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Introduction
In shotgun proteomics, peptide-spectrum match (PSM) rescoring is a process of evalu-
ating confidence of PSMs obtained through database search. Database search uses simi-
larities between tandem mass (MS/MS) spectra produced by a mass spectrometry (MS) 
instrument and theoretical spectra of peptides in the sequence database, as a measure 
[1]. However, the peptide assignments are often incorrect because MS/MS spectra are 
deficient due to noise or missing ion peaks [2] and also because MS/MS spectra are 
sometimes generated from non-peptide species and modified peptides not present in 
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the search database. It has been a critical step to evaluate whether the peptide assign-
ments to spectra are correct.

In the last 20 years, various PSM rescoring algorithms have been developed for con-
fident peptide identification, such as heuristic based H-score [3] and tailor [4], prob-
ability model-based Peppy [5], and machine learning (ML)-based Scavanger [6], 
PeptideProphet [7], Percolator-related tools [8–12] and Qranker [13]. The ML-based 
PSM rescoring methods can be grouped according to their tool-dependency and data-
dependency. The rescoring algorithms are considered tool-dependent, if they use tool-
specific optimal feature sets for model learning. Tool-independent models use universal 
feature sets regardless of the database search tools of choice. On the other hand, we call 
the tools data-dependent when the ML based models for PSM rescoring are dynamically 
learned from individual input search results. If the ML models were trained in advance 
and fixed (i.e., not trained over an individual dataset), we call them data-independent.

According to such classification, PeptideProphet [2, 7, 14, 15], the first ML based PSM 
rescoring method, is tool-dependent and semi data-independent. It calculates a discri-
minant score for each PSM based on pre-learned parameters, and fits target-decoy score 
distribution to a mixture model by Expectation–Maximization (EM) algorithm [16]. 
From the fitted mixture model, a probability that a PSM is correct is assigned to each 
PSM. We call it tool-dependent because the discriminant score was calculated using 
tool-specific features and pre-learned coefficients (weights). For instance, the features 
for Comet search results contained XCorr, delta Cn, Sp score, and Sp rank, which were 
Comet-specific features and were not adopted when applying PeptideProphet to other 
database search tools. In addition, the distribution of discriminant scores is fitted to dif-
ferent mixture models depending on the database search tool. For instance, a normal-
gamma mixture model is assumed for Comet, and a normal-gumbel mixture model is 
hypothesized for MSFragger. As for data-dependency, we define the PeptideProphet 
as semi data-independent. In some sense, it is data-independent because discriminant 
scores are calculated using pre-learned weights and the hypotheses for mixture models 
remain the same for given database search tools. However, PeptideProphet dynamically 
learns the parameters of mixture model from an individual input dataset, so it can also 
be considered data-dependent at the same time. The pre-learned and pre-determined 
discriminant score calculation or the mixture model hypotheses may not properly cap-
ture the characteristics of each MS/MS dataset, which can be affected by external factors 
such as instruments, fragmentation methods, and collision energy.

The second group adopts tool-dependent and data-dependent models to overcome 
the bias of pre-trained models. The tools in this group are gradient boosting-based 
Scavager [6], and support vector machine-based Percolator-related tools (Percolator 
[8], MS-GF + Percolator [12], Mascot Percolator [17], X!Tandem Percolator [10, 11], 
OMSSA Percolator [9], speed-up version of Percolator [18]) and Qranker [13]. Among 
them, the most widely used tool is Percolator. To eliminate the potential bias caused by 
various external factors, Percolator learns a data-dependent model for each input exper-
iment: a linear SVM [19] model is trained iteratively. The resulting SVM model outputs 
a new score for each PSM by combing various PSM features, together with the original 
scores provided by the search tool. Percolator constructed a data-dependent model by 
utilizing labels from the target-decoy search [20] (TD), while the learning was conducted 
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with target PSMs identified at 1% FDR (false discovery rate) as a positive training set and 
decoy PSMs as negative. For the initial training set, FDR is estimated based on the match 
score provided by the database search tool. From the second iteration on, FDR is esti-
mated using the new PSM score calculated by the learned SVM model from the previous 
iteration. In order to yield a stable PSM identification set containing a maximal number 
of true positive hits, Percolator runs up to ten iterations by default. Though it yields the 
significant improvement in the number of peptide identifications by generating a data-
dependent model for each experiment, applicable database search tools have been lim-
ited because Percolator used different features depending on database search tools.

