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Background
The development of complex diseases depends on many factors such as genetic muta-
tions, the lifestyle, or environmental factors. Investigating the effects of genetic vari-
ants across the human genome in genome-wide association studies (GWAS) has already 
revealed relevant risk base-pair alterations [1]. Single nucleotide polymorphisms (SNPs) 
may have only a very small effect on the investigated disease. However, when considered 
jointly, SNPs might be highly relevant [2, 3]. This behavior can be due to many inde-
pendent SNPs exhibiting minor individual effects, or it can be caused by interactions of 
genetic variants, i.e., epistasis.
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In consequence, summarizing relevant genetic effects in an individual while suf-
ficiently predicting the risk for a certain disease, potentially jointly with non-genetic 
covariables, would be highly desirable. This would, on the one hand, allow to uncover 
underlying mechanisms related to this specific disease. On the other hand, accurately 
predicting the risk of disease for an individual could have a high impact on personalized 
medicine due to potentially being able to reduce the personal risk by taking specialized 
preventive measures if an individual has a high genetic risk for a certain disease [4, 5].

One promising approach for the assessment of an individual’s risk is the development 
of genetic risk scores (GRS). For the construction of GRS, one typically selects a subset 
of relevant SNPs from a biological pathway or a gene and calculates a weighted sum of 
the selected genetic variants.

Genome-wide approaches with a selection of genetic variants from across the whole 
genome resulting from prior knowledge are also possible for building GRS [6, 7]. How-
ever, such selections typically depend on large-scale association studies in which single 
SNPs were tested individually with regard to the phenotype. Thus, interacting variants 
which do not exhibit substantial marginal effects might be left out although SNP level 
interactions might contribute to disease risk [8, 9]. In this context, an alternative to con-
ventional GWAS for identifying disease-related SNPs might be genome-wide associa-
tion interaction studies (GWAIS) [9].

The standard procedure for the computation of the GRS is the usage of exter-
nal weights [10, 11], ideally determined from independent association studies such as 
GWAS or GWAIS. However, there might be no appropriate association study for the 
regarded outcome or population available such that suitable weights have to be gathered 
in a different way.

Internal GRS weights can be estimated by regarding the problem of constructing 
GRS as a supervised statistical learning problem, where the response would be the dis-
ease status or a quantitative biological variable such as the glucose level. In this case, 
the predictors are genetic variants of the specific pathway or gene, where SNPs are usu-
ally coded by the number of minor alleles for this individual. The estimation of proper 
weights or fitted models which generalize well, i.e., which represent the whole popula-
tion reasonably well and not only the available sample, requires the partitioning of the 
whole data set into training and test data sets. Dudbridge [3] and Hüls et al. [11] found in 
their studies that a random close to one-half split generalizes well. Sufficient samples are 
necessary in the test data set for evaluating the association of the GRS with the response 
which especially holds true for gene-environment interaction (GxE) studies in which 
more parameters are to be estimated. A GxE interaction is present if, for different geno-
types, different disease susceptibilities to an environmental factor are underlying, e.g., if 
an individual has a high genetic risk for a certain disease which is enabled by an environ-
mental factor [12].

So far mainly linear methods such as generalized linear models (GLM) or regularization 
methods based on GLMs, such as the lasso [13] or one of its generalizations, the elastic net 
[14], have been used in the construction of GRS [11, 15, 16]. The elastic net offers the advan-
tage of properly handling highly correlated predictors, e.g., SNPs in linkage disequilibrium 
(LD), by employing an L2 regularization while performing a variable selection due to the 
L1 regularization. Nonetheless, these regularized linear regression methods cannot directly 
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take interactions between predictors into account (unless specific interaction terms were 
specified prior to applying them) and the assumption of an additive relationship between 
the response and the input variables has to be fulfilled. Therefore, the usage of algorithms 
which are able to develop more general models and which in fact can find and take interest-
ing interactions into account might be preferable.

The tree-based statistical learning method random forests [17] is well-known and widely 
used among a variety of use cases [e.g., [18–20]]. It builds several individual classification or 
regression trees (CART) [21], which are fitted by a non-linear recursive partitioning algo-
rithm, and combines them to one strong ensemble. For a low to moderate amount of SNPs 
( < 100 ), it has been shown that the classic random forests algorithm is able to properly 
uncover SNP interactions even when the corresponding marginal effects are negligible [22].

Another tree-based non-linear statistical learning procedure is logic regression [23] 
which mainly considers binary predictors. It searches for Boolean expressions of the input 
variables and combines multiple expressions in a GLM and already has been used in appli-
cations to SNP data [24–26]. Both tree-based methods are theoretically able to cover each 
possible prediction scenario for categorical input data. However, their model fitting tech-
niques are highly different.

To the best of our knowledge, it has barely been investigated yet whether the aforemen-
tioned statistical learning algorithms can be used as alternative procedures to conven-
tional GRS construction approaches. For random forests, some publications suggest that 
the ensemble method is able to outperform conventional linear methods such as logistic 
regression, odds ratio scores or the lasso [27, 28]. However, more recent studies which 
considered genome-wide risk scores, i.e., GRS constructed using SNPs from all over the 
genome and not just single genes or pathways, were not able to verify that random forests 
should be used over linear approaches [29, 30]. In the context of disease risk prediction, e.g., 
Yoo et al. [31] regarded random forests, logic regression, and logistic regression without 
penalization in one simple gene-gene interaction simulation study and additionally in a real 
data application. In their analyses, the tree-based algorithms could induce higher predictive 
performances than logistic regression. Nonetheless, multi-faceted analyses taking different 
realistic data scenarios into account are necessary in order to draw meaningful conclusions 
about the appropriateness of the tree-based methods for the construction of GRS.

The classic random forests and logic regression algorithms have some shortcomings. In 
particular, random forests can severely overfit the data [32] and logic regression can lead 
to highly variant models [24]. Thus, we additionally considered modifications of the classic 
algorithms to overcome these drawbacks.

