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Background
The righteous introduction of the archaeal domain to the tree of life dates no longer than 
half a century. Since then, a lush path towards discovering new insights in order to ben-
efit archaeal genome annotation arose. The archaeal domain is diverse [1, 2], ranging 
from Earth’s most extreme environments to our guts. Hence, finding a model organism 
that represents the whole expanse of this domain is rather a simple-minded and reduc-
tionist task. At least 13 families in the archaea phylogenetic tree might be spotted, which 
have huge dissimilarities both in their genetic and phenotype setting [3, 4], as well as ele-
ments that orchestrate the cell necessities.

Single cell organisms rely on finely regulated cellular processes. The production of 
the right nutrient at the right moment grants the cell survivability. Instances of these 
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processes include the transcription of an RNA molecule. This mid-step operation is 
carried out by the RNAP enzyme and configures a central process in the genetic infor-
mation flux across all domains. The way the transcription occurs in archaea roughly 
resembles the eukaryotes  [5]. In fact, these two domains are evolutionary siblings and 
archaea might have given origin to eukarya [6]. The overall structure of this process in 
these two domains presents a certain level of conservation. Indeed, the eukaryotic model 
poses as a more specialized version of its archaeal counterpart. For instance, while 
archaea employs a single RNAP to transcribe all genes, animals and plants make use of 
three and five different enzymes, respectively [7, 8].

The recruitment of RNAP to the DNA is mediated by a DNA segment defined as a 
promoter sequence whose presence is necessary for the initiation of the transcription. 
The typical archaeal promoter element possesses three basal transcription factor bind-
ing sites. These additional proteins are TATA-box Binding Protein (TBP), Transcrip-
tion Factor B (TFB), and Transcription Factor E (TFE) and they are needed for correctly 
directing RNAP to its precise site of action [9]. On a nucleic acid level, these proteins 
bind to: (i) a wTTATwww set of nucleotides, located at − 25, matching the TBP binding 
site, where w means A or T in the IUPAC code; (ii) an ssnAA sequence located around 
two nucleotides upstream TATA and a TAC sequence located in the range of − 1/ − 10, 
due to its two-extremity binding, TFB stabilizes TBP and the two combined create the 
Pre Initiation Complex (PIC), where s means C or G and n means any nucleotide in the 
IUPAC code; (iii) a TFE protein has the function of assisting PIC formation, hence, its 
binding preference varies according to the promoter and organism [9, 10].

The conservation found around the binding site of transcription factor proteins in the 
archaeal genome might be used as input in a way that the recognition of these regula-
tors is able to provide a more reliable annotation. The promoter prediction task is well 
developed in other branches of life than archaea. Such tools have succeeded in classify-
ing these regulators in eukarya and bacteria. However, due to the particularities archaea 
have, a universal promoter classifier is an open scientific question.

In this work, we systematically locate the potential promoters of unannotated archaea 
by using their structural properties in comparison to random and sequences where no 
promoters have been identified. To do so, the well-conserved nature of archaeal promot-
ers is employed and stressed.

Materials and methods
Promoter sequences

A total of 3630 experimentally validated promoters of three different archaea were 
employed in this study: 1340 sequences of Haloferax volcanii, 1048 sequences of Sul-
folobus solfataricus, and 1248 sequences of Thermococcus kodakarensis. These are model 
organisms in the Euryarchaea and TACK superphylum. These organisms were selected 
because there is available transcriptome information, which enables the extraction of 
promoter sequences associated with a given transcript.

The original data contains 1001 nucleotides per sequence with their Transcription 
Start Sites (TSS) mapped. Only primary TSS (pTSS) from the published transcrip-
tomic data was considered. Next, a sub-sequence containing 100 nucleotides, i.e. − 80 
to + 20 was extracted. This region comprises the reported core promoter in H. volcanii 
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and S. solfataricus [11, 12] and it has been reported as sufficient to initiate transcription 
in archaea [12]. Furthermore, the precise location of these organisms’ promoters was 
reported to be located in the proposed range [12–16]. Annotations and lists of the pro-
moters used in this study are available at https://​zenodo.​org/​record/​51375​51.