Here, we propose a new PSM rescoring tool, called TIDD (Tool-Independent and 
Data-Dependent PSM rescoring), that can be applied to validate any database search 
results. For tool-independence, TIDD calculates 25 universal features to characterize 
PSMs resulting from any database search. For data-dependence, it performs learning 
and prediction based on the iterative SVM training in the same way as Percolator. TIDD 
performance was evaluated using two types of database search. The first type is a stand-
ard search with a few number of variable modifications, by three publicly available tools, 
Comet [21], MS-GF +  [22], and MSFragger [23]. Search results of 11 cell line datasets 
and high throughput HEK293 dataset were compared. When compared with Percola-
tor, TIDD gave the increase in the number of identifications by 6.36% for Comet search 
results of the 12 human cell line datasets. In addition, TIDD identified 16.13–38.95% 
more PSMs than target-decoy estimation for MSFragger search results. The second type 
is a modification search. In the analysis of the phosphorylation enriched dataset using 
Comet, TIDD resulted in 13.68% and 2.79% improvement compared to TD and Perco-
lator respectively. When TIDD was applied to the MODplus result searched with 946 
variable modifications, TIDD also identified 10.23% and 2.05% more PSMs than TD 
and the validation results supported by MODplus respectively. We showed that TIDD 
performance was comparable to or better than those of existing rescoring tools without 
using any tool-specific match scores while TIDD could be applied to validate database 
search results. TIDD does not ensure the optimal validation of open mass search results 
and all the analyses in this study were conducted for closed searches using a tight mass 
tolerance for precursor ions. We also want to emphasize a special function of TIDD 
that allows users to directly add PSM features for rescoring, i.e., users can develop their 
own rescoring models for any search tool. TIDD offers graphical user interfaces for easy 
access to such functions.

Experimental procedures
Human cell line data sets

We used two types of human cell line data sets. The first type is global profiling data-
sets—11 human cell line datasets and HEK293 dataset. 11 human cell line data sets 
(PRIDE ID: PXD002395) was studied by Geiger and colleagues, acquired using an LTQ-
Orbitrap Velos mass spectrometer (Thermo Fisher Scientific) coupled with high perfor-
mance liquid chromatography (HPLC). The MS/MS scans obtained from 11 human cell 
lysates—A549, HEK293, GAMG, HeLa, HepG2, Jurkat, K562, MCF7, RKO, and U2OS 
cells, were composed of 136,309, 148,800, 152,777, 159,455, 149,974, 160,225, 167,429, 
174,709, 164,317, 161,334, and 165,271 scans respectively. The second data set was 
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high-throughput HEK293 data, composed of 1,121,149 scans generated by a Q-Exactive 
Orbitrap mass spectrometer [24] (PRIDE ID: PXD001468). The second type is the phos-
phorylation enrichment dataset. We used the human epithelial cervix carcinoma Hela 
cells (female), which was studied by Bekker-Jensen and colleagues [25]. The Hela phos-
phorylation data were analyzed on an EASY-nLC 1000 coupled to a Q-Exactive HF 
instrument (Thermo Fisher Scientific), coupled with a high pH reversed-phase HPLC 
fraction. The number of MS/MS spectra obtained from the Hela dataset was 362,356.