In this article, we, therefore, evaluate random forests, logic regression, and extensions of 
these methods in an extensive simulation study and an application to a real data set from 
a German cohort study for the construction of GRS and compare the results to the elastic 
net.

Methods
Construction of genetic risk scores

Let Dtrain = {(xi, yi)}Ni=1 be a training data set with N observations and binary outcomes 
yi ∈ {0, 1} . Further assume that each input vector xi is a collection of p biallelic SNPs, 
i.e., taking values in the p-dimensional space {0, 1, 2}p , where 0 codes the homozygous 
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reference, 1 the heterozygous variant, and 2 the homozygous variant. Then the problem 
of constructing a GRS model consists of fitting a proper function

The target space is equal to the probability scale [0, 1], since GRS(x) should be an esti-
mate of P(Y = 1 | X = x) , i.e., the probability of being a case given some SNPs x . This 
fitting procedure is conducted on a designated training data set. Independent observa-
tions from a test data set Dtest are used to evaluate the GRS, i.e., GRS(x) for (x, ·) ∈ Dtest.

An overview of the workflow for fitting and evaluating GRS models using the statisti-
cal learning approach is given in Fig. 1.

Random forests

In random forests, multiple classification or regression trees (CART) [21] with 
injected randomness are built to form one strong ensemble. From a graph-theoretical 
point of view, decision trees are usually binary trees in which each inner knot repre-
sents a split based on a predictor and each leaf (terminal node) describes a prediction 

GRS : {0, 1, 2}p → [0, 1].

Fig. 1  Workflow of constructing and evaluating genetic risk scores
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scenario. Figure 2a illustrates an exemplary classification tree with four disjoint pre-
diction scenarios. New predictions start at the root node and follow the respective 
edge until a leaf is reached.

Decision trees are induced by a recursive greedy splitting algorithm which searches 
at each inner node for the best possible split with respect to an impurity measure. The 
impurity measure is a quantifier for the homogeneity of respective nodes. For binary 
classification trees, the Gini impurity

for empirical probabilities P(Y = c | X ∈ t) that the response Y is equal to class c given 
that the input vector X falls into the regarded node t is usually chosen.

The tree induction procedure can be locally terminated by stopping criteria. When 
a node should not be split, it is declared as a leaf and has to receive a prediction value. 
For classification trees, this is usually the class with the highest empirical probability 
in the regarded branch.

However, single decision trees suffer from the instability problem which states that 
a small noise-like modification of the training data set may lead to a disproportional 
modification of the fitted tree. This issue is mainly caused by the greedy fashion of 
choosing splits [33].

Random forests tries to address this issue. The algorithm employs bagging [34] 
which draws a bootstrap sample of the available data for each individual tree as its 
training data set. The tree fitting procedure is further randomized by adjusting the 
splitting algorithm to choose mtry ≤ p predictors from the total set of input varia-
bles at every inner node which qualify for the best split. mtry is a hyperparameter 
usually chosen as √p or p/3 which should be properly tuned in certain applications. 
Based on these randomizations, the resulting model averages the individual trees, i.e., 
for classification trees, the class which is classified most often will be chosen as the 
prediction.

i(t) = 2 · P(Y = 1 | X ∈ t)P(Y = 0 | X ∈ t)

ba

Fig. 2  Exemplary tree models for three binary input variables X1 , X2 and X3 predicting two different classes 
c0 and c1 . In a, a classification tree is shown. b depicts a logic tree describing the Boolean expression 
(Xc

1
∧ X2) ∨ (X1 ∧ X

c
3
) . Here, a true Boolean expression is identified as class c1 and c0 otherwise. Negated 

input variables/leaves are marked by white letters on a black background. Both trees are equivalent, i.e., they 
perform the same predictions for each predictor setting
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Random forests for constructing genetic risk scores

If one is aiming at constructing GRS for binary traits, one has to keep in mind that prob-
ability estimates for showing the regarded feature are needed instead of class estimates. 
Random forests based on classification trees can be used for probability estimation by 
averaging the number of trees which voted for class 1 [35]. However, if we, e.g., assume 
that the true risk for being a case would be equal to 80% and that all classification trees 
properly recognize this fact and, therefore, predict class 1 for this particular setting, the 
forest risk estimate would be given by 100% . Thus, for this reason, we consider prob-
ability estimation trees [36] which hold risk estimates in their leaves in contrast to clas-
sifications. These estimates are usually chosen as the empirical branch probabilities from 
which classification trees also draw their estimates. Random forests based on probabil-
ity estimation trees average the probability estimates of the individual trees similar to 
regression trees.

If SNP variables coded as 0, 1, or 2 are interpreted as quantitative variables, decision 
trees and random forests are able to split with respect to ({0}, {1, 2}) or ({0, 1}, {2}) , thus, 
considering both dominant and recessive modes of inheritance. Therefore, SNPs are 
directly used as input variables when employing random forests.

