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Background
Independent Component Analysis (ICA) is a matrix factorization method that dissects 
a mixture of signals into a predefined number of additive independent sources or com-
ponents. ICA finds sets of statistically independent components by minimizing their 
mutual information [1]. In biology, ICA has a wide range of applications such as defining 
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tances, we created a subroutine that infers and corrects the components’ signs across 
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functional modules, removing technical noise, feature engineering, unsupervised cell 
type deconvolution, single-cell trajectory inference, or multi-omic analysis (reviewed in 
[2]). Thanks to its information-theoretic objective function, ICA results in components 
that provide a simpler, more reproducible, and more biologically relevant interpretation 
than other popular matrix factorization methods such as Principal Component Analysis 
(PCA) or Non-negative Matrix Factorization (NMF) [2–7].

FastICA [8], one of the most widespread algorithms used to perform ICA, starts with 
a random initialization to decompose the data matrix into a source matrix and a mix-
ing matrix of non-Gaussian independent components (Additional file  1: Fig.  S1A). In 
2003, Hymberg and Hyvärinen [9] developed Icasso to address the inherent random-
ness of FastICA, by running FastICA multiple times and clustering the components of 
source matrices across all runs (Additional file 1: Fig. S1B). This clustering step involves 
two key choices affecting its computational efficiency and the final robust components: 
the distance metric and the clustering algorithm. Current implementations require pre-
computing a potentially large Pearson distance square matrix to cluster components 
across ICA runs regardless of their different sign and order resulting from FastICA’s 
randomness [9–12]. However, correlation-based metrics are sensitive to outliers and 
non-Gaussian distributions as independent components, which may lead to calculat-
ing imprecise weights [13]. Additionally, more recently developed clustering algorithms 
could potentially improve the efficiency and quality of robust ICA towards distilling 
technically unbiased gene modules.

Here, we developed robustica, the first Python package to carry out robust ICA with a 
fully customizable clustering metric and algorithm based on the powerful library scikit-
learn [14]. By leveraging the customizability of our package to revisit and optimize the 
clustering step of the Icasso algorithm, we improved its resolution, robustness, and com-
putational efficiency. Finally, as a case study, we dissected gene expression signatures 
from patients with low-grade glioma (LGG) and found two sets of genes related to the 
mechanisms by which mutations in IDH1 and TP53 lead to tumor progression.

Implementation
robustica is written in Python under the open-source 3-Clause BSD license. The source 
code and documentation are freely available at https://​github.​com/​CRG-​CNAG/​robus​
tica. Additionally, all scripts to reproduce the work presented are available at https://​
github.​com/​MiqG/​publi​cation_​robus​tica.

The algorithm to carry out robust ICA is controlled by the main class RobustICA. 
After instantiation, one can use the fit method on a data matrix to run the FastICA algo-
rithm multiple times and cluster the resulting independent components with the desired 
number of components and clustering distance metric and algorithm. Subsequently, one 
can recover the computed source and mixing matrices through the transform method.

To facilitate the customizability and seamless integration of the algorithm, the user 
can specify all the parameters related to every step of the robust ICA algorithm as 
similarly as possible to the core FastICA class already available in scikit-learn. For this 
reason, we only required 6 more arguments labeled using the “robust_” prefix. These 
arguments determine: the number of times to run FastICA before clustering (robust_
runs), whether to use our subroutine to infer and correct the signs of the components 
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across FastICA runs (robust_infer_signs), the custom clustering algorithm class (robust_
method), the keywords to pass to the clustering algorithm class (robust_kws), whether 
to speed up the clustering step using PCA to reduce the dimensions of the independ-
ent components across all runs (robust_dimreduce) and, when the distance needs to be 
precomputed, the function to use to compute pairwise distances in the clustering step 
(robust_precompdist_func).