Control datasets

The classification methods of this study were stressed with three forms of control. 
First, we, through a self-developed Python script, shuffled the 100-nucleotides original 
sequences. A second control dataset was used by selecting the downstream sequences 
from + 21 to + 121. By this, we wanted to test the validity of our method by assessing 
sequences that do not indicate promoter activity nor have a TATA-box; and finally, we 
performed a second method for shuffling sequences, proposed by [17]; i.e., we divided 
the 100 nucleotide sequences into 20 blocks of 5 nucleotides each, then, we shuffled 12 
of the blocks. By doing this, the consensual motifs such as TATA-boxes might be pre-
served in a way that our identification method is tensioned.

Structural parametrization

The totality of the sequences of this study (promoters and controls) were submitted 
through a structural coding in order to represent genetic information into numeric 
attributes. This representation captures specific sequence properties associated with 
regulatory regions such as promoters [18]. The parameter chosen for this study is DNA 
Duplex Stability (DDS). This feature has been employed as a way to represent the rich-
ness of GC base-pairs due to their extra hydrogen bond [19–23]. In this regard, Eq. 1 was 
used to calculate the DNA duplexes reported in [21]. It hinges on the assignment of a 
numeric attribute in sliding dinucleotide windows.

Classification through a statistical approach

Firstly, position-specific slices of 8 nucleotides (6 nucleotides matching the TATA-box, a 
spacer of 2 nucleotides, and 2 nucleotides comprising the BRE element) were extracted 
and averaged in each dataset (promoters, and three controls). Then, an interval was set 
ranging from the plus and minus values of the standard deviation formed upon the pro-
moter dataset (Eq. 2).

Finally, a sequence was labeled as a promoter if its TATA + BRE nucleotides belongs to 
the range of Interval . Otherwise, it was classified as a non-promoter. A visual represen-
tation of the statistical method for classifying archaeal promoter sequences is available 
at: https://​doi.​org/​10.​5281/​zenodo.​51541​10.

Classification through an artificial neural network approach

In order to validate the simulation process, a k-fold-cross validation method was consid-
ered, where k = 10. This method involves in reserving 1/10 of the dataset to be used in the 

(1)G = �0
i,i+1

(2)Interval = xpromoter ± σpromoter

https://zenodo.org/record/5137551
https://doi.org/10.5281/zenodo.5154110
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testing. The training is done with the remaining 9/10 shares. This grants that any biased 
data point gets covered. The validation process was done following the sample method in 
R [24].

Artificial Neural Network (ANN) simulations took place in the R environment through 
the neuralnet package [25]. The algorithm chosen to fit the ANN was the resilient back-
propagation, since it has already succeeded in classifying genomic data [26]. The number 
of neurons in the hidden layer was set to 2 since a too complex curve to fit data points 
might be seen as a non-productive decision in machine learning [27]. The number of 
iterations over the training dataset, i.e. epochs, was increased until the validation and 
training errors kept dropping [28]. Finally, the maximum number of steps the ANN was 
allowed to reach until convergence was 200,000 as an attempt to balance computational 
costs. The R script that performed the ANN simulation is available at https://​github.​
com/​gusta​vsgan​zerla/​ANN---​Archa​eal-​class​ifica​tion.​git.

Assessment of classification

A binary classification might get assessed through an error matrix with predicted and 
actual values of a classification; this enables the performance of a classification technique 
to be evaluated. The elements that compose the matrix belong to two classes, positives 
and negatives and they are: True Positives (TPs), which correspond to the number of 
elements of a d class correctly predicted as a member of d class; True Negatives (TNs), 
which are elements that do not belong to a d class and have been assigned as non-d 
class; False positives (FPs), which comprises a member of d class classified as a non-d 
class; and False negatives (FNs), which encompasses members that do not belong to a d 
class and have been assigned as d class. With the error matrix, it is possible to calculate 
performance metrics of a binary classification.