Random forests VIM

One issue that arose when fitting the first GRS models with random forests in our 
initial experiments was a substantial overfitting which could be observed by compar-
ing the test and training data errors. Therefore, performing an appropriate variable 
selection prior to fitting the final random forests models might reduce the overfitting 
and lead to better results for noise-intensive data. Kursa and Rudnicki [37] proposed 
an iterative variable selection approach which relies on variable importance meas-
ures (VIM) and which they called Boruta. The permutation VIM can be calculated 
using the out-of-bag observations for each tree, thus, avoiding an overfitting of the 
VIM itself. In each iteration, the Boruta approach adds for each predictor variable 
a shadow variable with the same values but randomly permutes them to destroy a 
potential predictor-response relationship for this variable. Next, a random forest on 
this extended set of input variables is fitted and the evaluated VIMs for these shadow 
variables are used to approximate the distribution of VIMs for non-influential input 
variables. The computed VIMs of the original variables are then compared to the 
VIMs of the shadow variables in statistical tests for importance. In particular, the 
maximum observed importance of all shadow variables is used to decide whether an 
original variable is temporarily classified as important. More specifically, if a varia-
ble yields an importance higher than the maximum observed importance among all 
shadow variables, it will be temporarily marked as important. Several iterations of 
creating shadow variables, fitting random forests, and computing VIMs are used to 
perform binomial tests, which regard how often the variable was temporarily marked 
as important, testing the alternative of greater or smaller VIM realizations, i.e., impor-
tant or unimportant variables. More precisely, these binomial tests are based on the 
null hypothesis that the probability of the regarded input variable yielding a higher 
VIM than the maximum VIM of all shadow variables is equal to 0.5. The significance 
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threshold of the binomial tests is set to 1%, which is also the recommended thresh-
old by the authors of the Boruta approach. Compared to other random-forest-based 
variable selection methods such as the Vita algorithm proposed by Janitza et al. [38] 
which relies on negative VIM values, the Boruta approach does not require a vast 
amount of (noninfluential) input variables.

As an alternative procedure, we also tried the variable selection method by Altmann 
et al. [39], which relies on random permutations of the response variable. However, in 
our experiments, the Boruta approach yielded more stable results in general. In particu-
lar, even when considering different significance thresholds for the approach by Altmann 
et al. [39], the Boruta procedure still could induce more stable variable selections, i.e., 
leading to variable selections that did not severely differ between independent replicates. 
This observation is in line with the analyses by Degenhardt et al. [40] who provide an in-
depth comparison of various random forests variable selection methods.

Hence, we fitted ordinary random forests with probability estimation trees and ran-
dom forests based on the Boruta variable selection which we call random forests VIM in 
the following. For random forests, we used the R package ranger [41]. For random for-
ests VIM, the R package Boruta [37], that also relies on the ranger package, was used.

Logic regression

Logic regression [23] is a tree-based statistical learning algorithm which is specifically 
tailored to binary input variables. It searches for ideal Boolean expressions of those and 
works with binary tree representations of Boolean expressions, logic trees. Logic trees 
hold the Boolean operators ∧ (AND) or ∨ (OR) in their inner nodes and contain predic-
tor variables or their negations (indicated through c ) in their terminal nodes. Figure 2b 
depicts an exemplary logic tree which is equivalent to the exemplary classification tree 
from Fig.  2a, i.e., both trees perform the same predictions for each realization of the 
three input variables. The interpretation as a Boolean expression is obtained recursively 
by combining expressions in a bottom-up fashion, yielding (Xc

1 ∧ X2) ∨ (X1 ∧ Xc
3) for the 

logic tree from Fig. 2b.
Logic trees themselves can only be used for binary classification tasks, since they 

represent logic expressions so that their output is also either 0 or 1. To generalize their 
usage for, e.g., risk prediction, Ruczinski et al. [23] proposed using logic trees L1, . . . , LM 
as predictors in a GLM

considering an appropriate link function g such as the logit function 
logit(p) = log(p/(1− p)) for a binary response.

The total model fitting procedure consists of finding the most appropriate logic tree(s). 
In practice, for each model, a set of neighbor states is defined by simple adjustments of 
the current model. The moves used in logic regression consist of exchanging variables 
and operators, adding or removing branches, splitting or removing variables, and adding 
or removing trees. This set of moves ensures that from every state, every other possible 
state can be reached in a final number of steps. For more details, see [23].

Based upon this methodology, two model search algorithms are used in practice:

g(E[Y | X = x]) = β0 + β1L1(x)+ . . .+ βMLM(x)
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•	 a greedy search which evaluates each neighbor of a given state and moves to the best 
one

•	 simulated annealing [42], a stochastic search algorithm which only considers one 
random neighbor per iteration and can also move to worse states to prevent being 
stuck in a local minimum.

Model ranking is performed using a score function which is chosen to be the deviance 
for the logistic model. The model which yields the best score among all models visited in 
the search is chosen as the resulting model. Irrespective of using the greedy approach or 
simulated annealing, one should configure the model size hyperparameters, i.e., the total 
number of trees and the total number of leaves, to obtain the best fit on the entire popu-
lation. For fitting conventional logic regression models, we used the R package Logi-
cReg [43] and used simulated annealing as the search procedure.

Logic regression for constructing genetic risk scores

SNP variables coded as 0, 1, or 2 can be biologically meaningful divided into two 
binary variables, in SNPD = 1(SNP �= 0) , coding for a dominant effect, and in 
SNPR = 1(SNP = 2) , coding for a recessive effect. With these two binary variables, 
interactions can be properly expressed. For example, consider a scenario where two 
SNPs influence the disease risk in such a way that the risk is significantly increased if and 
only if for both SNPs their respective minor allele occurs at least once. With Boolean 
logic, this can be expressed as SNP1,D ∧ SNP2,D . It might also be possible that two risk-
increasing SNPs with a dominant mode of inheritance can only elevate the disease risk 
once, i.e., if both statuses occur, the risk is not increased beyond the first elevation. This 
scenario can also be expressed with Boolean logic as SNP1,D ∨ SNP2,D . Furthermore, 
SNPs in high linkage disequilibrium (LD) that are, therefore, highly correlated can also 
be properly addressed with the logical OR. One LD block might then be expressed as a 
chain of OR-concatenated SNPs, a disjunction. Thus, for the construction of GRS with 
logic regression, each SNP is divided into two binary variables prior to applying the 
procedure.

