IMTRDG functional enrichment analysisc

The ImMTRDG was imported into the Metascape website (https://metascape.org/) [22]
for functional enrichment analysis and protein interaction analysis, and the Molecular
Complex Detection (MOCODE) [23] algorithm was used to find dense PPI MOCODE
(protein—protein interaction) components in the network and annotate them. In the net-
work analysis, set min connection to 3, p value cutoff to 0.01, and min enrichment to 1.5.
In the protein interaction network analysis, the reference database is PHYSICAL_CORE,
the min network size is 3, and the max network size is 500.

Univariate Cox regression analysis of InTRDG

RNAseq data (FPKM; Fragments Per Kilobase of transcript per Million mapped reads)
and corresponding clinical information for TINOMO stage LUAD were obtained from
TCGA dataset (https://portal.gdc.com). The log-rank was used to test the Kaplan—Meier
survival analysis to compare the difference in survival between the high and low expres-
sion group of INTRD@G genes. For KM curves, p values and hazard ratios (HR) with 95%
confidence intervals (CI) were derived by log rank test and univariate cox regression.

p<0.05 was considered statistically significant.

Prognosis signature establishment and immune infiltration analysis

After obtaining prognostic genes through univariate cox regression, First, perform itera-
tive analysis through multi-factor cox regression analysis, and then select the optimal
model to reduce dimensionality and build a prognostic model through the step function,
The model is a risk-score formula containing multiple genes, each gene has a weight, a
negative number means the gene is a protective gene, and a positive number means the
gene is a risk gene, and the R software glmnet package was used for the above analysis.
For Kaplan—Meier curves, p values and HR with 95% CI were obtained by log-rank test
and univariate cox regression and time-ROC analysis was used to discriminate the accu-
racy of the prediction model. p <0.05 was considered statistically significant. Finally, the
stability of the model was verified using the GSE50081, GSE11969 and GSE42127data-
sets which were derived from the GEO database and contains the expression profiles and
clinical data of 47, 33 and 32 TINOMO LUAD samples, respectively [24—26]. Then the
immune infiltration scores of TINOMO LUAD samples were calculated by MCpcounter
package of R program v4.0.3 [27], and the correlation between risk-score and individual
immune infiltration component scores was analyzed. Spearman’s correlation analysis
was used to describe correlations between quantitative variables without a normal dis-

tribution. P value less than 0.05 was considered statistically significant.
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Prognostic models based on gene expression and clinical characteristics

After screening the characteristic genes of TINOMO1 LUAD by cox step model, com-
bined with clinical characteristics, firstly, univariate and multivariate cox regression
analysis. Each variable (P-value, HR and 95% CI) was displayed using a forest plot by
the "forestplot" package. Based on the results of a multivariate cox proportional haz-
ards analysis, a nomogram was built using the "rms" package to predict the year total
recurrence rate. The nomogram provides a graphical result of these factors, and the
prognostic time risk of an individual patient can be calculated by the points associ-
ated with each risk factor.

Expression and compiled scores analysis

Difference analysis

LUAD gene expression data were obtained from the TCGA database and GTEx data-
base. Based on normalized RSEM (RNA-Seq by expectation maximization) mRNA
expression, fold change was calculated by mean (tumor)/mean (normal), p-value was
estimated by Wilcox tests and false discovery rate (FDR) was used to analyze differ-
ences between LUAD patients in whole samples. At the same time, the Human Pro-
tein Atlas (HPA) database (https://www.proteinatlas.org/) was used to search the
immunohistochemical results of the target gene translation protein in LUAD and
normal samples.

Survival prognostic analysis

Merged mRNA expression and clinical survival data by sample barcode, median
mRNA value was used to divide tumor samples into high and low expression groups.
Then, we use R package survival to fit survival time and survival status within two
groups. Cox proportional-hazards model and log rank tests were performed for every
gene in LUAD. Survival types including overall survival (OS), progression free sur-
vival (PFS), disease specific survival (DSS), and disease free interval (DFI).

Potential effects of gene mRNA on pathway activity

Reverse phase protein array (RPPA) data from (The Cancer Proteome Atlas data-
base) were used to calculate pathway activity score for TCGA LUAD samples. RPPA
is a high-throughput antibody-based technique with the procedures similar to that of
western blots. Proteins are extracted from tumor tissue or cultured cells, denatured by
SDS, printed on nitrocellulose-coated slides followed by antibody probe. Expression
and pathway activity can estimate the difference of genes expression between pathway
activity groups (activation and inhibition), which defined by median pathway scores.
The Gene Set Cancer Analysis (GSCA) [28] pathway included are: TSC/mTOR, RTK,
RAS/MAPK, PI3K/AKT, Hormone ER, Hormone AR, EMT, DNA Damage Response,
Cell Cycle, Apoptosis pathways. They are all well-studied cancer related pathways.
RPPA data were median-centered and normalized by standard deviation across all
samples for each component to obtain the relative protein level. The pathway score is
then the sum of the relative protein level of all positive regulatory components minus
that of negative regulatory components in a particular pathway. Samples were divided
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into 2 groups (high and low) by median gene expression, the difference of pathway
activity score (PAS) between groups is defined by student t test, p value was adjusted
by FDR, FDR < =0.05 is considered as significant. When PAS (Gene A High expres-
sion) > PAS (Gene A Low expression), we consider gene A may have an activate effect
to a pathway, otherwise have an inhibitory effect to a pathway. In addition, according
to the ssGSEA (single sample gene set enrichment analys) algorithm, the enrichment
score of each sample on each pathway is calculated in turn, so as to obtain the rela-
tionship between the sample and the pathway. By calculating the correlation between
the gene expression and the pathway score, the relationship between the gene and the
pathway can be obtained [29, 30].

