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Abstract 

Background:  The constant evolving and development of next-generation sequenc‑
ing techniques lead to high throughput data composed of datasets that include a 
large number of biological samples. Although a large number of samples are usually 
experimentally processed by batches, scientific publications are often elusive about 
this information, which can greatly impact the quality of the samples and confound 
further statistical analyzes. Because dedicated bioinformatics methods developed to 
detect unwanted sources of variance in the data can wrongly detect real biological 
signals, such methods could benefit from using a quality-aware approach.

Results:  We recently developed statistical guidelines and a machine learning tool to 
automatically evaluate the quality of a next-generation-sequencing sample. We lever‑
aged this quality assessment to detect and correct batch effects in 12 publicly avail‑
able RNA-seq datasets with available batch information. We were able to distinguish 
batches by our quality score and used it to correct for some batch effects in sample 
clustering. Overall, the correction was evaluated as comparable to or better than the 
reference method that uses a priori knowledge of the batches (in 10 and 1 datasets 
of 12, respectively; total = 92%). When coupled to outlier removal, the correction was 
more often evaluated as better than the reference (comparable or better in 5 and 6 
datasets of 12, respectively; total = 92%).

Conclusions:  In this work, we show the capabilities of our software to detect batches 
in public RNA-seq datasets from differences in the predicted quality of their samples. 
We also use these insights to correct the batch effect and observe the relation of sam‑
ple quality and batch effect. These observations reinforce our expectation that while 
batch effects do correlate with differences in quality, batch effects also arise from other 
artifacts and are more suitably  corrected statistically in well-designed experiments.

Keywords:  Batch effect, Quality control, NGS, RNA-seq, Next-generation sequencing, 
Machine learning, Bioinformatics, Artifacts, Batch effect origin
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Background
Batch effects arise from differences between samples that are not rooted in the experi-
mental design and can have various sources, spanning from different handlers or experi-
ment locations to different batches of reagents and even biological artifacts such as 
growth location. In the context of sequencing data, two runs at different time points 
can already show a batch effect [1]. Although these effects can be minimized by good 
experimental practices and a good experimental design [2], batch effects can still arise 
regardless and it can be difficult to correct them [3]. Batch effects are known to interfere 
with downstream statistical analysis, for example by introducing differentially expressed 
genes between groups that are only detected between batches but have no biological 
meaning [4, 5]. Vice versa, careless correction of batch effects can result in loss of bio-
logical signal contained in the data [6–8]. Proper handling of batched data is thus para-
mount for successful and reproducible research.

Various methods have been developed to detect or even remove batch effects in 
genomics data, particularly RNA-seq data and cDNA microarrays. For example, the sva 
package from Bioconductor [9] can detect and correct effects from several sources of 
unwanted variation, including batches. It also features functions to correct the data for 
known batches [10]. Yet, such tools should be used with care because they can mistak-
enly detect and remove actual biological signals from the data as stated by their authors 
and as cited above.

Quality control of next-generation sequencing data is an essential but not trivial step 
in functional genome and epigenome analysis. Many tools have been designed to shed 
light on the quality of a given sample or file. In previous studies, we used 2642 quality-
labeled FASTQ files from the ENCODE project to derive statistical features with dif-
ferent bioinformatics tools well known in the scientific community. We showed that 
these features have explanatory power over the quality of the data from which they 
were derived, and built a machine learning classification tool that uses these features as 
input [11, 12]. With a grid search of multiple machine learning algorithms, from logistic 
regression to ensemble methods and multilayer perceptrons, we were able to provide a 
robust prediction of quality in FASTQ files.

As the quality of biological samples could be significantly impacted by batch process-
ing, we hypothesized that an automated machine-learning-based quality classifier could 
also detect batches in gene-expression datasets and be used to correct the batch effect. 
Here, we leverage the explanatory power of our machine learning algorithm, to success-
fully detect batch effects based on quality differences in the samples. In addition, we pro-
vide a method for batch correction based on predicted sample quality that we evaluate 
with 12 published RNA-seq datasets.