Logic bagging

As an alternative to an exhaustive search with simulated annealing, we also consid-
ered applying bagging [34] to logic regression models fitted with a greedy search. We 
call this approach logic bagging. In contrast to conventional logic regression, logic bag-
ging fits ensembles of individual logic regression models and, similar to random forests, 
predictions are made using the average of the predictions of the individual logic regres-
sion models. This approach is still computationally expensive when using an adequate 
amount of bagging iterations (e.g., 500) but reduces the variance and does not require 
the tuning of a cooling schedule. Logic bagging is implemented in the R package log-
icFS [44]. For fitting logic bagging models, the greedy search is employed mainly due to 
computational reasons. In particular, in Additional file 1: Fig. S1, the model fitting times 
are depicted. For example, for fitting and evaluating a single logic bagging model consist-
ing of 500 logic regression models fitted via simulated annealing, it would take about 
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500 · 28.82s ≈ 4h using the mean model fitting and evaluation time of 28.82s for logic 
regression.

Elastic net

The elastic net [14] is a regularized linear regression model which combines

•	 the lasso (least absolute shrinkage and selection operator) [13], i.e., L1 regularized 
regression that reduces the estimate of the regression coefficients of non-influential 
predictors to zero, therefore, excluding non-informative input variables,

•	 and ridge regression [45], i.e., L2 regularized regression for properly handling highly 
correlated predictors by assigning similar weights to such predictors.

Elastic net, hence, uses a penalty term given by

for the regression coefficients β =
(

β1 . . . βp
)T in the fitting procedure solving the opti-

mization problem

for the log-likelihood function ℓ . In this article, binary outcomes are considered. Thus, 
the logistic regression approach for elastic net was employed.

Here, � ≥ 0 determines the strength of the regularization, i.e., for larger values of � , 
the penalty �Rα(β) increases, thus, favoring coefficient vectors with smaller norms, i.e., 
more loosely fitting models. The parameter α ∈ [0, 1] configures the balance between the 
lasso and ridge regression, i.e., for α = 0 , one would perform ordinary ridge regression 
and for α = 1 , one would apply the lasso. Therefore, these two hyperparameters have to 
be tuned properly.

In practice, the model coefficients are estimated by employing coordinate descent as 
optimization algorithm to solve the minimization problem (1) and taking advantage of 
the fact that similar values of � lead to similar model coefficients for a fast fitting of dif-
ferent � settings [46]. We used the R package glmnet [46] with cross-validation for fit-
ting elastic net models.

The common procedure when constructing GRS with regularized regression proce-
dures such as elastic net is to use the {0, 1, 2} coding for each SNP in the model [11, 
16]. We, therefore, follow in our comparison this standard procedure and use the {0, 1, 2} 
coding in the elastic net.

If interaction effects between SNPs should be included in the elastic net model, they 
have to be explicitly specified prior to fitting the model. However, in practice, it is usually 
unknown which loci might interact. Including all possible interactions between SNPs 
becomes rapidly infeasible, as for a moderate amount of SNPs, the number of possible 
interaction terms might already be too high. For example, for 50 SNPs, there exist more 
than 1015 interaction terms. The standard procedure for constructing GRS with linear 
methods such as the elastic net is to only consider marginal genetic effects [16]. Thus, we 

Rα(β) :=
1

2
(1− α)||β||22 + α||β||1

(1)min
β0,β

{

−
1

N
ℓ(β0,β)+ �Rα(β)

}



Page 10 of 30Lau et al. BMC Bioinformatics           (2022) 23:97 

follow in our evaluations this common procedure and do not include interactions in the 
elastic net models.

Simulation studies
The tree-based statistical learning methods random forests, random forests VIM, logic 
regression, and logic bagging were evaluated and compared to the elastic net in a simu-
lation study considering three scenarios with several different settings. All SNPs were 
drawn independently resembling LD-based pruned or clumped SNPs. All simulations 
and analyses were performed with R version 4.0.3 [47]. Data sets for all simulation sce-
narios were generated using the R function simulateSNPglm from the scrime pack-
age [48].

General workflow

The general workflow for generating the data sets for the simulation study is given as fol-
lows for each of the simulation settings, which are described in detail afterwards. 

1.	 Choose the fixed data parameters, i.e., the odds ratios, number of SNPs, sample size 
and simulation design.

2.	 For each SNP, draw a random minor allele frequency (MAF).
3.	 Randomly generate the genotypes based on the MAFs.
4.	 If continuous covariables are to be included, randomly generate the data for these 

variables.
5.	 Randomly generate the outcome according to the linear predictor.
6.	 Evaluate the fraction of cases in the generated outcome and tune the prevalence such 

that this fraction becomes approximately balanced, i.e., yielding ∼ 50% cases. This 
involves going back to step 5.

7.	 Create 100 independent data sets for a certain setting using the steps 2–5 for each 
repetition.

Simulation setups

Marginal genetic effects

In a first step, we focused on main effects, which represents the ideal case for the elastic 
net, since no interactions are considered here and the individual effects behave addi-
tively with each other. Similar to Hüls et  al. [49], we considered six SNPs influencing 
the value of the outcome, where we simulated a dominant effect for each of these SNPs. 
Thus, we first considered data sets generated from a logistic regression model

In order to draw conclusions for different realistic scenarios, we varied three parameters:

•	 the effect size, i.e., the odds ratio, of each influential SNP which can be configured by 
specifying exp(βi) [50],

(2)logit(P(Y = 1)) = β0 +
6

∑

i=1

βi · 1(SNPi �= 0) = β0 +
6

∑

i=1

βi · SNPi,D.
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•	 the intensity of statistical noise which we adjusted by adding non-influential SNPs to 
each data set,

•	 and the sample size of each data set.

To achieve nearly case-control study-like designs, we configured the prevalence, i.e., 
(1+ exp(−β0))

−1 [50], to result in nearly balanced data sets for each regarded odds 
ratio. The MAF was drawn randomly for each SNP and for each data set from the inter-
val [0.15, 0.45] similar to Pan et al. [51]. For each scenario, we generated 100 independ-
ent data sets, i.e., we performed 100 replications. Table 1 lists the regarded settings for 
the aforementioned simulation parameters.