CNV and methylation analysis of target genes

CNV data of LUAD samples were downloaded from TCGA database, and were pro-
cessed through GISTICS2.0, which attempts to identify significantly altered regions of
amplification or deletion across sets of patients. According to the GISTIC score derived
from GISTIC, CNV was classified into homozygous deletion, heterozygous deletion,
heterozygous amplification and homozygous amplification. The mRNA expression data
and CNV raw data were merged by TCGA barcode. CNV data and clinical survival
data were merged by sample barcode. The samples were divided into WT, Amp. and
Dele. groups. R survival package was used to fit survival time and survival status within
groups. Log rank tests were performed to test the survival difference between groups.
Finally, we integrate the CNV of a single target gene and call it a gene set CNV, the gene
set CNV represents the integrated CNV status of target gene set for each sample. A sam-
ple is classified into Amp. or Dele. group. If all genes in inputted gene set have no CNV
in a sample, this sample is classified into WT group. The association of gene set CNVs
with survival prognosis was then analyzed.

LUAD Illumina Human Methylation 450 k data were downloaded from TCGA data-
base, Methylation data and clinical survival data were combined by sample barcodes.
The median methylation was used to classify tumor samples into hypermethylated and
hypomethylated groups. The cox proportional-hazards model was constructed to obtain
the hazard ratio of the hypermethylated group to the hypomethylated group. A log rank
test was performed to test whether the difference in survival between groups was statis-
tically significant.

Immune infiltration analysis

The infiltration of 24 immune cells was assessed by ImmuCellAl database, and the asso-
ciation between gene mRNA expression, gene CNVs (copy number variations), gene
methylation and gene set CNVs and immune cell infiltration was estimated [31, 32].

Drug sensitivity analysis

We collected the IC50s and their corresponding mRNA gene expressions of 481
small molecules in 1001 cell lines from the Genomics of Therapeutics Response Por-
tal (CTRP) [33]. Also Genomics of Drug Sensitivity in Cancer (GDSC) [34] contained
the IC50 of 265 small molecules in 860 cell lines, the IC50 corresponding mRNA gene
expression from mRNA expression data and drug sensitivity data were combined.
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Pearson correlation analysis was performed to obtain the correlation between gene
mRNA expression and drug IC50. At the same time, the correlation between the expres-
sion of target gene and related drugs IC50 was analyzed by Consortium for Classical
Lutheran Education (CCLE) (http://www.ccle.org/) drug response database.

Expression and network relationship between target genes and immune checkpoint genes
RNAseq data and corresponding clinical information for LUAD were obtained from
TCGA dataset. SIGLECI5, TIGIT, CD274, HAVCR2, PDCDI, CTLA4, LAG3 and
PDCDI1LG?2 are genes related to immune checkpoints. The expression values of these 8
genes were extracted to observe the expression of target genes related to immune check-
points. According to the differential relationship between target genes and immune
checkpoint genes, use the Gene Network Search function on the GenCLiP 3 website
(http://ci.smu.edu.cn/genclip3/analysis.php) [35] to search for target genes and immune
checkpoint genes with significant differences interaction networks and analyze possible
regulatory relationships.

Analysis of target gene and immune efficacy
The TCGA LUAD gene expression data were obtained, and the TIDE algorithm [36,
37] was used to predict the response of the high and low expression groups of the tar-
get gene to the predicted immune checkpoint inhibitor. TIDE uses a panel of gene
expression signatures to assess 2 distinct tumor immune escape mechanisms, includ-
ing tumor-infiltrating cytotoxic T lymphocyte (CTL) dysfunction and CTL rejection by
immunosuppressive factors. High TIDE score, poor response to immune checkpoint
blockade (ICB), and short survival after receiving ICB.

All the above statistical analysis and ggplot2 (v3.3.2) were completed using R program
v4.0.3, p value < 0.05 was considered statistically significant.

Results

Identity of INnTRDG and functional enrichment results

The two datasets GSE135222 and GSE126044 in the CTR-DB database are about NSCLC
patients who received immunochemotherapy, with a total of 43 patients. According to
the effect of immunotherapy, they were divided into 13 responders (CR and PR) and 30
non-responders (SD and PD), as shown in Table 1. Through differential analysis and the

Table 1 Overview of receiving immunotherapy dataset information

Treatment response Number Data sets Medication regimen Pathological type

non-responder (SD and PD) 19 GEO:GSE135222 Immunotherapy Lung non-small cell carcinoma

responder (CR and PR) 8 GEO:GSE135222 anti-PD-1/PD-L1 Lung non-small cell carcinoma

non-responder (SDand PD) 6 GEO:GSE126044 Nivolumab Lung squamous cell carci-
noma

non-responder (SD and PD) 5 GEO:GSE126044  Nivolumab LUAD

responder (CR and PR) 3 GEO:GSE126044 Nivolumab Lung squamous cell carci-
noma

responder (CR and PR) 2 GEO:GSE126044 Nivolumab LUAD

CR complete response, PR partial response, SD stable disease, PD progressive disease
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set threshold, a total of 176 differential genes were screened, of which 72 were up-reg-
ulated genes and 104 genes were down-regulated. Figure 2A and B showed the volcano
map and heat map of differential genes (Additional file 1: Supplementary table 1).
Through metascape enrichment analysis, the top 20 significant results were extracted,
suggesting that most of the differential genes are involved in immune-related path-
ways (Fig. 3A, Additional file 2: Supplementary table 2), through the MOCODE algo-
rithm, we obtained three densely connected PPI (protein—protein interaction) MCODE



Feng et al. BMC Bioinformatics (2023) 24:19 Page 9 of 31

components, which are involved in neutrophil degranulation, regulation of natural
killer cell mediated cytotoxicity and CD8 TCR (T cell receptor) pathway, respectively, as
shown in Fig. 3B and Additional file 3: Supplementary table 3.

