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Abstract

Background and objective: Although rare diseases are characterized by low preva-
lence, approximately 400 million people are affected by a rare disease. The early and
accurate diagnosis of these conditions is a major challenge for general practitioners,
who do not have enough knowledge to identify them. In addition to this, rare diseases
usually show a wide variety of manifestations, which might make the diagnosis even
more difficult. A delayed diagnosis can negatively affect the patient’s life. Therefore,
there is an urgent need to increase the scientific and medical knowledge about rare
diseases. Natural Language Processing (NLP) and Deep Learning can help to extract
relevant information about rare diseases to facilitate their diagnosis and treatments.

Methods: The paper explores several deep learning techniques such as Bidirectional
Long Short Term Memory (BiLSTM) networks or deep contextualized word represen-
tations based on Bidirectional Encoder Representations from Transformers (BERT) to
recognize rare diseases and their clinical manifestations (signs and symptoms).

Results: BioBERT, a domain-specific language representation based on BERT and
trained on biomedical corpora, obtains the best results with an F1 of 85.2% for rare
diseases. Since many signs are usually described by complex noun phrases that involve
the use of use of overlapped, nested and discontinuous entities, the model provides
lower results with an F1 of 57.2%.

Conclusions: While our results are promising, there is still much room for improve-
ment, especially with respect to the identification of clinical manifestations (signs and
symptoms).

Keywords: Rare diseases, Named entity recognition, Deep learning

Introduction

Rare diseases are characterized by a low prevalence in the population. There is no
consensus on the percentage of affected people with a disease to be considered as
a rare disease. Thus, whereas in the United States, a rare disease affects fewer than
200,000 people, in Europe, the prevalence of a rare disease is less than 1 person per
2000 [1]. To date, there are around 7000 rare diseases and new rare diseases are
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affected individuals may have malformations of the nipples and the abdominal wall

Fig. 1 This figure shows some annotated sentences in the RareDis corpus. Sentence (a) shows an example
of two overlapping entities: sign and diseases. It also has a 'Produces'relationships between a rare diseases
and a sign. Sentence (b1) contains an example of nested name entities belonging to different entity types:
symptom and rare disease. b2 is a mention of rare diseases, which is muti-token. Sentence c contains several
discontinuous mentions of signs

identified each week. In spite of their low prevalence, these diseases may affect more
than 400 million people around the world [2, 3].

The diagnostic process of rare diseases becomes a very long road for patients and
their families to obtain an accurate diagnosis and then receive an adequate treatment.
The delay in diagnosis of rare diseases is between six and seven years [4]. A possible
cause of the delayed diagnosis is the limited experience and knowledge about rare
diseases of clinicians [5-7]. In addition, rare diseases may present a heterogeneous
phenotype, with a wide variety of symptoms and signs, related among others with
different driving mutations [8]. Both signs and symptoms are clinical manifestations
of diseases [9]. A sign is an objective evidence, for example “malformation of the nip-
ples” (see Fig. 1c), while a symptom is a subjective experience that can only be iden-
tified by the patient, for example “pain” (see Fig. 1bl). Since a rare disease can be
associated with very different clinical manifestations [10], this fact can make early and
accurate diagnosis enormously difficult. Therefore, there is an urgent need to increase
the usability of the sparse and fragmented scientific and medical knowledge about
rare diseases [11].

Artificial Intelligence, and in particular Natural Language Processing (NLP) and
Machine Learning, can play a beneficial role by providing better access to the rel-
evant information about rare diseases and their clinical manifestations (signs and
symptoms), and in this way, helping to alleviate the workload on doctors. Although
much of the knowledge about rare diseases is stored in databases and ontologies, bio-
medical literature (research articles, clinical cases, health forums, social media, etc)
is a rich source of information about rare diseases in unstructured text. Information
extraction techniques such as Named Entity Recognition (NER) can help structure
this information, facilitating access to the knowledge embedded within those texts
and boosting scientific research.

The automatic recognition of disease named entities has attracted much attention
over the last years [12-18], as it can be applied in meaningful clinical applications
such as cohort selection for clinical trials or epidemiological studies, pharmacovigi-
lance, personalized medicine, among many others. This task is a very challeng-
ing task due to the diversity and complexity of disease names. Many disease names
can have different synonyms and abbreviations to represent them. For instance,
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“obsessive-compulsive disorder’, “obsessive compulsive disorder”, “anancastic neu-
rosis’, and “OCD” are the same disease. Moreover, disease names usually contain
modifiers that can be related to body parts or degrees of disease (e.g., “periodic limb
movement disorder” or “advanced sleep phase syndrome”). The recognition of symp-
toms and signs also presents additional challenges. Many symptoms and signs can be
described by technical terms (e.g., “dysuria”), but also by short phrases (such as “pain
or discomfort when you urinate”). Furthermore, other NER challenges such as over-
lapping, nested and discontinuous entities have received limited attention [19].

The recent advancements of deep learning models have facilitated great progress in
NLP. Recently, transformers [20] and Bidirectional Encoder Representations from Trans-
formers [21] have outperformed traditional and deep learning models for most of NLP
applications [22-25], and in particular, for NER in the biomedical domain [17, 26].

We briefly describe the most recent deep learning approaches for recognizing dis-
eases in biomedical texts. One of the first studies that applied deep learning to this task
is described in [12]. The authors proposed a hybrid system composed of two modules:
a Conditional Random Field (CRF) [27] trained with orthographic, morphological, and
domain features from Unified Medical Language System (UMLS) [28], and a bidirec-
tional recurrent neural network (RNN) initialized with domain-specific word embed-
dings. Finally, a Support Vector Machine (SVM) classifier is used to combine the outputs
of the two previous modules. For the training and testing of the system, the authors used
the dataset of the Disease Named Entity Recognition and Normalization (DNER) shared
task [29] of the BioCreative V challenge, which consists of 1500 PubMed abstracts and a
total of 12,850 disease mentions. CRF achieves better results (F1=82.88%) than the bidi-
rectional RNN (F1=78.27%). The output fusion by SVM obtains the best performance
with an F1 of 84.28%.