The first metric is Accuracy (Eq. 3), which measures the proportion of correct predic-
tions in the whole dataset (both TPs and TNs).

The second metric is Precision that verifies how many of the observations predicted as 
positive are actually positive and it is calculated through Eq. 4.

Next, Recall, which assesses how many of the TPs are actual TPs, is obtained through 
Eq. 5.

Finally, Specificity that calculates the detection rate of TNs throughout the entire data-
set. It is obtained by Eq. 6.

(3)Accuracy =
(TP + TN

(TP + TN + FP + FN )

(4)Precision =
TP

(TP + FP)

(5)Recall =
TP

(TP + FN )

(6)Specificity =
TN

(TN + FP)

https://github.com/gustavsganzerla/ANN---Archaeal-classification.git
https://github.com/gustavsganzerla/ANN---Archaeal-classification.git
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Validation of the methods

To provide a validation for the methods proposed in this study, upstream sequences 
whose promoter activity has not been experimentally described yet, were downloaded 
from the RSAT prokaryotic database (http://​embnet.​ccg.​unam.​mx/​rsat/) in its Sep 
23 12:30:06 2021 version. The database contains upstream regions for 211 archaeal 
organisms. Two archaeal genomes, Aciduliprofundum boonei (741 sequences of 400 
nucleotides each) and Thermofilum pendens (1926 sequences of 400 nucleotides each) 
exhibited a promoter-like profile in a previous study [29], i.e. the codification into DDS 
of upstream regions was found to be statistically similar to experimentally validated 
promoters, indicating that these particular upstream regions might contain promoters. 
Therefore, 400 nucleotides sequences got their TATA-box and TFB sites extracted. The 
nonparametric Kruskal Wallis test was employed to determine if the groups of exper-
imental and potential promoters hold statistical differences. Finally, lists of annotated 
potential promoters of these two organisms are provided. A flowchart describing the 
classification method and the validation of the findings is described in Fig. 1.

Results and discussions
DNA duplex stability parametrized archaeal promoters differ from control sequences

In order for getting the binding sites of transcription factor proteins represented 
by numeric inputs, genetic information was coded into DDS. Promoter sequences 
have already been well represented by DDS [19]. Concerning the coding of genetic 
information into DDS as well as locating areas of interest for turning promoters 
unmatched, Fig. 2 has been provided. The plotting of promoter sequences and their 
negative controls reveal that the binding site of transcription factor proteins is only 

Fig. 1  Overview of the classification rationale employed in this study. The figure is divided into i, ii, iii (train) 
and iv (test). (i) represents the conversion of genetic information into numeric attributes related to DDS, 
which is used as input of two classification methods. (ii) matches the Artificial Neural Network phase of 
classification; (iii) conveys information of how the classification was achieved through statistics. Both ii and iii 
were performed with experimentally verified promoters. Finally, the test, (iv) represents the validation process 
with upstream sequences whose promoters have not been identified yet. Each sequence undergoes through 
i, ii, and iii; then, the final decision is computed whether the sequence is a promoter or not

http://embnet.ccg.unam.mx/rsat/
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found within promoters; these areas are observed in the promoter line, around posi-
tions − 28, − 32, and in the range of − 10 to + 1.

The initiation of transcription in archaea has been reported to need two tran-
scription factor proteins: a TBP and a TFB, homolog to eukaryotic TFIIB [7, 10]. 
Additionally, a second strong signal was observed around positions − 10 and + 1, 
matching the Proximal Promoter Element. This area consists of the binding site of 
a protein namely TFE, which has been reported to optimize the transcription in 
archaea by stabilizing the formation of a PIC [30]. Considering these organisms have 
limited genomes and need to have their metabolic demands matched in order to 
thrive, the presence of transcription optimizer proteins such as TFE plays a pivotal 
role in the gene expression.