Standard search

All the MS/MS spectra were searched against a target-decoy protein database, which 
consisted of 42,258 SwissProt human protein (ver. 2017/12) sequences, 179 common 
contaminants and their pseudo-reversed sequences. To see the PSM rescoring effect 
on database search tools, we searched MS/MS spectra using 3 database search tools—
Comet (v2017013) [21], MS-GF + (v9969) [22], and MSFragger (v20171106) [23] with 
the following parameters. 20 ppm (or 5 ppm) precursor mass tolerance, 0.02 (or 0.01) 
fragment mass bin tolerance, 13C isotope error, and up to 2 missed cleavage sites, one 
fixed modification (Carbamidomethyl at Cys) and one variable modifications (Oxida-
tion at Met) were set for 11 cell line (or HEK293) Comet search. For the MS-GF +, “-t 
20 ppm -ti -1,2 -tda 0 -m 3 -inst 1 -e 1 -tt 1 -addFeatures 1” and “-t 5 ppm -ti -1,2 -tda 
0 -m 3 -inst 1 -e 1 -tt 1 -addFeatures 1” were used for 11 cell line and HEK293 data-
set respectively, with the same modification settings as Comet. For MSFragger, we did 
a closed search with the parameter set—precursor mass tolerance = 20 ppm, precursor 
true tolerance = 20 ppm, fragment mass tolerance = 0.025 Da, isotope error = 2, num_
enzyme_termini = 1, allowed_missed_cleavage = 2, Carbamidomethl at Cys, and Oxida-
tion at Met modification on 11 cell line dataset. For the HEK293 MSFragger search, we 
changed precursor mass tolerance, precursor true tolerance values to 5 ppm. After the 
database search, we ran Percolator (ver 3.02.0).

Modification search

Two types of modification search were conducted. One is phosphorylation search on 
the Hela phosphorylation enrichment dataset. 362,356 MS/MS spectra were searched 
by Comet against a Uniprot database (v211103), which consists of a total 100, 279 pro-
tein sequences, including 182 contaminants. For Comet search, a set of parameters used 
was as follows: peptide mass tolerance=20ppm, isotope error=2, search_enzyme_num-
ber=2, fully digested, one fixed Carbamidomethyl at Cys, two variable modifications 
(Oxidation at Met and Phosphorylation at Ser, Thr, and Tyr). After the Comet search, we 
ran Percolator (ver 3.02.0). The other search is for modification search on HEK293 data-
set. MODplus search was conducted with exactly the same parameters as in S. Na et al. 
[26]: 13C isotope errors of − 1, 0, +1, and +2 in precursor ions, fully/partially tryptic 
peptides of arbitrary number of missed cleavages, and any number of modifications per 
peptide. The number of considered variable modifications were 946 (Unimod, v201807), 
whose masses were restricted between − 150 and +350 Da. For the database, the Uni-
prot human reference proteome (v201806) was used, which consists of 93,793 proteins.
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TIDD PSM rescoring method

The essential part of the TIDD model is the use of tool-independent features regard-
less of database search tools. To eliminate tool dependency, we use the features about 
fragment ion annotation and cross-correlation score (XCorr) as a PSM score. Note 
that we have directly calculated XCorr as a universal score of a PSM from any search 
tool. The TIDD features, shown in Table 1, can largely be categorized into three types: 
the features about (1) basic PSM information, (2) fragment ion annotation, (3) and 
the overall quality of peptide and spectrum match. We confirmed the discriminatory 
power of these features using the target and decoy hits from A549 dataset, one of the 
11 cell line datasets. The distributions of the top 4 features are shown in Fig. 1 (The 
remaining 20 features’ distributions are shown in Additional file 1: Figures S1 to S3). 
The best distinguishing feature between target and decoy hits was XCorr. Though the 
distributions of these four features are slightly different depending on the search tool, 
it clearly distinguishes target and decoy distributions regardless of database search 
tools.

Based on these features, we trained SVM models iteratively as Percolator. The tar-
get PSMs identified at XCorr-based FDR 1% are used as a positive training set dur-
ing the 1st iteration of SVM learning. From the 2nd iteration on, the learned SVM 
scores were used to estimate FDR and choose positive training instances. As for the 
number of positive and negative training instances, we randomly chose 10,000 tar-
get and 10,000 decoy PSMs as positive and negative training sets, respectively. This 
is based on the previous report [27], which showed that SVM performance did not 
significantly degrade even if only 0.1% of the whole PSMs were used for learning SVM 
models in large scale proteomics experiments containing about 1 million scans.