Results
robustica enables systematic evaluation of clustering algorithms to perform robust ICA

With robustica, one can fully customize the clustering method to use as long as they fol-
low scikit-learn conventions [14]. We purposefully included this feature to compare how 
6 different popular clustering algorithms perform at finding robust components (see 
Methods). As a benchmark, we dissected the gene expression signatures from 43 tran-
scriptomic datasets containing different numbers of samples and features (Additional 
file 1: Fig. S2; Additional file 1: Table S1) into 100 components with 100 ICA runs and 
selected different clustering algorithms to compute their robust components. We then 
evaluated the performance of the different clustering algorithms by measuring their run 
time, memory usage, and silhouette scores to quantify how similar each component is to 
the components in the cluster compared to the components assigned to other clusters. 
Exceptionally, we could not measure the silhouette scores for the density-based algo-
rithm AffinityPropagation as it did not converge for any of the datasets using its default 
parameters.

We considered algorithms with either a predefined k (k-based) or a free (density-
based) number of clusters. Overall, k-based clustering algorithms -AgglomerativeClus-
tering, KMedoids- were fast and memory-efficient but resulted in lower silhouette scores 
than density-based algorithms -CommonNNClustering, DBSCAN, OPTICS- (Fig.  1B; 
Additional file 1: Fig. S3; Additional file 1: Tables S2–S4). K-based algorithms assign a 
cluster to all observations producing lower silhouette scores compared to density-based 
algorithms that discriminate as “noise” ambiguous observations. (Additional file  1: 
Fig. S4A, B). Consequently, density-based algorithms only consider highly similar inde-
pendent components across ICA runs to compute robust components while omitting 
divergent independent components; however, they return  an a priori unpredictable 
number of robust independent components depending on the min_samples parameter 
(Additional file  1: Fig.  S4C). This feature helps to interpret the biological relevance of 
robust independent components that are not derived from the inherent randomness 
of the FastICA algorithm. Finally, we studied how well clustering algorithms scale with 
each dataset’s different numbers of samples and genes (as features). As expected, the 
number of initial samples used to run ICA multiple times is not associated with any 
performance metric, and memory usage and silhouette scores increased as we dissected 
datasets with more features (Additional file  1: Fig.  S5A). On the other hand, increas-
ing the number of genes increased memory usage and silhouette scores keeping the 
clustering time the same (Additional file 1: Fig. S5B). Finally, as a sanity check, we con-
firmed that our conclusions remained the same regardless of using Pearson-based sil-
houette scores instead of the default Euclidean-based silhouette scores implemented 
above (Additional file 1: Fig. S6A–C). In fact, default Euclidean-based silhouette scores 
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offer better discrimination of high-scoring clusters than Pearson-based silhouette scores 
which rapidly saturate when clusters reach high values (Additional file 1: Fig. S6D).

As an example, we studied in detail the results from the robust ICA dissecting > 250 
E. coli gene expression signatures from Sastry  et al. [15]. On the computational effi-
ciency side, distance and centroid computations are the most time- and memory-inten-
sive steps, respectively (Additional file 1: Fig. S7). By comparing the two first principal 
components computed from all 10,000 ICA runs we conclude observations belonging 
to highly crowded regions are clustered together in density-based algorithms leaving 
out unstable independent components. In fact, DBSCAN clustered the highest num-
ber of points within low-quality clusters, which may lead to precise robust independent 

Fig. 1  Development and implementation of robustica to carry out robust Independent Component 
Analysis (ICA). A robustica enables fully customized robust ICA. We built robustica following scikit-learn’s 
programming conventions to enable full control of the iterative and clustering steps, facilitating 
customization and optimization. In particular, robustica includes (i) a subroutine to infer and correct the 
signs of components across ICA runs that improves the precision and efficiency of the clustering step by 
adapting the use of Euclidean distance metrics and (ii) the option to speed up the computation of pairwise 
distances by compressing the feature space with PCA. B Comparison of clustering algorithms for 43 different 
transcriptomic datasets. Median time (x-axis) and the median maximum memory usage (y-axis) for each 
clustering algorithm to cluster 100 ICA runs with 100 components each. Dot sizes indicate median silhouette 
scores (the larger the better, with a maximum of 1). Note that the AffinityPropagation algorithm is represented 
as an empty dot due to silhouette scores being non-computable as convergence was not reached with the 
tested parameters. C Development steps to improve the resolution and efficiency of robust ICA through 
a sign inference-and-correction subroutine combined with PCA and Euclidean distances, using the 43 
datasets. D Case study workflow for robustica dissecting > 500 LGG patients’ tumor samples into 100 robust 
independent components. Components 72 and 12 were simultaneously associated with multiple sample 
features (green) and contained genes known to be mechanistically associated with known mechanisms of 
tumor progression. scikit-learn logo adapted from https://​commo​ns.​wikim​edia.​org/​wiki/​File:​Scikit_​learn_​
logo_​small.​svg (3-clause BSD license)