In the last years, Bidirectional Long Short Term Memory (BiLSTM) [30] with CRF has
proved to be the most successful model for the task of biomedical NER [13, 31, 32]. The
approach proposed by Habibi et al. [13] was one of the first works to exploit pre-trained
word embeddings to initialize a BILSTM+CRF network for recognizing diseases. The
authors used two pre-trained embedding models created by Pyysalo et al. [33]. The
first model (from now on called PubMed-PMC) was trained using a collection of texts
formed by all abstracts from PubMed (more than 23 million abstracts) and all full arti-
cles from PMC (a database of open access with more than 700,000 full articles from the
biomedical domain). The second embedding model (from now on called Wiki-PubMed-
PMC) was an extension of the first one by adding approximately four million English
articles from Wikipedia. These models were trained using the word2vec tool [34]. The
authors also trained a word embedding model by using a collection of 20,000 European
patents. To train and evaluate their models, they use the NCBI corpus [35] and the CDR
corpus [36]). The NCBI corpus is a collection of 793 PubMed abstracts and contains
a total of 6892 disease mentions. The CDR corpus contains 1500 MEDLINE abstracts
annotated with 5818 diseases, 4409 chemicals, and 3116 chemical-disease interactions.
The experiments showed that the network initialized with Wiki-PubMed-PMC obtains
better performance (with an F1 of 90.4% over the NCBI dataset and 88.17% over the
CDR dataset) than those initialized with the other pre-trained models. This may be
because the Wiki-PubMed-PMC model was trained on a larger collection of texts than
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the other pre-trained models. Moreover, this collection contained domain-specific and
nonspecific texts.

The SBLC model [14], is also based on a BiLSTM network with a CRF layer. To rep-
resent the text, the authors trained a word embedding model by using a large collec-
tion of texts collected from PubMed, PMC, and Wikipedia, with a total of 5.5 billion
words. The SBLC was trained and tested on the NCBI dataset, obtaining an F1 of
86.2%.

Instead of using RNN, Zhao et al. [15] used a deep convolutional neural network
(CNN). In addition to word embeddings, the authors also exploited character embed-
dings and lexicon feature embeddings to represent the texts. The character embed-
dings were generated by using a CNN layer. The MEDIC vocabulary [37], composed
of more than 67,000 disease mentions, was used to create the lexicon feature embed-
dings. After the embedding layer, where each word is represented by concatenating
its three embeddings, several CNN layers are applied to obtain higher level features.
Then, instead of a CRF classifier, a multiple label strategy (MLS) is applied to capture
the labels of the context words. This strategy uses a softmax function to obtain the
probability of each possible label. The system obtained an F1 of 85.17% on the NCBI
corpus, and an F1 of 87.83% on the CDR corpus.

Ling et al. [16] also used an architecture composed of a BILSTM with a CRF layer. This
architecture was initialized by using the three type of embeddings proposed by Zhao
et al. [15], as just described above. The main difference is that these authors applied a
combination of a CNN and a LSTM to generate the character embeddings, instead of
using a CNN network. The final model achieved an F1 of 83.8% on the NCBI dataset.

One of the main drawbacks of the pre-trained word embeddings models is that
they only provide a vector for each word, so they do not handle polysemous words.
Recently, contextualized word representation models (such as ELMo [38], GPT-2 [39]
or BERT [21]) have emerged as an alternative to the non-contextual word embedding
models, providing a different vector for each sense of a word. Lee and colleagues [17]
applied BERT to the task of disease recognition on the NCBI dataset, achieving an F1
of 88.60%. The authors also trained their language representation model (BioBERT)
on two large biomedical corpora such as PubMed and PMC. BioBERT slightly over-
comes BERT on the NCBI dataset, with an improvement of 0.62%.

Li et al. [18] also trained a BERT model using 1.5 million electronic health record
notes. This model was evaluated on the NCBI and CDR datasets, showing an F1 of
89.92% and 93.82% respectively.

Very few research efforts have focused on the extraction of rare diseases. The RDD
corpus [40] contains 1000 MedLine abstracts covering 578 rare diseases and 3678
annotations expressing a disability. The authors analyzed a model based on Bi-LSTM
and CRF to extract rare diseases and disabilities, achieving an F1 of 70.1% for rare dis-
eases and 81% for disabilities.

In this paper, we address the task of recognizing rare diseases as well as their clin-
ical manifestations (symptoms and signs). Moreover, to the best of our knowledge,
this is the first work that explores three BERT-based models to extract rare diseases
from texts. In particular, we use the basic BERT model and two models, BioBERT
[17], and ClinicalBERT [41], which were trained using biomedical and clinical texts,
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Table 1 Statistics of the RareDis corpus

Training Validation Test Total
Documents 729 104 208 1041
Sentences 6451 903 1787 9141
Tokens 135,656 18,492 37,893 192,041
Diseases 1647 230 454 2331
Rare Diseases 3608 525 1095 5228
Symptoms 319 24 54 397
Signs 3744 528 958 5230

respectively. In order to provide a comprehensive comparison, we also study several
BiLSTM models initialized with different pre-trained word embedding models.

Methods
Dataset
We use the RareDis corpus [42], which is a collection of texts from the Rare Disease
database (NORD)'. These texts were manually annotated with four entity types (dis-
eases, rare diseases, signs, and symptoms). The corpus also includes relations between
entities, but they are outside the scope of this work. The corpus has three different splits:
training set, validation set, and test set. Table 1 shows the number of the entity types
annotated, as well as the number of documents, sentences, and tokens in each split. A
more detailed description of the RareDis corpus can be found in [42]. The corpus con-
tains a total of 9318 entities. We can observe that sign and rare disease entity types are
the most prevalent, around 41% and 34%, respectively. The disease entity type is the
third-largest type, with approximately 17%, while symptom entity type is the most sparse
entity type in the three splits.

The corpus is distributed in Brat standoff format [43]. The RareDis corpus and its
guidelines are publicly available for the research community?.

Approaches

NER is a sequence labeling problem, where the goal of the model is to classify each token
of the input sequence into the corresponding category. To define these categories, we
must consider the types of entity that we intend to extract. As many entity mentions are
multi-token, that is, they are composed of several words, for example, “ACDY5-related
dyskinesia” (see Fig. 1), we must use a format that allows us to represent if a token
belongs or not to a entity mention. Moreover, if the token does belong to an entity men-
tion, we are interested in knowing if the token appears at the beginning of the mention
or if it is an internal one of it. Typically, sequence labeling tasks use some of the varia-
tions of the format IOB encoding scheme [44], to represent the tokens. In our case, we
represent each token using the standard IOB2 (Inside, Outside, Beginning) format [45],
where B-X identifies the first token of an entity mention whose type is X (for example,

! https://rarediseases.org/
% https://github.com/isegura/NLPARARE-CM-UC3M
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Fig. 2 BiLSTM method. This figure shows the architecture of the BiLSTM network followed by a softmax layer