Dominant interactions of SNPs

In a second simulation scenario, we additionally considered a gene-gene interaction, i.e., 
an interaction between SNPs. More specifically, we here always considered three SNPs 
with low main effects, i.e., odds ratios of 1.2 and a dominant mode of inheritance, since 
we focused on marginal effects in the first scenario. Additionally, we included an interac-
tion term between two SNPs whose odds ratio was varied. Similar to the first scenario, 
we also varied the amount of statistical noise, i.e., the number of SNPs for which no 
effect on the outcome is intended. Furthermore, we considered three sub designs that 
determine which SNPs interact. The data was generated following models such as

The indices (j, k) ∈ {(1, 2), (1, 4), (4, 5)} determine whether both interacting SNPs also do 
have marginal effects, only one of them exhibits a main effect, or if they only are influ-
ential when considered jointly. The prevalence was again configured by β0 to approxi-
mately achieve case-control-balanced study designs. The MAF was randomly chosen in 
the interval [0.15, 0.45] and the sample size was fixed to 2000 observations per data set, 
since we only considered weak marginal effects. 100 independent data sets for each set-
ting were analyzed using a cyclic scheme such as in the first simulation scenario. The 
study parameters for the second simulation scenario are summarized in Table 2.

Gene‑environment interactions

In the final simulation scenario, we added two correlated continuous variables to the 
true underlying model from which one forms a GxE interaction with a SNP. One of 

(3)logit(P(Y = 1)) = β0 +
3

∑

i=1

βi · SNPi,D + β4 · SNPj,D · SNPk ,D.

Table 1  Parameter settings for the first simulation scenario resulting in 27 settings in total

Parameter Considered realizations

Odds ratio 1.2, 1.5, 1.8

Amount of noise SNPs 4, 14, 44

Sample size 500, 1000, 2000

Prevalence Resulting in balanced data sets

MAF Randomly chosen from [0.15, 0.45]

Repetitions 100
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these two variables exhibits a marginal effect on the outcome, while the second vari-
able only influences the outcome if a certain risk allele occurs at least once. The data 
for this scenario was generated considering the model

Similar to the gene-gene interaction simulation scenario, the effects for the first three 
SNPs were fixed to odds ratio of 1.2, 1.5, and 1.8, respectively. The interaction between 
SNP1 and SNP4 received a fixed odds ratio of 1.8, since in this analysis, the focus lies 
on the GxE interaction. The index j ∈ {2, 5} determines whether the SNP in the GxE 
interaction also exhibits a moderate marginal effect or if this SNP only influences the 
outcome in interaction with the continuous variable E2 . The odds ratios of the terms 
involving the continuous variables E1 or E2 were specified per IQR (interquartile range) 
of the respective environmental variable as it is regularly done when performing analy-
ses of GxE interactions [11]. For the continuous variable E1 , the (marginal) odds ratio 
was fixed to 1.2 per IQR. The odds ratio of the GxE interaction between SNPj and E2 was 
varied between 1.2 and 2.4. The continuous variables were generated following a multi-
variate normal distribution, i.e.,

In particular, the mean µ was set to 20, the variance σ 2 was chosen as 10 and the correla-
tion ρ between these two variables was chosen as either 0.5 or 0.9, resembling moder-
ately and highly correlated variables, respectively. The prevalence was again configured 
by β0 to approximately achieve case-control-balanced study designs. The MAF was ran-
domly chosen in the interval [0.15, 0.45] and the sample size was fixed to 2000 obser-
vations per data set as in the previous simulation scenario. The number of additional 
noise SNPs was fixed to 45. 100 independent data sets for each setting were analyzed. 
The study parameters for the third simulation scenario are summarized in Table 3. In 
GxE interaction studies, GRS are usually constructed only using the available genetic 
data [11]. Thus, we constructed the GRS without utilizing the environmental variables.

(4)
logit(P(Y = 1)) = β0 +

3
∑

i=1

βi · SNPi,D + β4 · SNP1,D · SNP4,D

+ β5 · E1 + β6 · E2 · SNPj,D.

(

E1
E2

)

∼ N2

((

µ

µ

)

, σ 2

(

1 ρ

ρ 1

))

.

Table 2  Study parameters for the second simulation scenario resulting in 45 settings in total

Parameter Considered realizations

Odds ratio of gene-gene interaction 1.2, 1.5, 1.8, 2.1, 2.4

Amount of noise SNPs 5, 15, 45

Interacting SNPs (j, k) (1, 2), (1, 4), (4, 5)

Sample size 2000

Prevalence Resulting in balanced data sets

MAF Randomly chosen from [0.15, 0.45]

Repetitions 100
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Analysis of association and predictive strength

To evaluate and compare the different statistical learning methods in their ability to con-
struct GRS, a cyclic training-validation-test data set scheme was considered. In the i-th 
repetition of this cyclic scheme, the i-th data set Di , i ∈ {1, . . . , 100} , was used to train 
the GRS with the different statistical learning methods. For the evaluation of the perfor-
mance of these methods, the succeeding data set Di+1 if i  = 100 and D1 otherwise was 
chosen to be the independent test data set. For tuning the hyperparameters (see “Sec-
tion Hyperparameter optimization”), we chose the preceding data set, i.e., Di−1 if i  = 1 
and D100 otherwise as validation data.

Since all data sets were generated independently, the cyclic scheme is equivalent to a 
conventional training-validation-test data set approach in which each of the 100 data sets 
is once used as training set, once as test set, and once as validation set in a cyclic manner. 
Due to the high computational costs when considering many different parameter con-
figurations, hyperparameter tuning was performed by averaging the performances over 
the first 10 validation iterations for each simulation setting and each parameter setting. 
The setting which yielded the highest validation AUC across the average over these 10 
repetitions was chosen as the fixed setting for the particular simulation setting.