https://commons.wikimedia.org/wiki/File:Scikit_learn_logo_small.svg
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components with at least 50 components in this benchmark (Additional file 1: Fig. S8; 
Additional file 1: Table S5). Finally, we confirmed that robustica reproduces Sastry et al. 
[15]’s robust independent components when using the same parameters for the cluster-
ing step with DBSCAN (Additional file 1: Fig. S9; Additional file 1: Tables S6 and S7).

All in all, density-based clustering algorithms help to distill high-quality independent 
components aiding the characterization and interpretation. In particular, the DBSCAN 
algorithm showed the best performance tradeoff taking a median of 2.26 s and 14,295 
MiB of maximum memory usage to obtain clusters with the highest silhouette scores 
across the 43 datasets considered (median = 0.95) (Fig.  1B). Therefore, we selected 
DBSCAN for subsequent steps as it offers the best tradeoff between computational per-
formance, quality of the robust components, and flexible selection of robust components 
across separate ICA runs.

Clustering ICA runs with Euclidean distances improves the resolution and reproducibility 

of robust ICA

After running ICA multiple times, the Icasso algorithm computes a pairwise Pearson 
distance matrix among all independent components across all ICA runs (Additional 
file 1: Fig. S1B). Using Pearson distance helps cluster together the most similar compo-
nents regardless of the sign and order that results from running FastICA multiple times. 
However, the sensitivity of Pearson distance to the non-Gaussian distributions of inde-
pendent components may bias weights in robust independent components. Hence, clus-
tering metrics such as Euclidean distance may help bypass this problem. To implement 
Euclidean distance, first, we need to make sure that similar independent components 
have the same sign before clustering them. We tackled this with a simple subroutine to 
infer and correct the sign of the components across ICA runs to enable using Euclidean 
distances (see Methods). In addition, we compressed the feature space of all ICA runs 
through PCA to reduce the overall run time and memory usage while maintaining the 
same performance (Additional file 1: Fig. S10A; Additional file 1: Tables S8 and S9).

Computing robust independent components with Pearson distances was time and 
memory efficient and produced fewer components of high Euclidean- or Pearson-based 
silhouette scores and weights of low standard deviation than Euclidean distances (Addi-
tional file 1: Fig. S10A, Additional file 1: Fig. S11). Interestingly, our subroutine based 
on sign inference-and-correction and Euclidean distances leads to a higher number of 
robust independent components with a mild increase in the standard deviation of their 
weights. While these differences may make Euclidean distances less robust to random 
noise than Pearson distances (Additional file 1: Fig. S10B; Additional file 1: Table S10), 
Euclidean distances lead to stable gene modules when using fewer ICA runs to recover 
most of the gene modules defined using 100 ICA runs to compute robust components 
(Additional file 1: Fig. S10C; Additional file 1: Table S11). Surprisingly, with Pearson dis-
tances, DBSCAN tends to output a lower number of robust independent components as 
we increase the number of ICA runs considered while remaining constant for Euclid-
ean distances. Euclidean-based distances assure a high reproducibility of gene modules 
regardless of the number of ICA runs used (Additional file 1: Fig. S10C).
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Altogether, our sign inference-and-correction subroutine creates high-quality and sta-
ble robust independent components by enabling us to efficiently and reproducibly clus-
ter independent components across ICA runs using Euclidean distances (Fig. 1C).