B-SIGN), I-X identifies the continuation of an entity mention with type X (for example,
I-SIGN), and O for other tokens. In this regard, the following nine categories or labels
are used: O, B-Disease, I-Disease, B-RareDisease, I-RareDisease, B-Sign, I-Sign, B-Symp-
tom, and I-Symptom. Thus, each of our proposed models should address this NER task
as a multi-class classification problem and should produce one of these labels for each
token in the input sequence. Figure 2 shows an example where an input sequence is pro-
cessed by a BILSTM network, where the last layer produces a label for each token in
the input sequence. In this sequence, some tokens such as “outcome” or “primary” were
classified with the label 'O’ (no entities). We can also see that “KCS2”, which is a rare dis-
ease mention formed by just one token, should be classified with the label B-RareDisease
(we used the short label B-rare in the figure), while the following token, “is” should be
labeled with “O” This figure also provides an example of multi-token entity, “short stat-
ure”. The model should classify its first token as “B-sign’, indicating that this token is at
the beginning of the mention, while the second one with "I-sign; indicating the token is
inside of the mention.

Now, we describe the different methods used to deal with the task of NER on the Rare-
Dise corpus.

Conditional random fields (CRF)

As a baseline method, Conditional Random Fields (CRF) [27] is proposed. This is one of
the most successful algorithms for any sequence labeling task such as NER [46, 47]. CRF
learns the correlations between labels and provides the output sequence of IOB tags
with the highest probability. That is, CRF predicts the most likely IOB tag for each token
in the input sequence.

To represent each token, we consider three kinds of features: token, lemma, and PoS
tag. We use Spacy [48], a very popular NLP library, to parse each input sequence and
to obtain these features. For each token, we also select a window of size two. Then, the
features (token, lemma and Pos tag) of the tokens belonging to this window form the
feature set to represent each token. These features are fed into the CRF classifier, which
predicts an IOB tag for each input token. To implement the model, we use the CRF-
Suite package [49]. The classifier was trained using both training and validation datasets
since we use default hyperparameters. The Limited Memory Algorithm for Bound Con-
strained Optimization (L-BFGS) is used as the optimization method.
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Fig. 3 BiLSTM + CRF method. This figure shows the architecture of the BiLSTM network with a CRF classifier

Bidirectional long short-term memory (BiLSTM)

BiLSTM has been successfully applied to the NER task in the biomedical domain [31,
50], and in particular, to recognize disease names [12—-14, 16]. This model consists of a
forward LSTM (which sequentially processes the input sequence from left to right) and
a backward LSTM (which processes the input sequences from right to left). In this way,
BiLSTM can learn relevant information from the previous and next context for each
input token, effectively increasing the amount of information available to the network
[51].

Our architecture consists of several layers (see Fig. 2), which are described below.
First, in the input layer, the text is represented as word vectors. Then, these input vectors
are passed to the BiLSTM layer described above. The output vector of the BiLSTM layer
is the concatenation of the forward LSTM and the backward LSTM. After the BiLSTM
layer, we consider two different strategies for the output layer.

The first strategy (see Fig. 2) is using a time-distributed dense (TDD) layer to clas-
sify each token by determining its most likely label. This layer applies a dense layer on
each times-tep of the the BiILSTM network. In this layer, each conditional probability is
assessed independently of the other conditional probabilities.

The second strategy is using a CRF classifier as the last layer (see Fig. 3), which will
output the sequence of IOB tags with the maximum probability for the input sequence.
The CREF layer takes as input the label probability for each word coming from the out-
put layer of the BiLSTM network. Thus, the context surrounding the label assignment
predicted by the BILSTM model is also added, whereby linear-chain CRF explicitly mod-
els dependencies between the labels through a transition matrix with transition scores
between all pairs of the labels. This allows to easily learn constraints such as, for exam-
ple, “I-RAREDISEASE” tag cannot follow an “O” tag. These types of constraints are cap-
tured by the CRF layer in a simple way by considering the time step in each token.

Moreover, we explore the effect of input text representation on the performance of
BiLSTM. Texts must be encoded as vectors of real numbers to be used as input for
machine learning and deep learning models. In the case of neural networks, it is pos-
sible to create a random vector for each input token. During the training, the network
will adjust these word vectors alongside the other weights of the network. An alternative
way is to represent tokens with word vectors (word embeddings) from a pre-trained lan-
guage model. In the last decade, neural network language models [52, 53] have effectively
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replaced traditional models such as the Bag-Of-Words, achieving state-of-the-art results
in many NLP tasks. Several studies have shown that word embeddings trained with neu-
ral networks can capture semantic and syntactic between tokens [34], providing thus an
accurate meaning representation of the input tokens. The most popular word embed-
dings models are Word2Vec [34], Glove [54] and fastText [55]. In this work, we study the
effect of different pre-trained word embeddings on the BiLSTM performance. In par-

ticular, we explore three different models:

+ GoogleNews [56], a pre-trained word embedding model trained with the Word-
2Vec network on the GoogleNews dataset. The model contains word embeddings of
dimension 300 for 3 million words.

+ GloVe [54], a pre-trained word embedding model trained using Common Crawl, an
open repository of web crawl data. The model contains 300-dimensional vectors for
840 billion tokens.

« PubMed, PubMed Central, and Wikipedia (Wiki-Pubmed-PMC) [57], a pre-trained
word embedding model trained with the Word2Vec network on a collection of more
than 23 million abstracts from PubMed (a database containing abstracts of scientific
articles from the biomedical domain), 700,000 articles from PMC and around four

million English Wikipedia articles. The dimension of the word embeddings is 200.

To implement and train the BILSTM models, we use the Keras Python API [58] with
TensorFlow as the backend. We use an Adam optimizer [59] with a learning rate 0.001
and categorical cross-entropy as a loss function. To avoid overfitting, we use early stop-
ping with the patience of four, meaning that training will finish if the loss function does
not improve in four consecutive epochs.

Bidirectional encoder representations from transformers (BERT)

Deep contextualized language models are capable to capture word meanings and their
more representative relations with other words. Thanks to this accurate linguistic rep-
resentation, these models achieved unprecedented results on many NLP tasks [21].
Moreover, contextualized language models are trained through unsupervised learning,
requiring only a plain text corpus. Thus, these models can partially alleviate the short-
age of large annotated corpora, which are essential for supervised machine learning
algorithms.