Results
Our workflow to process the data and derive low-quality scores Plow by biological sample 
is depicted in Fig. 1. Plow is a machine-learning derived probability for a sample to be of 
low quality, as derived by the seqQscorer tool [11]. From 12 publicly available RNA-seq 
datasets, we downloaded a maximum number of 10 million reads per FASTQ file. Some 
quality features were derived from the full files and others from a subset of 1,000,000 
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reads (see Methods). Previously, we observed that random subsampling of the reads 
does not strongly impact the predictability of Plow and this significantly reduced comput-
ing time.

In 6 datasets, the samples have a significant difference of Plow scores between the 
batches. In 5 datasets, the differences are not significant (Fig. 2). One dataset shows a 
marginally significant difference (close to the selected threshold of 0.05). Those results 
confirm the ability of the quality scores to detect batches in some datasets. For the data-
sets showing no significant difference, other experiments would be required to clarify 
if there are no substantial batch effects, if the batch effect is unrelated to quality, or if 
the method failed. For example, a batch effect that is not related to quality could still be 
observed by clustering analyses or by detailed analysis of dysregulated genes and related 
pathways.

Figure  3 shows detailed results for the dataset GSE163214. A strong difference in 
quality can be observed between the batches on the boxplot, supported by a significant 
Kruskal–Wallis’s test (p-value = 1.03e−2) and a high correlation coefficient of Plow vs 
sample’s groups (designBias = 0.44; also illustrated by the bar plot). We can observe a 
strong batch effect in the uncorrected principal component analysis (PCA) (top row, left) 
where samples from batch 1 cluster together on the right-hand side, and samples from 
batch 2 on the left-hand side (panel: PCA Abundance). It is supported by poor cluster-
ing evaluation scores (the higher the better: Gamma = 0.09, Dunn1 = 0.01; the lower the 
better: WbRatio = 0.91) and very few differential genes (DEGs = 4). Thanks to the refer-
ence method using a priori knowledge of the batches to correct the analysis, samples 
on a batch-corrected PCA cluster by group and not anymore by batch (panel: PCA cor-
rected Batch). It is supported by more differentially expressed genes (DEGs = 12) and 
better clustering evaluation scores (Gamma = 0.32, Dunn1 = 0.17; WbRatio = 0.68), with 
further improvement on another version of the batch-corrected PCA where an outlier 

Fig. 1  Workflow. Black boxes show components of the overall workflow. DeriveFeatures is a component that 
uses four bioinformatic tools to derive the four feature sets from the FASTQ files (.fastq): RAW, MAP, LOC, TSS. 
seqQscorer computes Plow, the probability of a sample to be of low quality. We used seqQscorer’s generic 
model, which is derived from 2642 labeled samples and uses a random forest as classification algorithm. We 
used the salmon tool to quantify gene expression and DESeq2 for rlog normalization [19, 20]
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sample could be manually identified and removed (sample: SRR13253993; panel: PCA 
corrected Batch and no outlier). Without using a priori knowledge but only using the 
automatically derived quality scores to correct the analysis, samples are also clustered 
by group and not anymore by batch (panel: PCA corrected Plow). Clustering results 
and statistics are very comparable to the reference that uses a priori knowledge of the 
batches, though the number of differentially expressed genes is even higher (DEGs = 21) 
and removing outliers manually or based on quality scores did not improve the results 
further. Finally, applying a correction based on both a priori knowledge and automatic 
quality scores, together with outlier removal, showed the best clustering statistics 
(panel: PCA corrected Batch and Plow and no outlier) (Gamma = 0.49, Dunn1 = 0.31; 
WbRatio = 0.58).