Table 1  Features used to represent PSMs in TIDD model

Index Name Description

1 XCorr cross correlation between theoretical and experimental spectra

2 delta XCorr difference of XCorr score between rank 1 and 2 (If there’s rank 2 hit)

3 charge vector: 1 to 6 (consider as 6 when the charge is above 6)

4 pepLen the length of stripped peptide sequence

5 tryptic vector: 0 c-term tryptic; 1 n-term tryptic; 2 fully-tryptic

6 #missed cleavage the number of missed cleavages in the peptide sequence

7 precursorM observed mass of spectra

8 massDiff the mass difference between calculated and observed mass

9 -absolutMassDiff the absolute value of the difference between calculated and observed mass

10 calPepM calculated mass of the matched peptide

11–13 sum_intensity_all/y/b logarithm value of sum of intensity of spectra (TIC) / sum of intensity of 
matched y ions (or b ions)

14–15 frac_intensity_y/b the fraction of sum_intensity_y (sum_intensity_b) among sum_intensity_all

16–18 max_intensity_all/y/b logarithm value of maximum intensity of spectra (base peak intensity) / 
maximum intensity of matched y ions (or b ions)

19–20 seq_cover y/b sequence coverage of y ions (or b ions)

21–22 num_consecutive_y/b the number of consecutive y ions (or b ions)

23–24 mean/sd _fragMassErr mean (or standard deviation) values of mass difference distribution between 
fragment ions and theoretical ions

25 #AnnoPeaks the number of annotated peaks
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To evaluate the TIDD performance, we compared TIDD with target-decoy (TD) 
approach and Percolator. The PSMs were identified at 1% FDR using e-value scores for 
TD, q-values for Percolator, and learned SVM scores for TIDD.

Results
TIDD performance over standard search of 11 cell line datasets

The performance of TIDD was compared with those of TD and Percolator. For 11 cell 
line datasets, TD identified 106,198 ± 11,268 for Comet, 108,436 ± 11,833 for MS-GF +, 
and 88,101 ± 10,728 PSMs for MSFragger at 1% FDR (Fig.  2a). The numbers of PSMs 
identified by TD were used as a base line to evaluate the performance of Percolator 
and TIDD. Figure 2b–d shows how much Percolator and TIDD rescoring improved the 
number of PSM identifications for each search tool when compared with TD for each 11 
cell line data set.

For Comet search results (the detailed numbers are shown in Additional file  1: 
Table S1), TIDD identified 11.26% ± 4.70% more PSMs than TD, while Percolator iden-
tified 7.13% ± 1.90% more PSMs than TD (Fig. 2b). TIDD identified consistently more 
PSMs than Percolator (Fig. 2b), showing improvements by 0.09% in A549 dataset and 
6.91% in Jurkat dataset. The identified PSMs based on TIDD included over 99.20% of 
Percolator results in each dataset. For MS-GF + search results, the performance of TIDD 
is shown in Fig. 2c and Additional file 1: Table S2. TIDD identified 2.27% to 8.56% more 
PSMs than TD, but -0.33 ± 0.38% less PSMs when compared with Percolator. Among the 
three search tools, MS-GF + identified the highest number of PSMs by TD and thus the 

Fig. 1  The target and decoy distributions of TIDD’s top 4 features. The results are based on A549 dataset 
searched by a–d Comet; e–h MS-GF + ; i–l MSFragger. Here, solid and dashed line are the distribution of 
target and decoy, respectively
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improvement was less significant, showing the effectiveness of its e-value score alone in 
distinguishing correct and incorrect PSMs.

For MSFragger search results, TIDD showed considerable improvements for all 11 
cell line datasets over TD and identified 20.12 ± 4.39% more PSMs as shown in Fig. 2d. 
Because Percolator does not provide an optimized feature set for MSFragger, we imple-
mented MSFragger-Percolator as iterative SVM model learning using the X!Tandem-
Percolator feature set instead, because MSFragger adopted X!Tandem algorithm. 
Compared to the model, TIDD identified 2.72 ± 1.09% more PSMs.

Unlike Comet and MSFragger results, the difference between TIDD and Percolator is 
less than 1% for MS-GF + results. It is understandable because TIDD uses the general 
feature set that can be applied to any database search tool while Percolator feature sets 
are optimized for a specific database search tool.