Next, we have observed conserved binding sites of promoter recruitment tran-
scription factor proteins in archaea with varied GC content (H. volcanii = 66.13%, T. 
kodakarensis = 50.67%, and S. solfataricus = 34.48%), More GC would indicate less 
potential binding sites for such proteins, as reported in [29]. However, our ration-
ale has been able to find the binding site despite the amount of GC in a particular 
archaeon, Therefore, the binding site of these three proteins are clear in the plots 
representing the promoters in all organisms, suggesting that DDS succeeded in well 
representing promoter elements in archaea.

Fig. 2  Signal comparison between promoters and controls in three archaea. The core promoter region 
(− 80 to + 20) of three archaea were extracted and converted into DNA Duplex Stability. The three archaea 
explored in this study have each a separate panel (H. volcanii, S. solfataricus, and T. kodakarensis). Moreover, 
a reference panel (Reference) is provided, in which the binding site of the proteins TBP (TATA-box), TFB (BRE 
element), and TFE (proximal promoter element) are depicted. The peaks in DDS of the three organisms match 
the binding sites of the aforementioned proteins
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Statistical classification succeeds in the distinction of promoter sequences

In order to promote a classification method, the mean values of TATA + BRE sites of 
promoter sequences as well as three levels of control were converted into DDS. For each 
observation, the average of the promoter sequence differs from the three levels of con-
trol, where the closer from the promoter score is the shuffled sequence, followed by the 
downstream, and finally, the block shuffling process (Table 1).

The dissimilarity observed in the promoters and the three forms of controls in Table 1 
enables the statistical form of classification proposed in this study. The promoter inter-
val was ranged and all the sequences got their data classified into promoter or non-
promoter. The results were then computed on an error matrix (Table  2), from which 
the precision value remains the same in every organism against their controls, since its 
calculation relies on positive values. The assessment of Table 2 indicates a higher recall 
value. The most satisfactory scores were achieved by the block form of control whilst 
the last was found in shuffled sequences, with the exception of S. solfataricus, in which 
downstream drags behind shuffled.

The statistical method of classification reported in this study has proven satisfactory 
in a way that it did not employ techniques encompassing machine learning. Firstly, 
the lower Precision value in the method suggests the model classified too many False 
Positives, this means non-promoters were classified as promoters in some instances. 
A reason for this to happen is the diversification found in archaea [2] and the dis-
similarity in owning conserved binding sites [29]. Secondly, the most fine counts were 
achieved in the block form of control, matching the identification of Table 1, in which 

Table 1  Flagships of archaeal classification based on statistics

The results displayed in Table 1 have information on the averaged values of the region encompassing TBP and TFB (BRE 
extremity) for four datasets: (i) experimentally verified promoters; (ii) control done in blocks; (iii) downstream sequences as 
control and; (iv) control with shuffled sequences. The standard deviation for the average of the promoters is also provided

Promoters Standard 
deviation

Blocks Downstream Shuffled

H. volcanii − 8.36 ± 1.15 − 11.66 − 11.44 − 10.66

S. solfataricus − 6.72 ± 0.85 − 8.87 − 8.58 − 8.73

T. kodakarensis − 7.13 ± 0.93 − 10.16 − 10.07 − 9.28

Table 2  Results of the statistical method of classification

Performance metrics derived from a confusion matrix. The precision value was found the same in each organism due to the 
first class (promoters) not changing with new forms of control

Accuracy (%) Precision (%) Recall (%) Specificity (%)

H. volcanii Blocks 79.13 67.81 87.64 73.76

Downstream 78.76 67.81 86.8 73.6

Shuffled 72.04 67.81 74.06 70.33

S. solfataricus Blocks 78.55 77.44 79.19 77.93

Downstream 78.22 77.44 78.65 77.8

Shuffled 78.55 77.44 79.19 77.93

T. kodakarensis Blocks 81.37 70.11 90.48 75.6

Downstream 81.16 70.11 90.02 75.52

Shuffled 74.63 70.11 77.09 72.59
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the means of the blocks are the furthest from the promoters. Additionally, the method 
has presented satisfactory scores regarding recall, a metric that is sensible towards 
False Negatives. This phenomenon is explained due to the transcription machinery of 
different archaea being quite similar. If a sequence that lacks conserved binding sites 
of TBP and TFB, it is very unlikely to be classified as an archaeal promoter.