Without a doubt, BERT, which stands for Bidirectional Encoder Representations from
Transformers, is the most popular contextualized language model due to its excellent
results in many NLP applications [21]. Transformers are based on attention mechanism
[20], which attempts to represent each word in a sentence based on the most relevant
tokens for that word. Attention mechanisms present two major advantages compared
with Recurrent Neural Networks (RNNs): first, these mechanisms can handle long-term
dependencies between any two tokens in a sentence, and second, they can enable the
parallelization of training.

The basic idea of BERT is that the model is trained to predict words from their con-
texts in an unsupervised way. This prediction only requires a large collection of texts
and some strategy to mask those words to be predicted. This strategy is known as ,
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Fig. 4 BERT-based method. This figure shows the architecture for the three BERT-based models

Masked Language Modeling (MLM). First, we tokenize the texts by using the Bert-
Tokenizer class from Transformers library (provided by Hugging Face https://huggi
ngface.co/), which offers implementations and pre-trained model weights for the
most popular transformers. This class has its own vocabulary with the mappings
between words and their identifiers so it is not necessary to train a tokenizer on the
RareDis corpus. Each sentence is tokenized and special tokens, such as CLS and SEP,
are added at the beginning and at the end of each tokenized sequence, respectively.
The tokens are padded or truncated based on the maximum length (512 tokens) that
the BERT-base model can handle. For each token, this class also creates a position
embedding that encodes the absolute position of the token in the input sequence. It is
also necessary to create an attention mask in order to distinguish which tokens cor-
respond to real words and which ones are padding tokens. Thus, the attention mask
is composed of ones (indicating non-padding entries) and zeros (indicating padding
entries). The input for BERT is the masked sequence and the sum of the token and
position embeddings. Then, BERT should output a vector representation for each
token.

The architecture of BERT (which consists of 12 encoder layers for the BERT-base
version) can be extended with more layers capable to solve a specific NLP task. This
process is known as fine-tuning. To fine-tuning the base model (see Fig. 4), we use the
“BertForTokenClassification” class from Transformers library. This class implements
a token-level classifier on top of the BERT model. The token-level classifier is a linear
layer that takes as input the last hidden state of the sequence and makes predictions
at the token level, rather than the sequence level. Figure 4 shows the output produced
by this fine-tuning model for the input sequence “The primary outcome of KCS2 is
short stature”.

The BertForTokenClassification class allows to load different pre-trained models as
its base architecture. In this work, we explore the following base architectures:

+ Bert-base-uncased version of the original BERT proposed in [21]. This version is a
stack of 12 encoders, each having 12 attention heads. For each token of the input
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sentence, the output layer provides an embedding of dimension 768 for this token.
The total number of parameters is 110 million. The model was trained using two
corpora: BookCorpus with around 800 million words and English Wikipedia with
around 2500 million words.

« BioBERT [17], whose weights were initialized using the BERT weights, and then, the
model was pre-trained on two biomedical corpora: PubMed abstracts (4500 million
words) and PMC full-text articles (13,500 million words).

o ClinicalBERT [41] was trained with more than 2 million clinical notes from the
MIMIC-III v1.4 database [60]. Its weights were initialized using the BioBERT
weights.

Results

In this section, the results obtained from the different methods are presented. We eval-
uate them at entity level to know how well our models predict the whole entities (for
example, “ACDY5-related dyskinesia”). As complementary information, we also assess
our approaches at token level. This evaluation may give us some clues as to why some
entities are more difficult to recognize and what kind of tokens are more challenging for
the task.

All our methods output a BIO tag for each token in the input sequence. These pre-
dicted BIO tags can be easily compared to the actual tags in the test dataset by using
the sklearn library, which provides us the results at token level. That is, it calculates the
scores for each label: O, B-Disease, I-Disease, B-RareDisease, I-RareDisease, B-Sign,
I-Sign, B-Symptom, and I-Symptom. To evaluate the methods at entity level, we use the
seqeval library [61].

NER approaches are typically evaluated in terms of recall, precision, and F1, which are
calculated for each entity type or token type (BIO tags). Recall provides us how many
of the predicted entities (or the predicted tokens) are correct. It can be defined as the
ratio between the correctly predicted mentions for a given entity type (or token type)
and the actual number of mentions of this entity type (or token type) in the test dataset.
To obtain, for example, the recall for rare diseases, we have to divide the total number
of rare diseases proposed by a model by the total number of rare diseases present in
the test dataset. A rare disease mention is correctly identified only if all its tokens have
been correctly classified with its corresponding BIO tags. Precision tells us how precise
is the model. It can be defined as the ratio between the correctly predicted mentions for
a given entity type (or token type) and the total number of predicted mentions by the
model for this entity type (or token type). Finally, F1 is the harmonic average of precision
and recall, which is a useful metric for unbalanced datasets [62]:

2 % Precision * Recall
F1l =

Precision + Recall

As our task is a multi-classification problem, we also calculate micro and macro aver-
age scores. In macro averaging, metrics are calculated independently for each entity type
(or for each token type), and then, we calculate the unweighted mean of these metrics.
For example, the macro-average precision will be the unweighted mean of all precision
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Table 2 Comparison of the methods.

Approach F1

CRF 0.6487

BIiLSTM (Wiki-PubMed-PMC) 04326

BiLSTM+CRF (Wiki-PubMed-PMC) 0.5805

BERT 0.6710

BioBERT 0.6954
ClinicalBERT 0.6810

Best micro F1is in bold

Table 3 Entity-level results of CRF

Label Precision Recall F1 Support
DISEASE 0.6991 04912 05770 454
RAREDISEASE 0.8332 0.8164 0.8247 1095
SIGN 05313 0.3987 0.4556 958
SYMPTOM 0.7778 0.5185 0.6222 54
Micro-avg 0.7112 0.5963 0.6487 2561
Macro-avg 0.7103 0.5562 0.6199 2561
Macro-weighted 0.6953 0.5963 0.6384 2561

scores for the entity types (or for the token types). We also compute the weighted macro-
averages, in which each entity type (or token type) is weighted by the relative number of
its instances in the dataset. In micro averaging, true positives, false positives, and false
negatives are computed jointly for all entity types (or for all token types), and then, the
metrics are calculated. In macro averaging, all classes are treated equally, while, in micro
averaging, the classes with more instances will have more impact on the final perfor-
mance. As our problem has a large class imbalance (see Table 1), we use micro-average
scores to provide an overall comparison of all the approaches proposed in this paper.