Target genes for model screening and immune infiltration analysis

After obtaining 176 ImMTRDGs, univariate cox regression analysis was performed, and
a total of 4 genes (CLEC4E, HOXC8, MMP12 and NFE2) were obtained that were asso-
ciated with the prognosis of TINOMO LUAD as shown in Fig. 4A-D, where the sam-
ples were divided into high expression group and low expression group according to the
median value of gene expression, and P values of the univariate cox regression analysis
(to obtain the prognostic gene set of CLEC4E, HOXC8, MMP12 and NFE2) was cor-
rected by multiple hypothesis testing. Through multivariate cox and step functions,
the risk model (Riskscore=—1.0068*NFE2+ 0.2741*MMP12+ 0.5986*HOXC8) con-
structed by 3 genes (HOXC8, MMPI12 and NFE2), 81 samples can be divided into high-
risk and low-risk groups according to the median value of riskscore, survival analysis
showed that the survival difference between the high-risk group and the low-risk group
was statistically significant (HR=3.491, 95%CI: 1.062—11.475, P=0.0395). The 1-year,
3-year and 5-year ROC curve area was 0.916, 0.90 and 86.3, respectively (Fig. 5A-C).
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Fig. 6 Multivariate K-M survival curves, ROC curves and immune infiltration landscapes of model genes in
GSE50081, GSE11969 and GSE42127 validation sets. A Distribution of KM survival curves by prognostic risk
model in GSE50081 TINOMO LUAD; B Distribution of KM survival curves by prognostic risk model in GSE11969
T1NOMO LUAD; C Distribution of KM survival curves by prognostic risk model in GSE42127 TINOMO LUAD;

D ROC curves and AUC values at different times in GSE50081 TTNOMO LUAD; E ROC curves and AUC values

at different times in GSE11969 TINOMO LUAD; F ROC curves and AUC values at different times in GSE42127
TINOMO LUAD; G The immune infiltration landscapes corresponding to riskscore in TCGA LUAD

The GSE50081, GSE11969 and GSE42127data (Additional files 4, 5, 6: Supplementary
tables 4, 5, 6) were used to verify the accuracy of the model. The results showed that the
survival prognosis of patients in the high and low risk groups was statistically different
(p=0.048, p=0.033 and p =0.044, respectively) (Fig. 6A-C), and the 3-year ROC curve
area was 0.64, 0.76 and 0.88, respectively (Fig. 6D—F), which was relatively stable. Com-
bined with clinical data (age, gender and smoking status), univariate and multivariate
cox regression analysis was performed, it has showed that MMPI12, NFE2 and HOXCS8

Page 10 of 31
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can be used as independent prognostic factors for TINOMO LUAD (Additional file 16:
Fig. S1A, B). The correlation analysis between riskscore and immune infiltration scores
showed that there was a good positive correlation between riskscore and cytotoxicity,
NK.cell and CD8T cell scores (Fig. 6G, Additional file 7: Supplementary table 7).

Differential expression and multi-type prognostic analysis

The differential expression of the three genes in LUAD and normal samples from GTEx
database was analyzed, and the results showed that MMPI2 and HOXC8 were highly
expressed in LUAD samples, while NFE2 was low expressed in LUAD samples (Addi-
tional file 17: Fig. 2A, C). The immunohistochemical information of NFE2 in LUAD and
normal samples was searched by HPA, using HPA001914 antibody labeling, the results
indicated that NFE2 was moderately stained in normal alveolar tissue, but low in LUAD.
Using HPA028911 antibody labeling, it was found that HOXCS8 was not stained in nor-
mal alveolar tissue, but moderately stained in alveolar macrophages, and HOXC8 was
moderately stained in LUAD tumor tissue. The results of immunohistochemistry and
mRNA expression were consistent. (Fig. 7A—-D) Survival analysis showed that HOXCS8

Fig. 7 Immunohistochemical results of target genes proteins in normal lung and tumor tissues from the HPA
database. A Immunohistochemical profile of NFE2 in normal lung; B Immunohistochemical profile of NFE2 in
LUAD; € Immunohistochemical profile of HOXC8 in normal lung; D Immunohistochemical profile of HOXC8
in LUAD
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high expression was significantly correlated with poor OS, PFS, DSS, and DF of LUAD
(Fig. 8A-D).

Gene expression and pathway activity result

GSCA-Expression and pathway activity module estimated difference of three genes
expression between pathway activity groups (activation and inhibition). The results
showed that NFE2 may have inhibitory effects on the Apoptosis, CellCycle, EMT and
Hormone AR pathways of LUAD, while it has an activation effect on the MAPK and
mTOR pathways. MMPI12 has an activating effect on Apoptosis, CellCycle and EMT
pathways of LUAD, and has an inhibitory effect on MAPK pathway, and HOXCS8 has
an activating effect on CellCycle pathway (Fig. 9A, Additional file 8: Supplementary
table 8). Through pathway ssGSEA analysis, the relationship between target genes and
pathway scores was calculated and found that MMPI2 had positive correlation with
Cellular_response_to_hypoxia, G2M_checkpoint,
Tumor_Inflammation_Signature and DNA_repair. NFE2 has negative correlation with
Tumor_proliferation_signature and G2M_checkpoint, and HOXC8 has positive cor-
relation with Tumor_proliferation_signature and G2M_checkpoint (Fig. 9B, Additional

Tumor_proliferation_signature,

file 9: Supplementary table 9).