The stress of the statistical model, brought by an inter-archaea classification 
(Table 3), similarities have been found in S. solfataricus and T. kodakarensis, confirm-
ing what was proposed by Takemasa et al. [31] in order to turn T. kodakarensis and S. 
solfataricus as regulatory chassis for hyperthermophilic archaea. These two particular 
organisms were reported to be similar in terms of their AT% throughout the genome 
[29], while H. volcanii has higher GC. We found the nucleotide composition directly 
affects the classification outcome, since it relies on conserved binding sites of tran-
scription factor proteins.

Statistics has been proved as an adequate way to classify promoter sequences of 
archaea. This method is highlighted to its ease to implement, since it does not require 
extensive computational costs. Indeed, descriptive statistics is seen as a precursor of 
machine learning in classificatory nature [32].

Artificial Neural Network conveys a sturdier classification

In order to achieve more robust classification scores, ANNs were used. In the ANN 
simulation, the architecture that protruded satisfactory scores follows: (i) seven neu-
rons in the input layer; (ii) two neurons in the hidden layer, and; (iii) one neuron in 
the output layer. Table 4 indicates the results achieved by the ANN simulation, with a 
default tradeoff value of 0.5 in computing the output of the model. The four parame-
ters tested in the classification (Accuracy, Precision, Recall, and Specificity) are evenly 
spread among different forms of control. For a mean of the three forms of control 
against each classification parameter, please see Additional file 1: Table S1, in which 

Table 3  Results of the inter-organism statistical method of classification

The classification rationale (formed upon the interval of mean ± standard deviation) was tested in different organisms. The 
results displayed in each cell have information of the averaged results of the three forms of control. The test of an archaeon 
with its own rationale for statistical classification was omitted, for it, see Table 2

H. volcanii S. solfataricus T. kodakarensis

H. volcanii Accuracy (%) – 61.68 68.92

Precision (%) – 24.7 40.89

Recall (%) – 90.05 93.34

Specificity (%) – 56.71 62.11

S. solfataricus Accuracy (%) 32.17 – 78.44

Precision (%) 21.78 – 77.44

Recall (%) 27.51 – 79.01

Specificity (%) 35.23 – 77.88

T. kodakarensis Accuracy (%) 50.47 82.9 –

Precision (%) 40.62 72.43 –

Recall (%) 50.99 91.86 –

Specificity (%) 50.21 77.17 –
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the results of the four metrics are equidistant. Furthermore, the behavior of the ANN 
model was tested with different tradeoff values through a ROC (Receiver Operator 
Characteristic) curve, presented in Fig. 3.

A second application of ANNs was conducted to evaluate if the pattern of one 
archaeon might be employed to classify another. Following this rationale, a new simu-
lation was achieved in which the ANN was trained with one organism and tested with 

Table 4  Results of the ANN-based classification

Each cell of this table contains the performance achieved by the best epoch for weight updating across the training 
dataset, i. e. the epochs were no longer increased when the convergence error became stable. For more details on the 
ANN simulation, see "Classification through an artificial neural network approach" and "Artificial Neural Network conveys a 
sturdier classification" sections

Accuracy (%) Precision (%) Recall (%) Specificity (%)