In Fig. 4 the differences of clustering metrics for each dataset before and after correc-
tion are plotted. Across the datasets, the impact that batch correction and Plow correc-
tion have is mostly comparable, although the true batch correction seems to work better 
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Fig. 2  Predicted low-quality scores (Plow) of all samples for each surveyed dataset. Shapes represent sample’s 
batches and colors represent sample’s groups. The p-values of a Kruskal–Wallis’s rank sum test of the batch 
against Plow is given in the title of each plot
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Fig. 3  Expression data and four different types of batch correction. From top left to bottom right: PCA 
Abundance, shows the uncorrected PCA of the rlog normalized counts quantified by salmon and imported 
to a deseq2 object, next to it in the top right panel a bar plot shows the Low-Quality probability Plow for each 
sample. The PCA corrected with batch uses the AC-PCA package [21] to return principal components that 
were computed with the true batch as a confounding factor. The PCA corrected with Plow uses the AC-PCA 
package likewise, but Plow as a confounding factor. To the right of either corrected PCA we see a corrected 
PCA on the basis of the data without outliers. For the correction with the real batch, we removed outliers 
identified from either the base PCA or the corrected version. In Plow we also removed outliers based on the 
corrected PCA, but additionally added a threshold for Plow after manual inspection of the bar plot on the top 
right. The last two panels are the PCA corrected by both batch and Plow and the Boxplot of Batch against Plow
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in a few cases (e.g. dataset GSE120099). However, if outliers of the base PCA or depend-
ing on sample quality are removed, the impact improves and even overcomes the simple 
batch correction. It should be noted that these clustering metrics are also sensitive to the 
removal of large proportions of samples, which is sometimes the case here. The impact 
of outlier removal alone is negligible (data not shown). All PCAs that are discussed here 
are given as panel plots similar to Fig. 3 in Additional file 1.

An additional view on the data is shown in Table 1. The table reports manual evalu-
ation of the clustering results. Manual evaluation was necessary to overcome the limi-
tations of the clustering metrics that do not handle biologically expected similarities 
between samples correctly. Taking the dataset GSE82177 as an example, clustering met-
rics would score poorly on the fact that Control and Non-tumor samples cluster together 
although it makes sense biologically. The two control groups of the dataset GSE61491 
are another example. Also, the large negative changes to the clustering metrics after cor-
rection by the reference method or our approach for dataset GSE163857 were manually 
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Fig. 4  Difference in clustering metrics of the non-corrected PCA versus the batch and Plow corrected ones, 
as well as a PCA with removed outliers depending on Plow. Quality-based correction can be compared to the 
true batch correction that is the reference method. The last plot on the bottom right shows the combination 
of Plow correction and removed outliers. Datasets are arranged in descending order by the difference of both 
values
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evaluated to be actually not significant and most likely due to a different scaling of the 
PCAs (the scale of the components shrinks two to three-fold; see Additional file 1).

Overall, the Plow correction was mostly evaluated as comparable to or better than the 
reference method that uses a priori knowledge of the batches (in 10 and 1 of 12 data-
sets, respectively; total = 92%). When coupled to outlier removal, the Plow correction was 
more often evaluated as better than the reference (comparable or better in 5 and 6 data-
sets of 12, respectively; total = 92%). Combining true batch and Plow could improve the 
results further but not systematically (5 datasets better but also 4 worse than the best 
tested correction method (Plow or true batch)) and notably with a strong association with 
the imbalance of quality between groups of samples (designBias): the lower the bias, the 
better this further improvement. Although performing well, the Plow correction could 
not systematically remove the batch effect as well as the reference method using a pri-
ori knowledge. This result is in agreement with the multifaceted nature of batch effect, 
which is not only explained by quality differences.

However, in some cases it is clear that the observable batch effect is not related to 
quality. In these cases, the batch effect could be countered when correcting for the real 
batch but not with Plow (GSE120099) or vice versa a correction with Plow would improve 
the clustering, but batch correction would not (GSE117970) (Additional file  1). In 
GSE120099 we even observe a batch-like difference in quality between two groups of 
samples, which does not correspond to the actual annotated batches, but seems con-
founded with the group, resulting in the highest value for the Design bias.