Copy Number Variation (CNV) and methylation survival prognostic analysis of target genes
The summary of CNV of target genes in LUAD shown in the Table 2. The results of
the CNV and LUAD survival prognostic analysis showed that compared with the WT
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Table 2 The summary of CNV of target genes in LUAD
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Symbol Total amp. Total dele. Hete amp. Hete dele. Homo amp. Homo dele. (%)
(%) (%) (%) (%) (%)

HOXC8 28.68217 1821705 27.51938 18.02326 1.162791 0.193798

MMP12  26.16279 19.37985 24.22481 18.99225 1.937985 0.387597

NFE2 2848837 18.60465 27.32558 1841085 1.162791 0.193798

Total amp. (%): the percentage of samples with copy number amplification, including heterozygous and homozygous
amplification; Total dele. (%): the percentage of samples with copy number deletion, including heterozygous and
homozygous deletion;

Hete amp. (%): the percentage of samples with copy number heterozygous amplification; Hete dele. (%): the percentage
of samples with copy number heterozygous deletion; Homo amp. (%): the percentage of samples with copy number
homozygous amplification; Homo dele. (%): the percentage of samples with copy number homozygous deletion
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methylation in LUAD. OS overall survival, PFS progression free survival, DSS disease specific survival, DF/

Disease Free Interval

group, the HOXC8 and NFE2 CNV groups were associated with poor OS (Fig. 104,
B), and NFE2 CNV groups were also associated with poor PFS in LUAD (Fig. 10C).
The MMP12 CNV was associated with poor DFI (Fig. 10D). The detailed results are
shown in Table 3; The results of CNV and survival prognostic analysis after the inte-
gration of the three genes showed that the gene set CNV was associated with poor
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Table 3 The detailed information of survival difference between CNV and wide type in LUAD

Symbol sur_type p value

HOXC8 0sS 0.041727
HOXC8 PFS 0.019041
HOXC8 DSS 0.116383
HOXC8 DFI 0.564909
MMP12 oS 029116

MMP12 PFS 0.116586
MMP12 DSS 0.362409
MMP12 DFI 0.012319
NFE2 0S 0.05375

NFE2 PFS 0.024003
NFE2 DSS 0.134032
NFE2 DFI 0.651083

OS overall survival, PFS progression free survival, DSS disease specific survival, and DF/ disease free interval

Table 4 The overall survival difference between higher and lower methylation groups in LUAD

Symbol Tag sur_type P_value HR Group

HOXC8 cg19634247 oS 0.161562 1.247549 Higher meth
HOXC8 919634247 PFS 0.026401 1341563 Higher meth
HOXC8 cg19634247 DSS 0.142748 1.341601 Higher meth
HOXC8 cg19634247 DFI 0.020919 1.700252 Higher meth
MMP12 €g20487452 oS 0.079336 0.755476 Lower meth
MMP12 €g20487452 PFS 0.004617 0.685559 Lower meth
MMP12 €g20487452 DSS 0.042944 0.662403 Lower meth
MMP12 €g20487452 DFI 0.019631 0.583485 Lower meth
NFE2 €g24762231 oS 0.538537 1.101948 Higher meth
NFE2 €g24762231 PFS 0.827304 0.971628 Lower meth
NFE2 €g24762231 DSS 0.743642 0.936438 Lower meth
NFE2 €g24762231 DFI 0491236 0.854394 Lower meth

OS overall survival, PFS progression free survival, DSS disease specific survival, and DFI disease free interval, meth.
Methylation

OS in LUAD (Fig. 10E). Survival analysis showed that MMP12 hypermethylation lev-
els were associated with good DFS, DSS and DFI (Fig. 10F-H, Table4), and HOXCS8
hypermethylation levels were associated with poor PFS and DFI in LUAD (Fig. 101, J,
Table4).

Drug sensitivity analysis

From the GDSC database, we analyzed that NFE2 mRNA expression was correlated
with IC50 of Nilotinib, TL-1-85 and BHG712, and MMPI2 mRNA expression was
negatively correlated with Gefitinib IC50 (Fig. 11A, Additional file 10: Supplemen-
tary table 10), however, no sensitive drugs related to HOXCS8 were found; CTRP
database analysis found that NFE2 mRNA expression was negatively correlated with
BRD-K01737880 IC50, HOXC8 mRNA expression was positively correlated with
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Fig. 11 Distribution of IC50 of different drugs between high and low expression groups of target genes. A
Distribution of IC50 of different drugs between high and low expression groups of target genes from GDSC; B
Distribution of IC50 of different drugs between high and low expression groups of target genes from CTRP

tacedinaline, JQ-1 IC50 (Fig. 11B, Additional file 11: Supplementary table 11); CCLE
database results indicated that the FGFR targeting drug TKI258 IC50 difference was
statistically significant in the HOXC8 mRNA high and low expression groups, In
the MMP12 mRNA high and low expression groups, the IC50 differences of c-MET
targeting drug PF2341066, ALK targeting drug TAE684 and IGFIR targeting drug
AEW541 were statistically significant (Additional file 18: Figs. S3, S4, Additional files
12, 13: Supplementary tables 12, 13).

Immune infiltration analysis

Gene expression and immune infiltration analysis showed that MMPI12 was correlated
with many immune infiltration components, among which it was positively correlated
with nTreg, iTreg and Exhausted, and negatively correlated with Th17 and Th2. NFE2
expression was negatively correlated with central_memory, HOXCS8 expression was
positively correlated with nTreg, and negatively correlated with Gamma_delta and
MAIT (Mucosal Associated Invariant T) (Fig. 12A, Additional file 14: Supplementary
table 14).

The results of gene CNV and immune infiltration showed that NFE2 and HOXCS8
CNV were positively correlated with nTreg and negatively correlated with CD4_T and
Th2(Fig. 12B, Additional file 15: Supplementary table 15).