The standard approach for testing the association considers the GRS as a predictor in 
a conventional regression model [2]. For binary outcomes, the logistic regression model 
is fitted on the test data. The logistic regression model maps the linear predictor with 
the logistic function from (−∞,+∞) to (0, 1). Thus, the GRS (probability estimates) are 
transformed to the scale of the linear predictor by applying the inverse of the logistic 
function, the logit function. In summary, the univariate association model

is constructed using

for raw risk predictions of the fitted GRS model GRSraw.
For statistically assessing this association, we conducted Wald tests testing the alter-

native that the GRS is associated with the response. Based on these test results, we 
estimated the statistical power and the type I error rate for analyzing and comparing 
the ability of properly recognizing signals in the genetic data by the GRS construction 

(5)logit(P(Y = 1 | GRS)) = β0 + β1 ·GRS

{

(

GRS(x), y
)

:=
(

logit(GRSraw(x)), y
) ∣

∣ (x, y) ∈ Dtest

}

Table 3  Study parameters for the third simulation scenario resulting in 20 settings in total

Parameter Considered realizations

Odds ratio of GxE interaction 1.2, 1.5, 1.8, 2.1, 2.4

Amount of noise SNPs 45

Interacting GxE SNP j 2, 5

Correlation between E1 and E2 0.5, 0.9

Sample size 2000

Prevalence Resulting in balanced data sets

MAF Randomly chosen from [0.15, 0.45]

Repetitions 100
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procedures. The statistical power, which is given by the probability that the GRS is cor-
rectly recognized as influential on the response, can be estimated by the fraction of 
logistic models with statistically significant predictors under all cases which rely on the-
oretically influential genetic data. The type I error rate, i.e., the false positive rate, can be 
estimated by the fraction of significantly recognized GRS under all cases in which the 
response and the predictors are actually independent.

To compare the predictive strength of GRS, which is probably most relevant, we cal-
culated the area under the curve (AUC) with respect to the receiver operating charac-
teristic (ROC). This metric offers two main advantages over classification measures such 
as the accuracy, sensitivity, or specificity. First, it does not depend on the classification 
threshold which perhaps should be tuned. Second, the AUC can handle imbalanced data 
sets due to simultaneously regarding sensitivity and specificity. Moreover, the AUC has 
an intuitive interpretation as the probability that a random observation from the entire 
population of cases yields a higher risk estimate than a randomly chosen control from 
the population [52].

Additionally, we evaluated the classical classification metrics accuracy, sensitivity, 
and specificity. In particular, we performed hard classifications on the resulting logistic 
regression model containing the GRS using a classification threshold of 0.5, i.e., clas-
sifying an observation as a case if it is predicted that the probability of being a case is 
higher than the probability of being a control and classifying an observation as a control 
otherwise. Using these classifications, the overall accuracy, sensitivity, and specificity as 
defined, e.g., in Alberg et al. [53] were evaluated. The accuracy was not explicitly adjusted 
for the prevalence, since we generated approximately case-control-balanced data sets in 
the simulation study, thus, yielding a prevalence of 50%. However, the main purpose of 
GRS does not lie in hard classifying observations as cases or controls. Instead, GRS are 
used for estimating individual risks, e.g., in precision medicine or for uncovering bio-
logical mechanisms involved in the development of diseases. Therefore, a metric such as 
the AUC which simultaneously considers different sensitivities and specificities seems to 
be preferable in the evaluation of the performance of GRS.

Hyperparameter optimization

Certain statistical learning procedures require the optimization of hyperparameters 
using independent validation data sets. This also holds true for the algorithms consid-
ered in this article. Table 4 lists the regarded hyperparameter configurations, where each 
possible combination of these parameters has to be considered in the parameter tuning. 
A description of each of these parameters is given in Additional file  1: Section  2. For 
random forests, we fixed the number of total trees grown to 2000, which is a sufficiently 
large number of trees in our applications, since in preliminary experiments, we could 
observe that the validation AUC converged using smaller amounts of trees. Analogously, 
we fixed the number of bagging iterations for logic bagging to 500. The cooling schedule 
in logic regression was configured manually by observing the cooling behavior for dif-
ferent settings and choosing a start temperature and end temperature such that around 
90% of the proposed models were accepted at the beginning of the algorithm and close 
to no models were accepted when approaching the end temperature. The amount of sim-
ulated annealing iterations was fixed to 500000. The regularization parameter � for the 
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elastic net was automatically chosen by employing cross-validation in the respective fit-
ting processes and selecting the value which minimizes the loss.

For each considered statistical learning method, a more detailed workflow for tuning 
and training the respective models is depicted in Additional file 1: Section 3.

Results of the simulation studies

Marginal genetic effects

Figure 3 summarizes the AUC for each of the 27 regarded settings in the main effects 
simulation scenario. In Additional file 1: Fig. S2, corresponding asymptotic 95% confi-
dence intervals are depicted. Most notably, logic bagging leads in almost every scenario 
to the highest AUC. For strong effects and large data sets, ordinary logic regression 
induces similar or even better results which are comparable to the true underlying 
model. Especially for weak effects, ordinary random forests yields comparably high val-
ues for the AUC. Unsurprisingly, random forests with a prior variable selection is more 
effective in relation to the other procedures when considering a higher amount of statis-
tical noise. For less noisy data, random forests VIM cannot compete with the other tree-
based methods and shows high variations. The elastic net yields inferior results for large 
data sets and large effect sizes and also has difficulties detecting a signal for the more 
challenging scenarios, i.e., for small odds ratios and low observation counts.

The analyses of power resemble the results of the AUC comparison and are depicted 
in Additional file 1: Fig. S3. The type I error rates for the tree-based methods seem to 
randomly scatter around the prespecified significance level of 5%. However, the elastic 
net induces type I error rates of around two percent and is, therefore, quite conservative. 
The corresponding type I error rates are shown in Additional file 1: Fig. S4.

In Additional file 1: Figs. S5–S7, the results for the accuracy, sensitivity, and specificity 
are depicted. The accuracies resemble the results of the AUC evaluation, while the sen-
sitivities and specificities do not show a clear pattern between the evaluated methods. 
These figures also show that, for increasing odds ratios, the specificities increase while 
the sensitivities decrease.