Also, a good example for a divergence of batch effect and quality is dataset GSE82177: 
two very strong outliers skew the PCA plot and we observe a batch effect. When Plow or 

Table 1  Manual exploration of the PCA plots with different corrections for all datasets

Exp. Design is a manually given label evaluating the balance of the biological groups between the batches. Design Bias 
evaluates the clustering of the biological groups by quality scores Plow (normalized gamma of Plow against the group; the 
higher, the better the clustering by quality; values from 0 to 1). The Kruskal–Wallis’s P-value is derived from a Kruskal–Wallis’s 
test comparing average Plow values by batch. Taken together, those metrics show the potential association between our 
quality metric, groups, and batches. Other columns show the manual evaluation of the batch effect and correction methods

GEO series Exp. 
design 
(group 
vs 
batch)

Design 
bias 
(Plow vs 
group)

Kruskal 
Wallis’s 
P-value 
(batch vs 
Plow)

Batch 
effect 
on 
base 
PCA

Batch 
effect 
removed 
after batch 
correction

Batch 
effect 
removed 
after Plow 
correction

Plow 
performance 
compared to 
batch

Plow 
performance 
with outlier 
removal

Performance 
of combined 
correction

GSE120099 Good 0.655 4.24E−03 Yes Yes No Worse Worse Worse

GSE117970 Poor 0.608 8.41E−04 Yes No Yes Better Better Worse

GSE163857 Poor 0.522 2.09E−02 No – – Comparable Comparable Worse

GSE162760 Good 0.496 2.36E−12 Yes Yes Yes Comparable Better Comparabe

GSE182440 Very 
good

0.495 1.06E−01 No – – Comparable Better Better

GSE144736 Poor 0.494 3.63E−01 Yes Yes No Comparable Better Worse

GSE82177 Very 
good

0.493 5.75E−01 Yes Yes No Comparable Better Better

GSE171343 Very 
good

0.488 8.25E−02 Yes Yes No Comparable Comparable Comparable

GSE173078 Very 
good

0.479 2.93E−07 No – – Comparable Comparable Comparable

GSE61491 Good 0.448 2.13E−01 Yes Yes No Comparable Comparable Better

GSE163214 Good 0.443 1.03E−02 Yes Yes Yes Comparable Comparable Better

GSE153380 Poor 0.442 1.58E−01 No – – Comparable Better Better
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batch correction is employed, the PCA can be deconvoluted and the points are scattered 
as expected, but still intertwined. When removing the outliers, the batch correction is 
not able to differentiate between the groups well; with the quality-dependent outlier 
removal the clustering is better. However, when we use both Plow and true batch cor-
rection, the control and non-tumor samples cluster together and the tumor samples are 
loose but not close to the others.

In Additional file 2, panel plots similar to Additional file 1 are available for each data-
set, showing the correction of the PCA plot with surrogate variables detected by SVA 
[9]. The first surrogate variable often has similar impact as either the true batch or Plow, 
while the combination of all surrogate variables together can sometimes outperform the 
true batch as well as Plow, suggesting artifacts of biological origin in the data: this is the 
case in GSE117970 and GSE171343, although in the latter Plow can achieve good results 
when removing an outlier. Vice versa, in some cases the correction with the combined 
surrogate variables skews the data, most likely, because  relevant biological informa-
tion was identified as an artifact, see GSE82177, GSE162760 and GSE153380. The latter 
is even skewed by just the first surrogate variable alone, which could be rooted in the 
unbalanced nature of the dataset.

Overall, although batch effects are not only explained by quality differences, quality-
based data correction performs similarly to real batch correction on sample clustering.

Discussion
In this work we have tested our automated quality analysis tool, seqQscorer, for its capa-
bilities to detect batch effects in the data. Taken as a confounding factor to correct the 
data for the clustering of the samples, the quality evaluation led to results comparable to 
the reference method that uses the real batch information.

We observed that in half of the data there were significant differences in the Plow qual-
ity score between the batches. We could observe that Plow would often have similar 
effects as correcting for the true batch, but also observed a divergence between batch 
effect and Plow: In some datasets, we would correct for Plow, but the batch effect was still 
clear, even when we otherwise improved clustering.