The results of gene methylation and immune infiltration analysis showed that
MMPI2 methylation was negatively correlated with nTreg cells and positively
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Fig. 12 Bubble plot of the correlation between target genes and immune infiltration. A The correlation
between target gene mRNA expression and immune infiltration; B The correlation between methylation level
of target gene and immune infiltration; C The correlation between CNV status of target gene and immune
infiltration; D The correlation of gene set CNV correlation with immune infiltration. The correlation P values in
the above figures are all less than 0.05, which is statistically significant

correlated with CD4 T cells, NFE2 methylation was positively correlated with 7417,
and negatively correlated with NK cells, Th1 cells, Cytotoxic and Exhausted cells, and
HOXC8 methylation was positively correlated with DCs. cells, CD4 T cells were posi-
tively correlated (Fig. 12C, Additional file 16: Supplementary table 16).

After integrating the CNV results of the three genes, their relationship with
immune infiltration was analyzed, and it was found that nTreg, exhausted, effector_
memory, monocyte, neutrophil, Th1 cells aggregated in high CNV tumors, while CD4
naive, Th2, Tfth, NKT (Natural killer T cell), Gamma_delta, NK, MAIT and CD4 T
aggregated in low CNV tumors (Fig. 12D).

Expression relationship and network between target genes and immune checkpoint genes
The correlation analysis of the three genes and immune checkpoint genes found that
only MMPI2 had a weak linear correlation with immune checkpoint genes (Fig. 13A).
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Fig. 13 Heatmap of correlations between target genes and immune check-related genes. A Heatmap

of linear correlations between target genes and immune check-related genes; B Heat map of differential
expression of immune checkpoint-related genes between high and low HOXC8 expression groups; C Heat
map of differential expression of immune checkpoint-related genes between high and low NFE2 expression
groups; D Heat map of differential expression of immune checkpoint-related genes between high and low
MMP12 expression groups. *p < 0.05, **p <0.01, ***p < 0.001, asterisks (*) stand for significance levels
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Fig. 14 Regulatory networks of target genes and immune checkpoint-related genes. A Cross-talk between
HOXC8 and CD274; B Cross-talk between HOXC8 and HAVCR?2; C Cross-talk between NFE2 and CTLA4; D
Cross-talk between NFE2 and PDCD1; E Cross-talk between NFE2 and PDCD1LG2; F Cross-talk between
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factors, lines represent interactions, and the numbers on the lines represent the number of studies of
interactions between genes that were experimentally validated or data-mined
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Table 5 Statistical table of immune responses of samples in different groups in prediction results

Response NFE2 HOXC8 MMP12

high low high low high low
True 110 87 85 112 119 78
False 147 169 172 144 137 179

The target genes were divided into high and low expression groups according to their
expression levels. Between the high and low expression groups of HOXCS, the expres-
sions of CD274 and HAVCR2 were significantly different (Fig. 13B). The expressions
of HAVCR2, PDCDI1LG2, CTLA4, TIGIT, LAG3 and PDCD1 were all different in the
NFE?2 high and low expression groups (Fig. 13C). In the high and low expression groups
of MMPI12, the expressions of SIGLECI1S, TIGIT, CD274, HAVCR2, PDCD1, CTLA4,
LAG3 and PDCDILG?2 were statistically different (Fig. 13D). Through the GenCLiP 3
website to analyze the potential regulatory networks of risk target genes and immune
check genes, some of them have been confirmed by experiments, and some regulatory
networks still need to be verified in the experimental area, as shown in the Fig. 14.

Analysis of target gene and immune efficacy

The TIDE algorithm was used to calculate the response of the high and low expres-
sion LUAD of the three target genes to immunotherapy (Table 5). The results showed
that 110 patients in the NFE2 high expression group responded to immunotherapy,
147 patients did not respond to immunotherapy, 87 patients in the NFE2 low expres-
sion group responded to immunotherapy, and 169 patients did not respond to immuno-
therapy. The TIDE score results showed that the TIDE score of the NFE2 low expression
group was higher, indicating that the effect of immunotherapy was poor, indicating that
the high expression of NFE2 may be a positive indicator of immunotherapy (Fig. 15A).
This is consistent with the CTR-DB immunotherapy response differential gene results
(Fig. 15B).

In the HOXCS high expression group, 85 patients responded to immunotherapy, 172
patients did not respond to immunotherapy, 112 patients in the HOXCS8 low expression
group responded to immunotherapy, and 144 patients did not respond to immunother-
apy. The TIDE score results showed that the TIDE score was higher in the high HOXCS8
expression group, indicating that the immunotherapy effect was poor, which means that
the high expression of HOXC8 may be a negative indicator of immunotherapy (Fig. 15C),
which is consistent with the CTR-DB immunotherapy response differential gene results
(Fig. 15D).

In the MMPI12 high expression group, 119 patients responded to immunotherapy, 137
patients did not respond to immunotherapy, 78 patients in the MMPI2 low expression
group responded to immunotherapy, and 179 patients did not respond to immunother-
apy. The TIDE score results showed that the TIDE score of the MMPI2 low expression
group was higher, indicating that the effect of immunotherapy was poor, indicating that
the high expression of MMP12 may be a positive indicator of immunotherapy (Fig. 15E).
This is consistent with the CTR-DB immunotherapy response differential gene results
(Fig. 15F).
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Fig. 15 Prediction of the effect of immunotherapy under different expression of target genes. A
Distribution of immune responses and immune scores in NFE2 high and low groups; B Distribution of