H. volcanii Blocks 92.48 93.05 92.03 92.96

Downstream 91.08 90.67 91.45 90.77

Shuffled 84.55 84.86 84.27 84.94

S. solfataricus Blocks 89.03 91.43 87.01 91.18

Downstream 87.36 86.93 88.23 86.48

Shuffled 86.63 84.56 88.27 85.17

T. kodakarensis Blocks 94.96 93.39 96.21 93.83

Downstream 91.35 91.69 91.31 91.46

Shuffled 86.46 84.1 89.12 84.36

Fig. 3  ROC curves for the best ANN simulation in each archaeon. Once the best architecture for classifying 
archaea (each organism is presented in a separate panel) with neural networks was defined, the classification 
threshold was adjusted to produce ROC curves. The default output neuron yields a value and if it’s bigger 
than 0.5, it gets classified as a promoter, otherwise, it is classified as a non-promoter. Each tick in the ROC 
curves represents an adjusted decision threshold, varying from 0 (x axis = 0, y axis = 0) to 1 (x axis = 1, y 
axis = 1)
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another. The results of this new simulation are available in Table 5, from which there is 
a leaning towards S. solfataricus and T. kodakarensis. The H. volcanii logistics produced 
classification results far distant from each other (e.g. from 60.87% recall to 96.23% speci-
ficity in a crossing of S. solfataricus and H. volcanii).

The results brought by the ANN classification suggest the model succeeded in clas-
sifying archaeal promoters, distinguishing them from three variations of control. In fact, 
this machine learning approach has succeeded in encountering promoters [17, 22, 23]. 
An implementation of similar nature was performed in [23] through the classification of 
bacterial promoters. The results obtained in this present study outperformed the bacte-
rial classification because of the structure of the archaeal promoter in comparison to 
bacteria, which contains sigma factor proteins to direct RNAP to specific sites.

By outshining the statistical classification, the mathematical robustness of the ANN 
method [33] has proven uneven. Also, the rationale found in such method has matched 
the statistical classification, but overcame it. A good indicator to observe prediction 
validity is brought by ROC curves, which plots the specificity cost in gaining more recall 
[34]. The most evident characteristics are observed in the block control, which is found 
in the upper left corner of the plotting areas, confirming what the statistical analysis has 
found and validating the findings of Table 4 and Additional file 1: Table S1. The evenly 
spread scores (not fluctuating more than 1% in the metrics of each archaeon) certify the 
success of classification of ANN, suggesting the conservation protruded by a DDS codi-
fication of transcription factor binding sites has sufficiently turned promoter sequences 
unique.

The verification of inter-organism rationale of classification has evidenced that S. sol-
fataricus and T. kodakarensis share similarities, evidenced by the acceptable classifica-
tion scores between these two archaea. The high values of recall observed in H. volcanii 
vs. S. solfataricus and T. kodakarensis suggest that very few False Positives were identi-
fied, meaning that it was rare for the model to incorrectly classify H. volcanii promot-
ers, this is due to the divergent amount of GC in this organism, reported in [29]. The 

Table 5  Results of the inter-organism ANN method of classification

In this classification, the architecture that was trained with data of one archaeon and its controls was tested with other 
organisms and their controls. The results displayed in each cell have information of the averaged results of the three forms 
of control. The testing data of an archaeon with its own ANN architecture was omitted, for it, see Table 3

H. volcanii S. solfataricus T. kodakarensis

H. volcanii Accuracy (%) – 70.63 81.61

Precision (%) – 41.75 66.56

Recall (%) – 95.95 94.68

Specificity (%) – 63.89 74.72

S. solfataricus Accuracy (%) 66.51 – 86.46

Precision (%) 98.89 – 95.45

Recall (%) 60.87 – 81.04

Specificity (%) 96.23 – 94.42

T. kodakarensis Accuracy (%) 75.42 82.48 –

Precision (%) 97.52 71.56 –

Recall (%) 68.9 91.48 –

Specificity (%) 94.34 77.01 –
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bumpy results of precision in H. volcanii and S. solfataricus (and vice-versa) shows that 
the S. solfataricus model correctly identified non-promoters of the H. volcanii dataset, 
meaning the model correctly identifies promoters with conserved binding sites. How-
ever, the H. volcanii ANN architecture failed in classifying non promoters of the S. solfa-
taricus dataset, indicating that the rationale of classification of this halophilic archaeon 
only performs well with organisms with higher GC%. In general terms, due to the higher 
amount of GC in H. volcanii and consequently, less conserved binding sites of transcrip-
tion factors, the promoter sequences of this organism are unparalleled.