It should be noted that even with the correction based on the true batch, the PCA 
clustering could not always be improved. In fact, only for half of the datasets, a true 
batch correction would improve the clustering. This may be for a variety of reasons, such 
as the fact that there may not actually be a significant biological difference between the 
groups of samples. For example, in GSE162760 we can successfully remove the batch 
effect with both Plow and true batch correction but the samples do not cluster better by 
biological group. Also, PCA plots are not always appropriate to observe small changes 
between samples such as changes due to a disease that impacts the expression of only a 
few genes.

When correcting with Plow we could observe similar levels of improvement for the 
clustering and even surpassed the batch correction when removing outliers. However, 
the selected metrics could be impacted by changes in the number of samples and not 
only by the clustering of the data points. Such metrics also do not weigh expected and 
non-expected biological group similarities differently. Nevertheless, the manual inspec-
tion of the plots leads to the same conclusion.
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When combining the two methods (correcting based on a priori knowledge of the 
batches and automated quality control), we observed very different outcomes. The com-
bination of the methods could perform better or worse in comparison to the individual 
approaches. We hypothesize that the improvement of a combination of two confound-
ing factors depends on whether they model different artifacts in the data or not. We did 
not take into account other confounding factors, since they are generally not well docu-
mented in public datasets. Poor results in this study from true batch or quality-based 
correction could be explained by such unaccounted confounding factors.

Batch effects that would impact data quality, such as effects explained by different han-
dlers, sequencers or reagents during RNA extraction, will most likely be detected by our 
software [1, 13]. Biological artifacts explained for example by the origin of the tissue or 
location of sampling would not impact quality, but they can still majorly skew the data 
[1]. Experiments to investigate sources for such biases, would be best addressed by the 
wet-lab in charge of the analysis: it would be necessary to perform an NGS experiment 
with deliberate batches. To have a possibility to observe if these batch effects are related 
to quality, the files would need to be evaluated by seqQscorer as well as manually by an 
experienced NGS scientist, for example the RNA Integrity Number (RIN) values should 
be used as an indicator. Another possibility to approach this would be to do the same 
experimental setup with batches two times, one time by an experienced handler and 
one time by a less experienced handler or by inducing errors that will likely impact the 
quality directly, like not keeping the temperature steady or gradually overreach the given 
time limits during library preparation.

Batch effect correction algorithms such as SVAseq and RUVseq can detect any types 
of artifacts in the data and could potentially outperform a simple correction by known 
batch or by a single confounding factor such as Plow. However, they must be guided 
with information about the biological groups of interest beforehand in order to avoid 
their detection as unwanted variation to be corrected [4, 14]. Such detection methods 
bring the risk of detecting biologically relevant information, such as subpopulations in 
groups of the data, as bias and subsequently removing this information [8]. This was also 
observed in this work: while the sample-group-informed surrogate variable could often 
outperform Plow or even the true batch information, it could be observed that in 25% of 
the cases investigated the correction would skew or even remove the group clustering 
(see Additional file 2). Goh et al. suggest to use a combination of gene fuzzy scoring with 
neural-network-based feature extraction to circumvent this problem for downstream 
application without data transformation, especially with machine learning applications 
in mind [8]. Future work could explore ensemble methods leveraging a variety of mod-
els specializing in different technical effects or artifacts, together with our quality-aware 
models.

Overall, our automated quality control method produces a score able to model techni-
cal differences between the samples of a dataset. It can be used as a confounding fac-
tor in downstream analysis. However, there are still biological artifacts and batch effects 
that are not explained by quality. It would be desirable to increase the number of data-
sets to be able to better investigate if there are properties in the data and metadata that 
give rise to artifacts. Cross referencing this information to batch correction and correc-
tion by Plow could give insight about the origins of artifacts in the data. Still, this type of 
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information is not commonly given in publicly available datasets. Even with regard to 
batches, it is not easy to find well annotated datasets, which led to the small number of 
them used in this work.