NFE2 between immunotherapy responders and non-responders in the CTR-DB database; C Distribution

of immune responses and immune scores in HOXC8 high and low groups; D Distribution of HOXC8
between immunotherapy responders and non-responders in the CTR-DB database; E Distribution of
immune responses and immune scores in MMP12 high and low groups. F Distribution of MMP12 between
immunotherapy responders and non-responders in the CTR-DB database. High TIDE score, poor response to
immune checkpoint blockade (ICB), and short survival after ICB. *p <0.05, **p < 0.01, ***p < 0.001, asterisks (*)
stand for significance levels

Discussion

With the advent of immunotherapy in recent years, the treatment and natural history of
advanced NSCLC has been revolutionized, and immunotherapy for squamous cell car-
cinoma appears to yield better results than adenocarcinoma [38, 39]. In fact, in patients
with driver-negative LUAD, the benefit of immune checkpoint inhibitors (ICIs) over
previous standard chemotherapy has been demonstrated in first-line and further first-

line therapy [40—42]. However, despite the overall benefit in survival outcomes, a large
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proportion of NSCLC patients were observed to experience disease progression. Exactly
why this difference occurs and how to predict the effect of immunotherapy is still an
important part of the ongoing research in the field of immunotherapy. Scientists have
made great efforts to evaluate predictive biomarkers [43]. So far, only the high expres-
sion of programmed death ligand-1 demonstrated by immunohistochemistry has been
confirmed for screening target populations even in different treatment stages and differ-
ent immunotherapy regimens of LUAD predictive biomarkers. TMB (tumor mutational
burden)/ bTMB (blood tumor mutational burden) has also been regarded as a predictor
of immunotherapy. However, current studies have shown that TMB/bTMB as a predic-
tor of ICIs treatment effect is still controversial. Exploratory analyses of CheckMate-026
[44] and POPLAR [45]/OAK [46] studies suggest that patients with high TMB/bTMB
can benefit from immunotherapy, while the results of an exploratory analysis of the KEY-
NOTE series showed that TMB was not associated with efficacy, regardless of whether
TMB was high or low, pembrolizumab plus chemotherapy in the first-line treatment of
both squamous and non-squamous NSCLC patient survival benefit [47, 48]. However,
Litchfield et al. collated all exome and transcriptome data of more than 1000 immuno-
suppressant treated patients in seven tumor types, and used standardized bioinformat-
ics workflow and clinical results standards to verify multivariable predictors sensitive
to immunotherapy. They found that clonal TMB was the strongest predictor of immu-
notherapy response, and they found that the expression of total TMB and CXCL9 also
had good predictive value, However, subclone TMB and somatic copy change load did
not gain significant significance in pan cancer analysis, and these markers were internal
determinants of tumors. Litchfield et al. also found new effective indicators in the tumor
microenvironment. Through single cell sequencing of the tumor infiltrating lympho-
cytes of the clonal new antigen CDS8, and transcriptional sequencing of bulk samples that
are effective for immunotherapy, they finally determined that CCR5 and CXCLI13 can
be used as the internal immunotherapy sensitivity markers of T cells [49]. It has been
reported that the clinical application of pembrolizumab in the treatment of advanced
tumors was guided and the clinical efficacy of pembrolizumab was predicted based on
the expression level of mismatch repair (MMR) [50]. The CheckMate-142 clinical study
evaluated the efficacy of nivolumab monotherapy versus nivolumab in combination
with ipilimumab in the treatment of metastatic colorectal cancer, in MSI-H colorectal
cancer patients, ORR was better in both monotherapy and combination therapy groups
than in patients with stable microsatellites [51]. Although MMR status may be used to
predict the efficacy of immune checkpoint inhibitors, due to its low incidence in lung
cancer, the predictive value of dAMMR/MSI-H for lung cancer immunotherapy efficacy
needs more research data to verify. In addition, some studies have explored the poten-
tial impact or possible correlation of new immune markers on immunotherapy. Some
research shows that atezolizumab combined with bevacizumab and chemotherapy is an
effective first line treatment in metadata NSCLC subgroups with mKRAS and cooccur-
rence STKI11 and/or KEAPI or TP53 stations and/or high PD-L1 expression [52]; There
are also research findings that there were no associations between SWI/SNF(ARIDIA,
PBRM1) mut status and immunotherapy efficacy in the overall NSCLC cohort [53], and
it has been reported that the clinical application of pembrolizumab in the treatment of
advanced tumors was guided and the clinical efficacy of pembrolizumab was predicted
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based on the expression level of MMR [54]. Alterations of DNA damage response (DDR)
pathways allow genomic instability, generate neoantigens, upregulate the expression of
PD-L1 and interact with signaling such as STING pathway, ATM-ATR/CHK1 signaling,
and the downstream component of ATR/CHK]I signaling, signal transducer and activa-
tor of STAT1/3-interferon regulatory factor, is crucial for producing signal that can acti-
vate the generation of PD-L1 mRNA at the transcriptional level [55].

The TME is composed of tumor cells, stromal cells (including vascular endothelial
cells, pericytes, immune inflammatory cells, etc.) and extracellular matrix. The TME is
not only the basis of tumor growth, invasion and metastasis [56], but also affects the
clinical treatment effect of various cancers [57]. The tumor microenvironment has grad-
ually become a research hotspot in recent years. Studies have shown that the interaction
between cancer cells and the TME is bidirectional and dynamic, and the microenviron-
ment has both promotion and inhibition on the occurrence and development of tumors.
Like other malignant tumors, lung cancer is infiltrated with a large number of immune
cells around the tumor, mainly T cells, macrophages and mast cells, while the relative
content of plasma cells, natural killer cells and myeloid suppressor cells is relatively low
[58, 59]. However, the specific cell composition has certain heterogeneity according to
different tumor subtypes and patients [57]. The type, density, location and function of
immune cells together constitute a specific immune context [60]. A large number of
studies have shown that lymphocytes infiltrated by in situ tumors and metastases are
closely related to tumor development and clinical outcomes of patients [12, 61]. The
density of different cells in the immune microenvironment has a certain correlation with
the survival of NSCLC, and has a strong prognostic value [57, 62].