ANNs and statistics employed in finding potential archaeal promoters

Upstream regions of Aciduliprofundum boonei and Thermofilum pendens were selected 
in order to extract potential promoters from. The statistical and ANN models found in 
S. solfataricus and T. kodakarensis were employed in the validation dataset. H. volca-
nii was left out due to its unparalleled AT content; such inclusion would have jeopard-
ized the validation. An upstream region was considered as a promoter if the statistics of 
S. solfataricus and T. kodakarensis and the ANN of S. solfataricus and T. kodakarensis 
flagged the given sequence as a promoter. From the 742 and 1927 sequences from A. 
boonei and T. pendens, respectively, the method encountered 145 promoters of the Eur-
yarchaea and 243 promoters of the Crenarchaea. The lists containing sequence ID, the 
nucleotide sequences, and functional annotation are available at https://​doi.​org/​10.​5281/​
zenodo.​57293​08.

To validate the newly identified promoters, they have been compared with experimen-
tally verified promoters. In this sense, Fig. 3 holds information of the DDS profile of A. 
boonei and T. pendens as well as the other three archaea. In Fig. 4, there is a conserved 

Fig. 4  Comparison of physical profiles in annotated vs unannotated archaea. A promoter segment (− 80 to 
0) was extracted from the organisms: H. volcanii, S. solfataricus, T. kodakarensis, A. boonei, and T. pendens and 
converted into DNA Duplex Stability. The last two are derived upon upstream sequences of the organisms, 
hence, no annonnation regarding promoters is available. The observed peaks of the validated promoters 
match the unannotated ones

https://doi.org/10.5281/zenodo.5729308
https://doi.org/10.5281/zenodo.5729308
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region in the binding site of TBP, TFB and TFE proteins for all observations. A statistical 
analysis of the slice − 40 to − 1 of Fig. 2 was provided in Fig. 5, from which unannotated 
promoters of A. boonei resemble the averages of S. solfataricus, while T. pendens match 
T. kodakarensis. The whole analysis of the datasets present a p = 3.241^ − 14.

The method proposed in this study was able to hand in regulatory annotation upon the 
genomes of A. boonei and T. pendens. To do so, we systematically characterized promot-
ers from well-known archaea [29] and systematically used the algorithmized informa-
tion in order to locate promoters in unannotated upstream regions of these organisms.

Many factors such as the diversity of archaea and their relatively recent discovery cre-
ates the need for high quality genome annotation. This is the moment when in-silico 
approaches provide help to experimental biology by curating data [20]. The boxplots 
portrayed in Fig. 5 showed two groups of organisms. No taxonomic inferences, i.e., box-
plots with similar averages, could be made upon these since T. kodakarensis and A. boo-
nei are Euryarchaea while S. solfataricus and T. pendens belong to the Crenarchaeota 
division, the statistical resemblance of these organisms requires further analysis. We also 
suggest using the model of H. volcanii in order to locate promoters in archaea that have 
high GC content. The statistical similarity found between verified and potential promot-
ers advocate the robustness of the method proposed.

Concluding remarks
The results gathered in this study reveal the classification of promoter sequences in 
archaea susceptible to the percentage of GC in specific organisms. Moreover, the classi-
fication indicates a novel way of predicting promoter sequences in unannotated archaeal 
genomes through a combination of artificial neural networks and statistics. In this 

Fig. 5  Boxplots of promoter sequences of five different archaea. Promoter sequences from five archaea were 
converted into DDS. Each position (− 80 to 0) had its value averaged to produce the boxplots. H. volcanii has 
been placed apart from the other organisms due to its higher GC content. Groups of promoters consisting of 
A. boonei and S. solfataricus and T. pendens and T. kodakarensis were observed
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regard, the structural parametrization of genetic information has been able to locate key 
areas within upstream regions, successfully classified in A. boonei and T. pendens.

Supplementary Information
The online version contains supplementary material available at https://​doi.​org/​10.​1186/​s12859-​022-​04714-x.

Additional file 1: Table S1. The following table contains the performance metrics of the ANN classificatory 
approach of three archaea with the three forms of control implemented in this study. The three controls have been 
averaged to present a single value/metric.
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