We start by presenting the micro-average F1 of the approaches (Table 2). We can
clearly see that the BERT-based models outperform all the other models. Clearly, the
deep contextualized vectors from the BERT-based models provide a better representa-
tion for the input texts than those provided by CRF or the pre-trained word embeddings
used in BiLSTM. BioBERT obtains better results than BERT and Clinical BERT. This may
happen because this was trained on biomedical scientific articles, whose narrative is
similar to that used in the NORD database for describing rare diseases. Regarding the
other approaches, although BiLSTM was extended with a CRF layer as the output layer,
this architecture does not obtain better results than a simple CRE. A possible reason
could be that this deep learning technique requires a larger number of training examples
for learning. We now present the results of each approach below.

CRF (baseline)

Table 3 shows results achieved by CRF at entity level. CRF achieves a micro-average F1
of 64.8% and a macro-average F1 of 61.9%. As entity types are unbalanced (see Table 1),
we also consider the macro-weighted-average F1, which is of 63.8%.
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Table 4 Token-level results of CRF

Label Precision Recall F1 Support
B-DISEASE 07116 0.5124 0.5958 454
|-DISEASE 0.7133 0.5225 0.6032 400
B-RAREDISEASE 0.8464 0.8369 0.8416 1095
I-RAREDISEASE 0.8681 0.8261 0.8466 1179
B-SYMPTOM 0.8286 0.5800 0.6824 54
[-SYMPTOM 0.6429 0.2250 03333 80
B-SIGN 0.5883 0.4894 05343 958
I-SIGN 0.5591 0.3991 04658 2215
Micro-avg 0.7112 0.5818 0.6400 6243
Macro-avg 0.7198 0.5489 0.6129 6243
Macro-weighted 0.6945 0.5818 0.6292 6243

The best results are obtained for rare disease entity type (F1=82.4%), which is the sec-
ond entity type with the largest number of instances, 5228, in the corpus (see Table 1..
On the contrary, sign entity type shows the lowest F1 (45.5%) value, even though it is the
entity type with the largest number of instances, 5230 (see Table 1). Both entity types,
rare diseases and signs, have a very close number of instances. This may happen because
the sign mentions are usually nominal phrases (for example, “malformations of the nip-
ples’, see Fig. 1c), unlike disease, rare disease or symptom names, which are usually a
combination of few technical terms (for example, “chronic arthritis” or “ADCY5-related
dyskinesia’, see Fig. 1). Token-level results are shown in Table 4. As expected, these
results coincide with the results for entity-level. Its “Support” column shows the num-
ber of instances for each type of token. The number of internal tokens (I-) for diseases
or rare diseases is slightly higher than the number of its initial tokens (B-), while the
number of internal tokens for signs doubles the number of its initial tokens. In addi-
tion, many sign mentions are discontinuous entities, that is, they present gaps in their
description. The sentence shown in Fig. 1c contains two signs: “malformations of the
nipples” and “malformations of the abdominal wall’; being the last one a discontinuous
mention. Another possible reason is that many signs can be also considered as diseases
(see Fig. 1a). CRF and the other models proposed in this study only provide a label per
token. That is, they do not address the task of overlapped entities (see Fig. 1b1). The low
performance for signs can be explained by all these reasons.

Both signs and symptoms are clinical manifestations of diseases. A sign is an objective
evidence, while a symptom is a subjective experience that can only be identified by the
patient. However, contrary to the low results for signs, CRF provides the second-best F1
for symptom type (F1=62.2%), even though its number of instances, 397, is the lowest
in the corpus. (see Table 1). A manual review of symptoms and signs mentions in the
training dataset shows that most symptoms are described by technical terms (for exam-
ple, “headache”), while signs usually have lay descriptions (for example, “dark circles
under eyes”). It would be necessary to increase the number of symptoms in the RareDis
corpus to study whether the difference between the results of both types of entities is
maintained.
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Table 5 Entity-level results of BILSTM models.

Label Precision Recall F1 Support

Random initialization

DISEASE 04387 0.2913 0.3502 454
RAREDISEASE 04592 04712 0.4651 1095
SIGN 0.3288 0.3224 0.3256 958
SYMPTOM 0.0000 0.0000 0.0000 54
Micro-avg 0.3668 0.3742 0.3705 2561
Macro-avg 0.2454 0.2170 0.2282 2561
Macro-weighted 0.3946 0.3742 0.3820 2561
Google news

DISEASE 04432 0.3071 0.3628 454
RAREDISEASE 04796 0.4971 04882 1095
SIGN 0.3166 0.3419 0.3287 958
SYMPTOM 04571 0.3200 03765 54
Micro-avg 0.3724 0.4020 0.3866 2561
Macro-avg 0.3393 0.2932 03112 2561
Macro-weighted 0.4084 0.4020 0.4028 2561
Glove

DISEASE 04246 0.3622 0.3909 454
RAREDISEASE 0.5194 0.5529 0.5356 1095
SIGN 03114 0.3971 0.3491 958
SYMPTOM 0.6154 0.4800 0.5393 54
Micro-avg 0.3850 0.4596 04190 2561
Macro-avg 03742 0.3584 0.3630 2561
Macro-weighted 04236 0.4596 04387 2561
Wiki-pubmed-PMC

DISEASE 0.5794 0.4339 0.4962 454
RAREDISEASE 0.5378 0.5388 0.5383 1095
SIGN 03167 0.3570 0.3356 958
SYMPTOM 0.5946 04074 04835 54
Micro-avg 0.4170 0.4494 0.4326 2561
Macro-avg 0.4057 0.3474 0.3707 2561
Macro-weighted 0.4637 0.4494 0.4539 2561

Best micro and macro scores are in bold. Best scores for each entity type are also in bold

BiLSTM
All the BiLSTM models (see Table 5 provide significantly lower results than CRF (see
Table 3). The decrease in micro-average F1 is more than 20% and 24% in macro-average
F1. This may indicate that the training data is too small for using deep learning. As hap-
pened with CRF, BiLSTM obtains the best results for rare diseases and worst ones for
signs. The results at token-level (see Table 6) are coherent with the results at entity level.
Regarding the effect of pre-trained word embeddings to initialize the network, the
BiLSTM with Wiki-Pubmed-PMC provides the best overall results. It also obtains the
best results for rare diseases and diseases. This may be because these word embeddings
were trained on biomedical texts. BILSTM with Glove achieves a slightly better F1 for
signs than BiLTM with Wiki-Pubmed-PMC. However, BILSTM with Glove achieves an
improvement of almost 6% of F1 for symptoms over BiLSTM with Wiki-Pubmed-PMC.
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Table 6 Token-level results of BiLSTM.