Conclusions
In this work, we used our machine learning software that estimates the probability of 
low quality for a given RNA-seq, DNAse-Seq or ChIP-Seq sample and showed that the 
produced probability score Plow can be used to predict batch effects that arise from tech-
nical issues.

We were also able to use the score to aid clustering visualization of the data and to 
remove the batch effect comparably to the reference method that uses a priori knowl-
edge. We observed the existence of batch effects that our quality-based approach could 
not identify and most likely stemmed from biological artifacts.

Methods
We used 12 batched RNA-seq datasets from the NCBI’s GEO database. Table 2 shows 
the datasets that were used and gives some metrics about the data. 7 batched datasets 
were paired-end and 5 datasets single-end RNA-sequencing. The smallest number of 
samples in a dataset is 10 samples, the highest number is 128. Metadata was collected 
by hand from GEO and SRA and the datasets were downloaded using the samples’ SRA 
accession numbers by the fastq-dump tool from the SRAtools library (10,000,000 ran-
dom reads were selected for download with the -X flag). The computation was done on a 
personal computer with an Intel® Core™ i7-8700 K CPU and 32 GB ram. With 5 threads, 
the genome mapping process for a FASTQ file was between 20 and 30 s. The script that 
derives LOC and TSS features took approximately 40 s per file.

Most datasets are related to diseases, except for dataset GSE163857, which is survey-
ing the effects of metals on Microglia cells, and GSE163214 surveying the impact of a 
gene on overall gene expression and histone acetylation in a HeLa cell line. Surveyed 
diseases in the datasets span from neuronal diseases (e.g. Microcephaly, Dementia or 
the impact of Alcoholism on neuronal cells) to inflammatory diseases (e.g. periodontitis 
and parasitic diseases with leishmaniasis) and also different cancer types and cardiovas-
cular diseases, showing a broad overview over biological data despite the relatively small 
number of datasets. Table  2 gives an overview of the datasets and the corresponding 
publications. As indicated in the last row, for some datasets only a subset of the samples 
was chosen, either to keep the number of samples small, or if the samples were too con-
voluted to get any cluster metrics.

We used our software seqQscorer to derive the quality features and to predict the 
quality of a sample, assigning the probability of low-quality Plow [11]. Our software first 
needs to derive the features from the FastQ files representing the biological samples. To 
this end, it utilizes four bioinformatic tools: FastQC to produce the RAW features (Sum-
mary statistics of FastQC) [15], Bowtie2 for the MAP features (genome mapping sta-
tistics) [16], ChIPSeeker for the LOC feature (percentages of reads in genomic regions) 
[17] and ChIPPeakAnno for the TSS features (percentages of reads in bins around the 
transcription start sites) [18]. FastQC was applied to the full downloaded FastQ file, 
while other quality features were derived from 1,000,000 randomly selected reads. The 
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tool uses these features to compute the probability score Plow for each sample. Among 
the predefined models of seqQscorer some were trained on certain subsets of a large 
main training set: 2642 samples labeled for low- and high-quality. We used the generic 
Random Forest model that was trained on the complete training set. With this generic 
model, Plow is computed from the ratio of votes by trees in the random forest. To derive 
the differential gene expression, we used Salmon [19] to quantify the gene expression 
from 1,000,000 randomly selected reads per sample, and DESeq2 [20] for statistical 
tests and to compute rlog normalized expression values for PCA plotting. Differentially 
expressed genes were considered at an adjusted p-value < 0.05. See Fig. 1 for an overview 
of the computing workflow.

We plotted the batches against Plow with R and ggplot2 and computed a Kruskal–Wal-
lis’s test to confirm if there are significant differences of Plow values between batches.