Table 4  Regarded hyperparameter settings

The mentioned hyperparameter names are the names of the corresponding arguments in the respective software packages. 
For a description of the parameters, see Additional file 1: Section 2

Algorithm Hyperparameter Considered realizations

Random forests & random 
forests VIM

mtry
⌊(

0.5 1 2
)

· ⌊√p⌋
⌋

min.node.size
⌊(

0.01 0.05 0.1
)

· N
⌋

num.trees 2000

Logic regression & logic 
bagging

ntrees
(

1 2 3 4 5 6
)

nleaves
(

1 2 . . . 9 10
)

 (Simulation studies)
(

1 2 . . . 19 20
)

 (Real data application)

Logic regression Cooling schedule Experimental

Simulated annealing iterations 500000

Logic bagging Bagging iterations 500

Elastic net α
(

0.5 0.75 0.9 0.99
)

� Cross-validation
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We also evaluated the GRS on the training data itself to compare the degrees of 
overfitting. Here, ordinary random forests leads to the severest overfitting. For data 
with high statistical noise and small effect sizes, its AUC almost reaches 100% com-
pared to the true AUC of around 56%. The other tree-based algorithms also induce 
higher training AUCs than the true model, but not larger than random forests. In par-
ticular, a prior variable selection can indeed reduce the intensity of overfitting. The 
elastic net yields in most cases the lowest values for the AUC closely following the 
AUCs of the true model. Taking the test data analyses into account, this indicates 
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Fig. 3  Mean AUC for random forests, random forests VIM, logic regression, logic bagging, elastic net, and the 
true underlying model in the first simulation scenario considering marginal effective SNPs evaluated on the 
test data
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a mixture of underfitting and slight overfitting of the elastic net. The training data 
results can be found in Additional file 1: Fig. S8.

Dominant interaction effects of SNPs

For the analysis of the scenarios with influential interaction terms, the performances 
of the statistical learning procedures measured by the AUC are shown in Fig. 4. Addi-
tionally, asymptotic 95% confidence intervals can be found in Additional file 1: Fig. S9. 
Similar to the main effects scenarios, logic bagging induces in each scenario the highest 
values of the AUC. Also as in the other settings, random forests VIM does not gravely 
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Fig. 4  Mean AUC for random forests, random forests VIM, logic regression, logic bagging, elastic net, and the 
true underlying model in the second simulation scenario incorporating interactions of SNPs evaluated on 
the test data. The Designs 2.1, 2.2, and 2.3 describe the scenarios where both interacting SNPs also exhibit 
marginal effects, only one of both SNPs shows a marginal signal or none of them induce a main effect, i.e., (j, 
k) = (1, 2), (1, 4), or (4, 5) in Eq. (3), respectively
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suffer from noisy data compared to standard random forests, but cannot severely out-
perform its ordinary counterpart. Random forests itself seems to be the second-best 
performing method with an almost steady but close distance to logic bagging. Interac-
tions of variables without marginal effects seem to be less of an issue to conventional 
logic regression, since for Design 2.3 and larger interaction effect sizes, logic regression 
achieves comparable AUCs to random forests. For weak interaction effects, the elastic 
net can yield comparative results to random forests and the logic regression. Nonethe-
less, increasing the interaction effect also increases the discrepancy between the tree-
based approaches and the elastic net.

The results of the corresponding power and type I error analyses can be found in 
Additional file 1: Figs. S10 and S11. As in the previous simulation scenario, the compari-
son of the estimates of the statistical power resembles the corresponding analyses of the 
AUC. Again, the type I error rates for the tree-based methods seem to randomly scatter 
around 5%, whereas the elastic net leads to substantially lower error rates.

The results for the accuracy, sensitivity, and specificity can be found in Additional 
file 1: Figs. S12–S14. Similar to the marginal effects simulation scenario, the comparisons 
of the mean accuracy resemble the results of the AUC evaluation. The other two metrics 
sensitivity and specificity do not yield clear patterns between the considered procedures.

Evaluations of the GRS on the training data reveal again that conventional random for-
ests seems to induce the severest overfitting. The results of these training data set appli-
cations are summarized in Additional file 1: Fig. S15.

Gene‑environment interactions

Figure  5 depicts the predictive performances of the statistical learning procedures for 
the 20 settings in the GxE interaction simulation scenario. Corresponding asymptotic 
95% confidence intervals are shown in Additional file 1: Fig. S16. In contrast to the previ-
ous scenario, a true unique GRS model does not exist, since the GRS is based only on the 
genetic data while the true model of this scenario also consists of environmental covari-
ables. Similar to the gene-gene interaction scenario, logic bagging leads in each setting 
to the highest AUCs. Throughout all settings in this simulation scenario, logic regression 
seems to be the second best performing method yielding AUCs closely below the AUCs 
of logic bagging. Random forests and random forests VIM induce very similar results 
such that there is no clear pattern between these two methods. For weak GxE interaction 
effects, the elastic net induces comparably poor results. However, for increasing GxE 
interaction effects, the discrepancy between random forests and elastic net decreases 
such that, for an odds ratio of 2.4, the elastic net yields slightly higher AUCs than ran-
dom forests which are, however, still below the AUCs of logic bagging.

The correlation ρ of the two continuous variables does not seem to affect the GRS per-
formance in this simulation scenario. Nonetheless, the overall performance in Design 
3.1 is higher than the performance in Design 3.2. This phenomenon can be explained by 
the absence of a marginal effect of the GxE interacting SNP in Design 3.2 complicating 
the identification of this SNP.

For this simulation scenario, the statistical power for all considered methods and 
simulation settings was equal to 100%. Similar to the previous scenarios, the elastic net 
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seems to be more conservative as it induces lower type I error rates than the tree-based 
methods. The estimated type I error rates can be found in Additional file 1: Table S1.