To see the effect of tool-dependent features, we additionally included the tool-specific 
scores on top of TIDD features and the performance results were shown as “TIDD with 
tool-dependent features” in Fig.  2. For Comet, “deltacn”, “deltacnstar”, “SpRank”, loga-
rithm value of “e-value” were added. For MS-GF +, “denovo score”, “MSGF score”, “spec-
trum e-value”, “e-value” were added and “hyper score”, “next score” and “e-value” were 
additionally included for MSFragger. The use of tool-specific scores in addition to TIDD 
features have little effect on the number of PSMs, showing the increase of 0.05 ± 0.07%, 
0.13 ± 0.05%, and 0.15 ± 0.22% over TIDD for Comet, MS-GF + and MSFragger, 
respectively.

TIDD performance over standard search in large scale dataset

To assess the performance of TIDD for high throughput proteomics experiments from 
different MS instruments, we applied TIDD to HEK293 dataset of ~ 1 million MS/MS 

Fig. 2  Performance comparison in terms of PSM identifications using 11 cell line datasets. Four PSM 
rescoring methods were applied—Percolator, TIDD (iterative SVM learning with tool-independent feature 
set), TIDD with tool-dependent features (iterative SVM learning with TIDD features augmented with 
tool-dependent scores), and the iterative SVM using X!Tandem-Percolator features (iterative SVM learning 
with the feature set used by Percolator on X!Tandem data, while ‘deltascore’ is missed because MSFragger 
does not provide this score). a the number of identified PSMs based on TD when the three tools were 
applied; b–d the percent increase in PSM identification numbers compared to TD results



Page 8 of 12Li et al. BMC Bioinformatics          (2022) 23:109 

scans. Figure 3 shows that TD estimation identified 413,367, 456,073, and 372,231 PSMs 
for Comet, MS-GF +, and MSFragger at 1% FDR, respectively. For Comet search results, 
TIDD showed 14.72% and 0.24% improvements over TD and Percolator, respectively. 
For MS-GF + results, TIDD showed 4.72% increase and 0.33% decrease in the number 
of PSM identifications when compared to TD and Percolator, respectively. For MSFrag-
ger, TIDD identified 38.95% and 7.56% more PSMs than TD and the iterative model with 
X!Tandem-Percolator features, respectively. In addition, when we included tool-depend-
ent features on top of TIDD features, the performance always showed improvements 
over TD and Percolator regardless of search tools.

TIDD performance over modification search

To evaluate the TIDD performance in modification search, we applied TIDD to vali-
date the search results of a phosphorylation enrichment of Hela data set. As shown in 
Table  2, TD estimation identified 152,186 PSMs at 1% FDR and Percolator identified 
167,925 PSMs. TIDD identified 172,742 PSMs, which improved the identification per-
formance by 13.51% and 2.79% for TD and Percolator, respectively. We also applied 
TIDD to validate the results from unrestrictive modification search, where HEK293 data 
set was searched by MODplus considering 946 variable modifications. The FDR module 
provided by MODplus identified 653,660 PSMs at 1% FDR, including 216,858 modified 
PSMs. TIDD worked well for such modification-abundant data and identified 667,034 
PSMs. The number of identified PSMs was increased to 693,056 if the scores provided by 

Fig. 3  Performance comparison on PSM identification for HEK data. Four PSM rescoring methods 
were applied—Percolator, TIDD (iterative SVM learning with tool-independent feature set), TIDD with 
tool-dependent features (iterative SVM learning with TIDD features augmented with tool-dependent scores), 
and the iterative SVM using X!Tandem-Percolator features (iterative SVM learning with the feature set used 
by Percolator on X!Tandem data, while ‘deltascore’ is missed because MSFragger does not provide this score). 
a The number of identified PSMs based on TD when the three tools were applied; b the percent increase in 
PSM identification numbers compared to TD results

Table 2  The number of identifications in modification searches

FDR_by_MODplus means the FDR approach provided by MODplus. (Improved % compared to TD)

Data TD Percolator or FDR_by_MODplus TIDD

Hela
<phospho modification>

152,186 167,925 (+ 10.34%)
<Percolator>

172,742 (+ 13.51%)

HEK293
 <946 variable modifications>

605,103 653,660 (+ 8.02%)
<FDR_by_MODplus>

667,034 (+ 10.23%)
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MODplus were used together as features. Because Percolator did not support the results 
of MODplus, the comparison was not performed.