Label Precision Recall F1 Support

Random initialization

B-DISEASE 0.6105 03102 04113 454
[-DISEASE 0.6447 0.3660 0.4669 400
B-RAREDISEASE 0.6232 0.5804 0.6010 1095
[-RAREDISEASE 0.7812 0.6631 0.7174 1179
B-SYMPTOM 0.0000 0.0000 0.0000 54
I-SYMPTOM 0.0000 0.0000 0.0000 80
B-SIGN 0.5930 03311 0.4249 958
I-SIGN 0.5924 04323 04999 2215
Micro-avg 0.6403 04633 0.5376 6243
Macro-avg 0.4806 0.3354 0.3902 6243
Macro-weighted 0.6227 04633 0.5271 6243
Google news

B-DISEASE 0.6301 0.3690 0.4654 454
I-DISEASE 0.6807 0.3256 0.4405 400
B-RAREDISEASE 0.6729 0.6392 0.6556 1095
I-RAREDISEASE 0.8259 0.6375 0.7196 1179
B-SYMPTOM 0.6452 0.4082 0.5000 54
[-SYMPTOM 0.5000 0.0263 0.0500 80
B-SIGN 0.5980 04178 04919 958
I-SIGN 0.6203 0.4477 0.5200 2215
Micro-avg 0.6685 0.4906 0.5659 6243
Macro-avg 0.6466 04089 04804 6243
Macro-weighted 0.6640 04906 0.5593 6243
Glove

B-DISEASE 0.6230 04198 0.5016 454
I-DISEASE 0.6320 04553 0.5293 400
B-RAREDISEASE 0.6838 0.6765 0.6801 1095
I-RAREDISEASE 0.8321 0.6702 0.7424 1179
B-SYMPTOM 0.6562 04286 05185 54
I-SYMPTOM 0.6667 0.1053 0.1818 80
B-SIGN 0.5937 0.5354 0.5630 958
[-SIGN 0.5994 0.5454 05711 2215
Micro-avg 0.6544 0.5683 0.6083 6243
Macro-avg 0.6609 0.4796 0.5360 6243
Macro-weighted avg 0.6568 0.5683 0.6059 6243
Wiki-pubmed-PMC

B-DISEASE 0.7600 04718 0.5822 454
[-DISEASE 0.7546 0.5150 0.6122 400
B-RAREDISEASE 0.7163 0.6636 0.6889 1095
[-RAREDISEASE 0.8489 0.6480 0.7350 1179
B-SYMPTOM 0.6765 0.4600 0.5476 54
[-SYMPTOM 1.0000 0.0750 0.1395 80
B-SIGN 0.5318 0.5106 0.5210 958
I-SIGN 0.5807 04614 05142 2215
Micro-avg 0.6687 0.5369 0.5956 6243
Macro-avg 0.7336 04757 0.5426 6243
Macro-weighted avg 0.6784 0.5369 0.5934 6243

Best micro and macro scores are in bold
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Table 7 Entity-level results of BILSTM-CRF models.

Label Precision Recall F1 Support

Random initialization

DISEASE 0.5414 0.3780 04451 454
RAREDISEASE 0.6540 0.7144 0.6829 1095
SIGN 04892 04391 04628 958
SYMPTOM 0.8529 0.5800 0.6905 54
Micro-avg 0.5421 0.5494 0.5457 2561
Macro-avg 0.5075 04223 04563 2561
Macro-weighted 0.5748 0.5494 0.5582 2561
Google news

DISEASE 0.5597 04304 0.4866 454
RAREDISEASE 0.6482 0.7548 0.6975 1095
SIGN 0.5327 04166 04675 958
SYMPTOM 0.6667 0.5600 0.6087 54
Micro-avg 0.5556 0.5654 0.5604 2561
Macro-avg 04815 04324 04521 2561
Macro-weighted 0.5887 0.5654 05711 2561
Glove

DISEASE 04720 0.5092 04899 454
RAREDISEASE 0.7226 0.7240 0.7233 1095
SIGN 0.5068 0.4606 0.4826 958
SYMPTOM 0.5385 0.5600 0.5490 54
micro-avg 0.5489 0.5821 0.5650 2561
Macro-avg 0.4480 0.4508 0.4490 2561
Macro-weighted 0.5937 0.5821 0.5874 2561
Wiki-pubmed-PMC

DISEASE 0.7208 0.4890 0.5827 454
RAREDISEASE 0.6339 0.7890 0.7030 1095
SIGN 0.4994 04562 04768 958
SYMPTOM 0.6739 0.5741 0.6200 54
Micro-avg 0.5564 0.6068 0.5805 2561
Macro-avg 0.5056 0.4617 0.4765 2561
Macro-weighted 0.5998 0.6068 0.5953 2561

Best micro and macro scores are in bold. Best scores for each entity type are also in bold

Although Glove word embeddings were not trained on biomedical texts, they obtain
very close results to those obtained with Wiki-Pubmed-PMC. This may be because
Glove has the biggest vocabulary size. On the other hand, random initialization shows
the worst results. In fact, the model trained with random word vectors was not able to
detect any symptom.

BiLSTM-CRF

Table 7 shows the results obtained by the BiLSTM-CRE. In all the BILSTM-CRF mod-
els, the CRF layer helps outperform the same models without using CRF, with improve-
ments around 10—15% over the BiLSTM overall scores. All BILSTM-CRF models achieve
higher average recall scores than CRF, while their average precision scores are negatively
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Table 8 Token-level results of BILSTM+CRF models.

Label Precision Recall F1 Support

Random initialization

B-DISEASE 05714 0.3957 04676 454
[-DISEASE 0.5649 0.4640 0.5095 400
B-RAREDISEASE 0.6858 0.7490 0.7160 1095
[-RAREDISEASE 0.7703 0.7710 0.7707 1179
B-SYMPTOM 0.9375 0.6122 0.7407 54
[-SYMPTOM 0.8333 0.2632 0.4000 80
B-SIGN 0.6029 0.5616 0.5816 958
I-SIGN 06112 0.5669 0.5882 2215
Micro-avg 0.6521 0.6118 0.6313 6243
Macro-avg 0.6972 0.5480 0.5968 6243
Macro-weighted 0.6499 06118 0.6270 6243
Google news