robustica recovers a gene expression module with the key regulators of tumor progression 

in LGG mechanistically associated with mutations in IDH1 and TP53

As a case study, we dissected gene expression profiles from 530 LGG tumor samples 
from The Cancer Genome Atlas (TCGA) using different clustering metrics. Our sign 
inference-and-correction subroutine combined with Euclidean distances produced a 
total of 94 robust independent components, 31 more than Pearson distances with a simi-
lar overall quality and computational efficiency (Additional file  1: Fig.  S12; Additional 
file  1: Fig.  S13A–C; Additional file  1: Tables  S12–S18). Combined with the previous 
results, this may indicate that Euclidean distances confer a higher resolution than Pear-
son distances for the DBSCAN clustering algorithm as extra robust independent com-
ponents tend to have weights with higher standard deviation and lower silhouette scores 
than components mapped in both approaches (Additional file  1: Fig.  S13D). We then 
wondered whether components uniquely identified through our approach are also likely 
to carry biologically-relevant information.

Missense mutations in the isocitrate dehydrogenase (IDH1) and tumor protein P53 
(TP53) are highly common among the 530 LGG tumor samples analyzed (Additional 
file  1: Fig.  S14; Additional file  1: Table  S19). LGGs are characterized by mutations in 
the IDH1 enzyme that decrease tumor aggressiveness by indirectly inhibiting the E2F 
transcription program, an important switch controlling homeostasis and tumorigenesis 
[16–18]. On the other hand, upon mutation, TP53 loses its tumor-suppressor function 
and induces tumorigenesis through genomic instability [19]. TP53 has a central role in 
cancer and is involved in many processes, among them, cholesterol homeostasis through 
the Hippo and mevalonate pathways are involved in cancerous transformation [20, 21]. 
Therefore, we explored whether gene modules could recover known molecular mecha-
nisms associated with IDH1 or TP53 mutations. We focused on two robust independ-
ent components (i.e. 72 and 12), identified either through both clustering metrics or 
only through Euclidean distances, respectively. From the properties considered, weights 
in component 72 were highly associated with IDH1 mutation status, expression-based 
indices of cell proliferation, and patient overall survival probability (Additional file  1: 
Fig. S15A–D; Additional file 1: Tables S20 and S21). Conversely, weights in component 
12 were highly associated with TP53 mutation status and tumor histological type (Addi-
tional file 1: Fig. S5A–D; Additional file 1: Tables S20 and S21).

Finally, we related these sample-level traits to the gene expression signatures by defin-
ing two gene modules of 420 (module 72) and 159 (module 12) genes using the extreme 
weights of the corresponding component (Additional file 1: Fig. S15E; Additional file 1: 
Table  S22) (see Methods). Module 72 was enriched in proliferation-related biological 
processes and contained 7 out of the 9 genes used to compute the mitotic index [22] 
and known proliferation markers as MKI67 [23]. Interestingly, our gene module also 
included 4 E2F transcription factors (E2F1, E2F2, E2F7, E2F8) and was enriched with 
98 targets of E2Fs (Additional file 1: Fig. S15F; Additional file 1: Table S23). On the other 
hand, module 12 was enriched in terms related to cholesterol homeostasis (Additional 
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file 1: Fig. S15F; Additional file 1: Table S23) confirming the relationship between TP53 
mutation status and cholesterol metabolism.

With this, we demonstrate the utility of robustica and our revisited Icasso algorithm 
to identify gene sets whose unique transcriptional signature in LGG is associated with 
genotypes and phenotypes of interest, demonstrating the biological applicability of this 
approach (Fig. 1D).

Conclusions
We created robustica, a new Python package built on top of scikit-learn that enables 
performing precise, efficient, and customizable robust ICA seamlessly. Using different 
clustering algorithms and distance metrics, we tested whether robust ICA could be fur-
ther optimized. Our sign correction subroutine improved the resolution, robustness, 
and computational efficiency of the clustering step. As an example, we explored how the 
gene modules generated with robustica from transcriptomic profiles of LGG patients are 
associated with multiple markers of the disease’s progression simultaneously. Overall, 
robustica makes high-performance robust ICA more accessible to potentially analyze 
any omic data type and facilitates its incorporation in larger computational pipelines.
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