Graphical user interface for TIDD

For the convenience of users, we built graphical user interfaces for TIDD using R shiny, 
which can be downloaded and tested at https://​hongl​an-​li.​shiny​apps.​io/​proje​ct/. It takes 
database search results in Tab Separated Value (TSV) file format and the corresponding 
MGF file as input, calculates TIDD features shown in Table 1, and performs the itera-
tive SVM learning. For the SVM learning, users can add (optional) tool-specific features 
such as match scores provided by the search tools and any user-defined features, and 
thus decide the optimal feature set of their choice for any search tool.

To calculate TIDD features, we take the following 3 types of parameters as input—
decoy prefix, fragment tolerance and digestion enzyme. Six numbers representing col-
umn indices should be provided so that the numbered column of the input TSV (See 
Fig. 4a and b) can be used for rescoring regardless of their column heading in the input 
file. The first three columns should designate “File”, “Scan” and “Charge”, respectively, 
and they are required to retrieve experimental spectrum from the MGF file specified 
in the File column. The 4th required column is the mass over charge value of a precur-
sor, named “PrecursorMZ”. The 5th required column is “Peptide”, representing an amino 
acid sequence together with the possible modification mass information specified as 
“M + 15.995” (Oxidation at M), for instance (See Fig. 4a). This feature is used to calculate 
theoretical peptide mass, delta mass, and a series of annotated features. The final feature 
is “Protein” column, which lists parent proteins with “;” separators, while previous and 
next amino acids of a peptide sequence are provided as well (e.g., sp|P14618(pre = ‘M’, 
post = ‘K’), so that we can tell whether the PSM belongs to target or decoy proteins and 
determine the enzyme specificity at both cleavage sites (fully, semi or none). Users can 
additionally put a list of column indices corresponding to tool-dependent scores.

After loading files and setting parameters, users can preview their data in “Preview 
data” section of the application window (in Fig. 4b), then set the SVM parameters and 

Fig. 4  Graphical user interface of TIDD. a Example of TIDD input file. b Graphical user interface of TIDD

https://honglan-li.shinyapps.io/project/
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run TIDD. When PSM rescoring is finished, the rescored PSM list, together with their 
TIDD feature values are generated in the same directory where input PSM results are 
located.

Conclusions
TIDD is the first tool-independent and data-dependent PSM rescoring tool, which uti-
lizes the tool-independent universal features regardless of a database search tool adopted 
and runs iterative SVM learning. TIDD successfully eliminated the requirement for an 
optimal feature engineering per database search tool, and thus, can be applied directly 
to any database search results including newly developed ones. We demonstrated the 
utility of TIDD in validating MSFragger and MODplus search results on 12 human data-
sets, for which an optimized feature set had not been provided by Percolator. TIDD did 
not always perform better than Percolator for all the search tools and datasets, which is 
understandable—it is natural to expect an optimal feature set to give better results for a 
specific database search tool than a general feature set meant for all search tools. TIDD 
provides a user interface that allows users to provide arbitrary user-defined features as 
an input to the initial machine learning stage.

Availability and requirements  Project name: TIDD (tool-independent and data 
dependent PSM). Project download page: https://​github.​com/​Hanya​ngBIS​Lab/​TIDD.​git. 
Operating system: Platform independent. Programming language: R (v4.1.2 or above), 
and Java (jdk 17 or above). Other requirements: R packages such as "shiny", "shiny-
themes", "shinyFiles", "shinydashboard", "e1071", and "ROCR"; License: GNU GPL. Any 
restrictions to use by non-academics: need.

Abbreviations
FDR: False discovery rate; GUI: Graphical user interface; ML: Machine learning; MS: Mass spectrometry; MS/MS: Tandem 
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