To investigate if Plow values could be used for batch corrections, we observed the 
first two dimensions of a PCA either without any correction, or with correction by 
Plow as well as correction by the real batch identifier as confounding factors. We 
used the AC-PCA package for this, which allows to add confounding factors to the 
computation of principal components [21]. We also tested the impact of removing 

Table 2  Batched datasets used in this work

Samples in each dataset have been filtered to remove factors that could bias batch effect evaluation

Dataset Authors Tissue Disease n samples n groups n batches Sample 
filtering

GSE120099 Lo Sardo et al. 
[24]

Vascular 
smooth mus‑
cle cells

Cardiovascu‑
lar diseases

29 2 3 Only WT cells

GSE61491 Sugathan 
et al. [25]

Neural pro‑
genitor cells

Memory 
disorders

54 2 (3) 2 No

GSE82177 Wijetunga 
et al. [26]

Liver Carcinoma, 
hepatocel‑
lular

27 3 2 No

GSE117970 Cassetta et al. 
[27]

Breast Breast neo‑
plasms

53 3 5 Only breast 
related 
samples

GSE173078 Hyunijin Kim 
et al. [28]

Periodontium Periodontitis, 
gingivitis

36 3 2 No

GSE162760 Farias et al. 
[29]

Whole blood Leishmania‑
sis, cutaneous

128 2 6 No

GSE171343 Bowles et al. 
[30]

IPSC derived 
cerebral 
organoids

Dementia 36 3 3 Only of one 
Type: GIH-
6-C1-(delta)
A02

GSE153380 Alvarez-
Benayas et al. 
[31]

Primary 
plasma—and 
myeloma 
cells

Muliple 
myeloma

33 2 3 Only primary 
cells

GSE163214 Procida et al. 
[32]

HeLa Kyoto 
cell line

None 10 2 2 No

GSE182440 Lim et al. [33] Brain Alcoholism 24 2 2 No

GSE163857 Moser et al. 
[34]

Microglia 24 3 2 Only human 
samples

GSE144736 Roth et al. 
[35]

iPSC-derived 
patient neu‑
roepithelium

Microcephaly 52 3 2 No
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outliers according to Plow as well as the combination of all correction methods and 
outlier removal. Outliers removed according to batch correction were identified by 
the uncorrected PCA as well as the PCA with correction by the true batch. If a sam-
ple or a small group of samples was clearly skewing the clustering it was removed. 
The same was done for the Plow correction, with the help of the bar plot showing Plow 
values by samples (a sudden increase in high values was considered as a potential 
threshold to identify outliers). For the combination of all outliers, the outliers of Plow 
were used, since they always contained the outliers used for the batch correction and 
normal PCA. To have a metric of evaluation for these plots, we used the clusterstats 
function from the fpc package and employed the wbratio, pearsongamma and dunn1 
statistics [22].

The dunn statistic considers the ratio of the minimum separation of all clusters by the 
maximum diameter of all clusters. That makes it a worst-case indicator, since it shows 
the smallest index, even if some of the clusters are well defined and only one cluster is 
scattered.

The pearsongamma is the correlation between distances and a 0–1-vector in which 
0 indicates the same cluster, while 1 indicates a different cluster. It is derived from the 
Normalized gamma of Halkidi et al. [23].

The wbratio is the average distance within the clusters divided by the average distance 
between the clusters. While the other two metrics increase with clustering improve-
ment, wbratio decreases.

In Table 1 we give a manual evaluation of the PCA plots: “comparable” means that a 
correction with Plow (either with or without outliers) worked similarly to a batch cor-
rection (with or without outliers, respectively). The same information is given for the 
combination of both corrections, but the reference is then the best overall PCA plot. 
One main point considered was the change of the grouping of the clusters from the 
second to the first principal component and if the groups clustered together. Espe-
cially a widely scattered cluster which can often be found with cancer versus normal 
tissue would not score high with the metrics used, but it would be easily identified 
at a glance. It is furthermore indicated if the experimental design is poor, good, or 
very good, according to the manual observation of the balance of samples between 
batches. If there is information about confounding factors available, it is also taken 
into account.

We computed a design bias representing the agreement of Plow to biological groups, 
utilizing Pearson gamma or “normalized gamma” [23], to have a positive value between 
zero and one we added one and divided the result by two.

We compared our results with the results of the sva method of the package of the 
same name [9]. We used it according to its documentation and used the biological group 
information and the expression data. Other possible confounding factors were not used.
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