We screened differential genes in response to immunotherapy, and functional enrich-
ment analysis found that target genes are mainly involved in the process of immune
stripping. Using TCGA data to build a prognostic model for early-stage LUAD, the
model constructed from three genes has good predictive value. The immune infiltration
of individual genes of interest can also be analyzed in all stages of LUAD. The predicted
AUC values at 1, 3, and 5 years were 0.916 (95%CI 0.859-0.973), 0.9 (95%CI 0.809-0.99),
and 0.863 (95%CI 0.724-1.002), respectively. Pathway activity analysis found that three
genes were involved in EMT, tumor proliferation, cell cycle cycle, cell damage repair,
MAPK and mTOR pathway to varying degrees.

HOXCS belongs to the HOX family, comprising 39 members in mammals, and the
HOXCS protein is involved in many physiological and pathological processes, including
embryogenesis and tumorigenesisv [63]. HOXCS8 has been reported to be dysregulated
in various types of cancer, including breast, cervical, prostate, and ovarian cancer, and
acts as a transcription factor to regulate the transcription of many genes [64]. HOXCS
was significantly upregulated in NSCLC clinical specimens compared with normal tis-
sues which is consistent with our TCGA database analysis results. And the upregulation
of HOXCS played an important role in the tumorigenicity of NSCLC cell lines A549 and
NCI-H460 [64]. Loss of E-cadherin expression is a hallmark of epithelial-mesenchymal
transition (EMT) in tumor progression. Liu et al. [65] found that HOXCS8 could promote
EMT in NSCLC, and E-cadherin was the target gene of HOXCS, the loss of E-cadherin
promoted the growth and migration of NSCLC. The results of our pathway ssGSEA
analysis also showed that HOXC8 had a weak linear relationship with EMT pathway
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scores (Pearce correlation coefficient is 0.22, p<0.05). Yu et al. [66]. found that HOXCS8
is a key biomarker for glioma diagnosis and prognosis through biological information,
and the expression level of HOXCs is related to the infiltration of various immune cells.
The prognostic value of HOXCS in glioma was further validated by qPCR and immuno-
histochemical data. The results of our immune infiltration analysis showed that HOXCS8
mRNA expression had a weak positive linear correlation with nTreg cell, and a weak
negative linear correlation with Gamma_delta and MAIT cell. The results of gene CNV
and immune infiltration showed that HOXC8 CNV were positively correlated with nTreg
and negatively correlated with CD4 T and Th2. And the results of gene methylation and
immune infiltration analysis showed that HOXCS8 was positively correlated with DCs.
cells, CD4 T cells. The correlation analysis between target genes and immune check-
points showed that the expressions of CD274 and HAVCR2 were significantly differ-
ent between high and low expression groups of HOXCS. TIDE analysis suggested that
HOXCS8 may be a negative indicator of immunotherapy, which was basically consistent
with the results of immune infiltration analysis. Although there is no strong linear rela-
tionship between HOXCS8 and immune checkpoint-related genes, the GenCLiP 3 web-
site analysis found that HOXC8 may have a complex regulatory network with immune
checkpoint-related genes. In addition, drug sensitivity analysis found that HOXC8 may
affect the antitumor effect of multiple drugs. Experiments related to HOXC8 methyla-
tion, CNV and immune infiltration of LUAD are still blank, and further basic experi-
ments need to be carried out to prove it.

NFE2 is a Protein Coding gene. Diseases associated with NFE2 include Erythroleu-
kemia and Polycythemia. Among its related pathways are Response to elevated plate-
let cytosolic Ca2+ and Hematopoietic Stem Cell Differentiation [67, 68]. There are few
reports on the relationship between NFE2 and tumors. Wang et al. [69]. analyzed lung
cancer transcriptome sequencing and genomic data and found a novel R3HDM2-NFE2
fusion in the H1792 lung cancer cell line. Lung tissue microarray revealed that 2 of 76
lung cancer patients had genomic rearrangements at the NFE2 locus, and when NFE2
was knocked down, it reduced the proliferation and invasion of H1792 cells. Dou et al.
[70]. found that NFE2 members bind to the antioxidant response element region and
activate the expression of target genes. Through bioinformatics analysis, they showed
that NFE2 members mainly focus on transcriptional coactivator activities. The mRNA
expression of NFE2 members was significantly correlated with the immune infiltration
of CD4+T cells, CD8+T cells, B cells, macrophages and neutrophils in Ovarian Cancer.
The results of our immune infiltration analysis showed that NFE2 expression was nega-
tively correlated with Central_memory. Central memory T cells which are restricted to
the secondary lymphoid tissues and blood are with long-term memory generated after
naive T cells are activated by antigens, and can home to lymph nodes to receive anti-
gen re-stimulation. Continue to generate large numbers of alloantigen-bearing clonal
effector memory T cells upon restimulation. In 2005, Klebanoff CA et al. first proved
that Central memory T cells have super anti-tumor ability [71]. In 2012, clinical studies
such as the National Institutes of Health (NIH) found that Central memory T cells and
their derived clonal T cells are highly effective anti-tumor cells. Tumor immune T cells
[72]. Collecting the results of our analysis, we hypothesized that NFE2 may be associ-
ated with tumor tertiary lymph nodes and circulating tumor cells in LUAD cells. The
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results of gene CNV and immune infiltration showed that NFE2 CNV were positively
correlated with nTreg and negatively correlated with CD4_T and Th2. And the results
of gene methylation and immune infiltration analysis showed that NFE2 was positively
correlated with Th17, and negatively correlated with NK cells, Th1 cells, Cytotoxic and
Exhausted cells. The correlation analysis between target genes and immune check-
points showed that the expressions of HAVCR2, PDCD1LG2, CTLA4, TIGIT, LAG3 and
PDCDI were all different in the NFE2 high and low expression groups. TIDE analysis
suggested that NFE2 may be a positive indicator of immunotherapy, which was basically
consistent with the results of immune infiltration analysis. The above dry analysis results
still need experiments to enhance convincing.