B-DISEASE 06123 04519 0.5200 454
I-DISEASE 0.5953 0.5130 0.5511 400
B-RAREDISEASE 0.6913 0.7990 0.7412 1095
[-RAREDISEASE 0.7727 08117 0.7917 1179
B-SYMPTOM 0.8108 0.6122 0.6977 54
[-SYMPTOM 06818 0.1974 0.3061 80
B-SIGN 0.6624 0.5308 0.5894 958
I-SIGN 0.7074 05236 0.6018 2215
Micro-avg 0.7022 06103 0.6530 6243
Macro-avg 0.6918 0.5549 0.5999 6243
Macro-weighted 0.6992 06103 0.6450 6243
Glove

B-DISEASE 05219 0.5428 0.5321 454
I-DISEASE 04875 06167 0.5445 400
B-RAREDISEASE 0.7792 0.7510 0.7649 1095
I-RAREDISEASE 0.8009 0.8037 0.8023 1179
B-SYMPTOM 0.6739 0.6327 0.6526 54
I-SYMPTOM 04878 0.2632 0.3419 80
B-SIGN 0.6372 0.5753 0.6047 958
[-SIGN 0.6566 0.5730 0.6120 2215
Micro-avg 0.6789 0.6390 0.6583 6243
Macro-avg 0.6306 0.5948 0.6069 6243
Macro-weighted 0.6798 0.6390 0.6572 6243
Wiki-pubmed-PMC

B-DISEASE 0.7616 05192 0.6174 454
I-DISEASE 0.7789 0.5550 0.6482 400
B-RAREDISEASE 0.6617 0.8295 0.7361 1095
I-RAREDISEASE 0.7694 0.8346 0.8007 1179
B-SYMPTOM 0.7273 0.6400 0.6809 54
I-SYMPTOM 0.6296 0.2125 03178 80
B-SIGN 0.5919 0.6015 0.5967 958
I-SIGN 0.5929 0.5589 0.5754 2215
Micro-avg 0.6621 0.6561 0.6591 6243
Macro-avg 0.6892 0.5939 0.6216 6243
Macro-weighted 0.6634 0.6561 0.6535 6243

Best micro and macro scores are in bold
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Table 9 Entity-level results of the BERT-based models.

Label Precision Recall F1 Support
BERT base

DISEASE 0.5197 06101 0.5613 454
RAREDISEASE 0.8008 0.8667 0.8325 1095
SIGN 0.5079 0.6033 0.5515 958
SYMPTOM 0.5469 0.6481 0.5932 54
Micro avg 0.6298 0.7181 0.6710 2561
Macro avg 0.5938 0.6821 0.6346 2561
Macro-weighted 0.6361 0.7181 0.6743 2561
BioBERT

DISEASE 0.5607 0.6608 0.6067 454
RAREDISEASE 0.8522 0.8530 0.8526 1095
SIGN 0.5574 0.5877 0.5722 958
SYMPTOM 05143 0.6667 0.5806 54
Micro avg 0.6761 0.7157 0.6954 2561
Macro avg 0.6212 0.6920 0.6530 2561
Macro-weighted 0.6831 0.7157 0.6984 2561
BioClinical BERT

DISEASE 0.5788 0.6388 0.6073 454
RAREDISEASE 0.8167 0.8584 0.8370 1095
SIGN 0.5296 0.5501 05397 958
SYMPTOM 0.6066 0.6852 0.6435 54
Micro avg 0.6625 0.7005 0.6810 2561
Macro avg 0.6329 0.6831 0.6569 2561
Macro-weighted 0.6627 0.7005 0.6810 2561

Best micro and macro scores are in bold. Best scores por each entity type are also in bold

affected. Thus, BILSTM-CRF models still provide lower overall results than the baseline
based on CRE, with a decrease of 6% in micro-average F1.

Regarding the pre-trained word embeddings, Wiki-Pubmed-PMC and Glove
word embeddings provide better performance than using random initialization or
GoogleNews word embeddings. BILSTM-CRF with Glove provides the best results
for rare diseases and signs, while Wiki-Pubmed-PMC provides the best F1 for dis-
eases. Entity-level and token-level (see Table 8) results show the same behavior. The
model trained with Wiki-Pubmed-PMC or Glove word embeddings achieve the best
F1 scores for all token types, except for the B-Symptom and I-Symptom. For these
tokens, the best F1 scores are provided by the model trained with random initializa-
tion. However, due to the lowest number of instances of this entity type, it is very dif-
ficult to give an explanation. It would be necessary to increase its number of instances
to know the real behavior of the model for this entity type.

As mentioned previously, BILSTM fails to beat the baseline, not even when it
includes a CRF classifier as its last layer. This may be because the training data size is
not enough to train a deep learning model, while a CRF classifier trained with a sim-

ple feature set can deal with the task.
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Table 10 Token-level results of the BERT-based models.

Label Precision Recall F1 Support
BERT base

B-DISEASE 0.6012 0.6637 0.6309 454
[-DISEASE 05186 0.5884 05513 400
B-RAREDISEASE 0.8451 0.9003 0.8718 1095
[-RAREDISEASE 0.8704 0.9024 0.8861 1179
B-SYMPTOM 0.6607 0.7400 0.6981 54
[-SYMPTOM 0.6000 04918 0.5405 80
B-SIGN 0.6514 0.7073 0.6782 958
I-SIGN 06725 0.7099 0.6907 2215
Micro avg 0.7353 0.7794 0.7567 6243
Macro avg 0.6775 0.7130 0.6935 6243
Macro-weighted avg 0.7379 0.7794 0.7579 6243
BioBERT

B-DISEASE 0.6356 0.7088 0.6702 454
I-DISEASE 05716 0.6964 0.6279 400
B-RAREDISEASE 0.8825 0.8816 0.8821 1095
[-RAREDISEASE 09142 0.8927 0.9033 1179
B-SYMPTOM 0.6349 0.8000 0.7080 54
[-SYMPTOM 0.5538 0.5538 0.5538 80
B-SIGN 0.7238 0.7049 0.7142 958
I-SIGN 0.7330 0.6978 0.7150 2215
Micro avg 0.7830 0.7855 0.7842 6243
Macro avg 0.7062 0.7420 0.7218 6243
Macro-weighted avg 0.7890 0.7855 0.7863 6243
ClinicalBERT

B-DISEASE 0.6503 0.6885 0.6689 454
I-DISEASE 0.5969 0.6557 0.6249 400
B-RAREDISEASE 0.8614 0.8807 0.8710 1095
I-RAREDISEASE 0.8829 0.9076 0.8951 1179
B-SYMPTOM 0.7547 0.8000 0.7767 54
I-SYMPTOM 0.7158 0.5231 0.6044 80
B-SIGN 0.6996 0.6961 0.6979 958
[-SIGN 0.7575 0.6220 0.6831 2215
Micro avg 0.7881 0.7609 0.7742 6243
Macro avg 0.7399 0.7217 0.7277 6243
Macro-weighted avg 0.7873 0.7609 0.6243 11,909

Best micro and macro scores are in bold

BERT-based models
We have explored the use of three different deep contextualized word representa-
tions, all of them based on BERT (see Table 9). Unlike the BiLSTM models, these
BERT-based models exceed the baseline results provided by a simple CRF classifier.
BioBERT achieves the best micro-average and macro-weighted average F1, while the
best macro-average F1 is provided by ClinicalBERT. In general, BioBERT and Clinical-
BERT show very close results. As happened with the previous models, rare diseases
show the best results, followed by diseases. BioBERT obtains the best F1 for rare dis-
eases and for signs, while Clinical BERT BERT provides the best results for diseases and
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symptoms. As expected, the BERT base model, which was trained on BookCorpus and
English Wikipedia, obtains lower results than BioBERT and ClinicalBERT.

Regarding the results at the token-level (see Table 10), BioBERT achieves the best F1
scores for all token types, except for B-Symptom and I-Symptom tokens. In these tokens,
the best model is Clinical BERT. Comparing to the previous approaches, all BERT-based
models achieve significant improvements on recall. For example, BioBERT largely out-
performs CREF, with an increase of 17 points in recall for diseases (see Table 3). The
BERT-base also shows significant improvement on recall for rare diseases and signs,
with differences of 5 and 14 points, respectively, comparing to the previous best model
BiLSTM-CRE. Similarly, ClinicalBert has an improvement of 10 points for recall over
recall provided by BiLSTM-CRF model. This significant improvement on recall com-
pared to the previous method may be due to

Given text, WordPiece first pre-tokenizes the text into words (by splitting on punc-
tuation and whitespaces) and then tokenizes each word into subword units, called
wordpieces

Discussion

Although rare diseases have a very low prevalence in the population, approximately 6%
of the world’s population suffer a rare disease. This number is continually growing as five
new rare diseases are discovered each week [63].

In this paper, we study several methods for recognizing rare diseases and their clini-
cal manifestations. We propose a CRF baseline system using linguistic features. Second,
we implement multiple BiLSTMs, testing different classifiers at the output layer such as
softmax or CREF, as well as exploring different strategies to initialize their input vectors,
such as random initialization and three pre-trained word embedding models, one of
them was trained on biomedical texts. Moreover, we explore three implementations of
BERT, which differ between them by the type of texts used to pre-train the model. The
RareDis corpus is used to train the models and evaluate them. The experiments show
that BioBERT obtains the best micro and macro-weighted-average F1, with improve-
ments around 5% over the baseline (CRF) results. BILSTM does not even outperform
the baseline in terms of F1.

Regarding the entity types, the best model, BioBERT, provides the highest F1 (85.2%)
for rare diseases, followed by diseases with a F1 of 60.7%. Rare disease names are usu-
ally more complex than disease names since many rare disease names often contain dis-
ease names (for example, "central diabetes insipidus”). Therefore, the difference between
these results may be that the number of rare diseases mentions is twice the number of
diseases mentions in the dataset (see Table 1). The other entity types, sign and symptom,
do not outperform 60% in F1. One possible reason for the low results to recognize symp-
toms (F1=58%) may be the insufficient number of training instances for this entity type
(see Table 1). On the other hand, although sign is the majority class (see Table 1), this
shows the lowest F1 (57.2%). In this case, the most probable reason is that many signs
are usually described by complex noun phrases that often involve the use of overlapped,
nested and discontinuous entities.

As mentioned before, the BERT-base models provide significant improvements on
recall scores for all the entity types and all the token types, compared to the previous



Segura-Bedmar et al. BMC Bioinformatics (2022) 23:263 Page 20 of 23

approaches. This large improvement may be explained by the wordpiece tokenization
used in BERT, while the previous approaches used word-based tokenizers to process
the input texts. The wordpiece tokenizer first splits the text into tokens, and then the
rare words are broken into smaller meaningful words (named wordpieces) [64]. For
example, as “chronic” is a very common word, it is not split into smaller subwords.
In contrast, “arthritis” can be considered a rare word because it is less common than
“chronic”. For this reason, the tokenizer breaks it into three wordpieces: “art’, “##hr’,
“##itis”. Wordpiece tokenization has multiples advantages. First, it provides a repre-
sentation for unknown words by splitting them into known smaller tokens. Moreover,
the model is able to learn meaningful representations with a reasonable vocabulary
size. These advantages have been also mentioned in several previous works [65-67].

Most previous work has focused on recognizing disease names. So far, a model
based on transformers [18] has achieved the state-of-the-art results with an F1 of
89.92% on the NCBI corpus, and 93.82% on the CDR corpus. Our results are not
directly comparable to previous work, because this is the first work that addresses the
detection of rare diseases and their clinical manifestations from the RareDis corpus.
Even so, we can see that our model based on BioBERT provides an F1 of 85.25% for
the recognizing of rare diseases, which is close to the state-of-the-art performance
on the NCBI corpus (F1=89.92%)). We should note that the NCBI corpus contains
6982 disease mentions, while our RareDis corpus only has 5228 rare disease men-
tions (3608 instances in the training subset). That is, it is reasonable to think that if
the RareDis corpus had a similar number of instances to the NCBI corpus, our model
could have achieved close results to the state-of-the-art results on the NCBI corpus
[18]. Similarly, the size of the CDR corpus is also greater than the RareDis corpus.
Moreover, until now, only one study addressed the task of recognizing rare diseases
and their disabilities from texts, by using a BILSTM with a CRF layer. This approach
achieved an F1 of 70.1% for rare diseases on the RDD corpus [40]. Therefore, our
approach using BioBERT obtains a better performance.

As future work, we plan to extend the size of the RareDis corpus by including Med-
Line abstracts and clinical cases of rare diseases. This will increase the number of
instances for all entity types, especially the number of instances for symptoms. It
could have a significant positive effect on the results, especially those achieved by the
deep learning models. We also plan to extend the corpus with texts written in other
languages than English. Thus, we will study the behavior of our models on other type
of texts.

We will also address some unsolved problems in NER such as the recognition of
nested, overlapped and discontinuous entities, which could improve the results for
signs. Regarding the models, we will study on fine-tuning the BERT-based models by
adding different techniques, such as a simple CRF or more complex architectures.
Furthermore, we plan to address the task of relation extraction on the RareDis corpus.
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