Matrix metalloproteinases (MMPs) are a group of more than 20 proteolytic enzymes
that degrade the extracellular matrix and facilitate invasion through the basement mem-
brane [73, 74]. This ability of MMPs to remodel the extracellular milieu has led to exten-
sive studies of their role in carcinogenesis. In NSCLC, MMPs are implicated in tumor
invasion and metastasis through their ability to remodel and degrade the extracellular
matrix and mediate cell-cell adhesion [75, 76]. In addition to disrupting the basement
membrane, MMPs have been shown to influence the microenvironment of cells through
complex cell—cell and cell-matrix interactions, by altering cell signaling and regulating
cytokines, growth factors, and angiogenic factors [77]. Hofmann et al. [78] found that
MMP12 expression was significantly increased in tumors compared with correspond-
ing lung tissues, and MMPI12 expression was significantly associated with local recur-
rence and metastatic disease. Multivariate Cox regression analysis showed that MAMP12
expression was an independent prognostic factor for tumor recurrence-free interval.
Immunohistology identified MMPI12 protein in NSCLC only in tumor cells. Hung et al.
[79]. found that nontoxic concentrations of penfluidol reduced LUAD cell migration,
invasion, and adhesion. A protease array screen identifies MMPI2 as a potential tar-
get of penfluridor to modulate LUAD cell motility and adhesion. Mechanistic studies
showed that penfluridol downregulates MMPI2 expression by inhibiting the urokinase
plasminogen activator (uPA)/uPA receptor/transforming growth factor-beta/Akt axis,
thereby reversing MMPI2-induced EMT. Subsequent analysis of clinical LUAD sam-
ples revealed a positive correlation between MMPI2 and mesenchymal-related gene
expression levels. In addition, some studies have found that MMPI2 may be involved
in the MAPK pathway to affect cell damage and repair [80, 81]. These findings are con-
sistent with our pathway activity analysis results. Regulatory T cells (Tregs) are a subset
of immune cells, including nTregs and iTregs, both of which play a role in suppressing
immunity and promote tumor progression by suppressing antitumor immune responses
[82]. Kim et al. [83] used an anti-ST2 antibody to deplete Tregs in mouse lung tumors
and found that local Tregs depletion resulted in a significant reduction in lung tumor
burden. Immune responses following depletion of Tregs in tumors showed restoration
of NK cell activity, enhanced Th1 activity, increased CD8 cytotoxic T cell responses, and
decreased expression of Mmp12. Our immune infiltration analysis found that MMP12
showed a positive linear relationship with nTreg and iTreg, indicating that high expres-
sion of MMPI2 may mean increased nTreg and iTreg, promoting tumor growth, sug-
gesting that MMPI12 may be a negative factor for immunotherapy, and our TIDE The
analysis found that the higher the expression of MMP12, the higher the TIDE score and



Feng et al. BMC Bioinformatics (2023) 24:19 Page 25 of 31

the worse the immunotherapy effect, which is consistent with the above findings. These
data suggest that therapeutic strategies targeting activated Tregs in lung cancer have the
potential to inhibit tumor progression by enhancing antitumor immunity. In addition,
we analyzed the relationship between MAMPI2 methylation levels and immune infiltra-
tion and found that MMP12 methylation was negatively correlated with nTreg cells and
positively correlated with CD4 T cells.The correlation analysis between target genes
and immune checkpoints showed that the expressions of SIGLECI15, TIGIT, CD274,
HAVCR2, PDCDI, CTLA4, LAG3 and PDCDI1LG2 were significantly different between
high and low expression groups of MMPI12. The GenCLiP 3 website analysis found
that MMP12 may have a complex regulatory network with immune checkpoint-related
genes. In addition, drug sensitivity analysis found that MM/MPI2 may affect the antitumor
effect of multiple drugs. However, the above analysis results still need accurate experi-

mental data to verify.

Conclusions

In conclusion, our bioinformatic results suggest that the early-stage LUAD prognostic
model constructed by MMPI12, NFE2, and HOXCS has good predictive value; MMP12,
NFE2, and HOXCS are involved in the formation and growth pathway of LUAD to vary-
ing degrees and may affect the The effect of some antitumor drugs; the mRNA expres-
sion, methylation level and CNV status of MMPI12, NFE2, HOXCS8 have a certain linear
relationship with some immune infiltration components, which may be involved in the
immune regulation of tumors; MMP12, NFE2, HOXC8 and immune examination Dot-
related genes have complex regulatory networks that affect immunotherapy and are
expected to be markers of immunotherapy, which are worthy of further experimental
research. Inevitably, there are some limitations in this study. First of all, we use bioinfor-
matics methods to preliminarily explore the immune regulatory functions that the three
target genes may participate in and predict the effect of NSCLC immunotherapy, the
bioinformatics analysis still lacks strong convincing power and needs to be verified by
subsequent experiments. At the same time, since the initially included immunotherapy
samples have no long-term survival data, it is impossible to prove the predictive value of
the target gene on the long-term survival of NSCLC immunotherapy. In addition, during
the construction of TINOMO LUAD prognosis model, the number of eligible samples
included was limited, which may have some analysis bias. Although three data sets were
used for verification, and good prediction results were obtained, the evidence of survival
data with large sample size is still needed.
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