In Additional file 1: Fig. S17–S19, the results for the accuracy, sensitivity, and specific-
ity are depicted. Similar to the power analyses, the mean accuracies of the considered 
methods are almost identical in each simulation setting. However, for weak GxE interac-
tion effects, the elastic net seems to induce the lowest mean accuracies. The results for 
the other two metrics, the sensitivity and the specificity, are also very similar.

Training data evaluations reveal again that conventional random forests tends to 
induce the severest overfitting. The training data results are depicted in Additional file 1: 
Fig. S20.

Comparison considering binary SNP codings

Additionally to considering the standard way of specifying the input variables for the 
different methods, we also evaluated the GRS construction approaches using the binary 
{0, 1} SNP coding for each method and not exclusively for logic regression and logic bag-
ging. The detailed results for the {0, 1} SNP coding and the respective simulation sce-
narios are depicted in Additional file 1: Figs. S21–S23.
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Fig. 5  Mean AUC for random forests, random forests VIM, logic regression, logic bagging, and elastic net 
in the third simulation scenario incorporating continuous input variables evaluated on the test data. The 
Designs 3.1 and 3.2 describe the scenarios where the GxE interacting SNP also exhibits a moderate marginal 
effect or where it does not induce a main effect, i.e., j = 2 or 5 in Eq. (4), respectively
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In comparison to using the {0, 1, 2} coding, the performance of random forests and 
random forests VIM decreases. This is not very surprising, since, as pointed out in the 
methodological description, decision trees and random forests consider the dominant 
and recessive modes of inheritance when using the {0, 1, 2} coding. Thus, using the {0, 1} 
coding doubles the number of input variables without supplying more information to 
random forests. The increase in the number of input variables complicates identifying 
the ideal splits when using typical settings for the hyperparameter mtry.

For the elastic net, the performance increases when employing the {0, 1} coding instead 
of the conventional {0, 1, 2} coding such that, in the marginal effects simulation scenario 
and in the GxE interaction scenario, the elastic net yields similar results as logic bagging 
when considering settings with stronger genetic effects. Nonetheless, in the gene-gene 
interaction simulation scenario for the Designs 2.2 and 2.3 in which at least one interact-
ing SNP does not exhibit a marginal effect, the elastic net with the {0, 1} SNP coding still 
induces inferior AUCs compared to logic bagging.

Real data application
We also compared the GRS construction approaches using a real data set from a Ger-
man cohort study, the SALIA study (Study on the Influence of Air Pollution on Lung, 
Inflammation and Aging) [54], which included in total 4874 women that were at their 
first examination between 54 and 55 years old. The participants were recruited in 1985-
1994 from highly industrialized areas and less industrialized areas in North-Rhine West-
phalia, Germany. In 2006, a follow-up questionnaire was completed by 4027 women 
which contained questions about the diagnosis of certain diseases. In a further follow-
up clinical examination conducted in 2007-2010, genetic data was also gathered. Here, 
we considered a data set consisting of 517 women from the SALIA study for which the 
presence of rheumatic diseases and genetic data are available. Furthermore, information 
about the exposure to specific air pollutants, i.e., nitrogen dioxide ( NO2 ), nitrogen oxide 
[nitrogen monoxide NO and nitrogen dioxide NO2 ] ( NOx ), particulate matter with an 
aerodynamic diameter of ≤ 2.5µm or ≤ 10µm ( PM2.5 or PM10 ), particulate matter with 
diameters of 2.5− 10µm ( PMcoarse ), and the reflectance of PM2.5 filters ( PM2.5 absorbance ), 
is available at the time of performing the examinations in 2008. The assessment of the 
exposure to air pollution was conducted as part of the ESCAPE (European Study of 
Cohorts for Air Pollution Effects) project using land-use regression models [55, 56]. We 
used these air pollution exposures to assess GxE interactions. Information on covari-
ables such as the BMI (body mass index), age, education status, smoking status, or work-
place exposure for adjusting the final models is also available. In the questionnaire, it 
was asked whether any rheumatic disease was diagnosed. Thus, we considered preva-
lent rheumatic diseases as outcome in our analyses. Details on the SALIA study and the 
assessment of air pollution in this study are given by Krämer et al. [57] and Hüls et al. 
[58].

Selection of relevant genetic factors

In order to construct proper GRS for genes potentially having an impact on the devel-
opment of rheumatic diseases, we selected several genes which showed to be influen-
tial in a literature research. For the selection of relevant genes, we mainly focused on 
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rheumatoid arthritis, since it is the most common rheumatic disease besides osteoar-
thritis [59–61].

In around 70% to 90% of rheumatoid arthritis patients, anti-citrullinated peptide anti-
bodies (ACPA) can be detected [62]. For ACPA-positive rheumatoid arthritis, many 
identified genetic associations belong to the human leukocyte antigen (HLA) class II 
complex [63]. Thus, we selected genes from the HLA class II complex for which asso-
ciations with rheumatoid arthritis have been detected. In particular, we chose the HLA-
DRB1 gene which presumably explains a large portion of the heritability of rheumatoid 
arthritis in the HLA class II complex [63–66]. Furthermore, we included the HLA-DPB1 
and HLA-DOA genes which also might influence the risk of developing rheumatoid 
arthritis [66–68].

Since we started by including all available SNPs within the respective genes, 385 SNPs 
from the three genes formed our basis which we reduced by exploiting high states of LD. 
Using PLINK version 1.9 [69, 70], we performed LD-based clumping [71] (considering 
r2 = 0.5 ). This procedure resulted in 72 tag SNPs which were used to construct the GRS.

We also constructed genome-wide GRS based on a recent meta-analysis of GWAS 
regarding rheumatoid arthritis [72]. In this meta-analysis, only non-HLA loci were con-
sidered in contrast to the gene-based selection. 70 of the proposed SNPs were available 
in our data and were used to fit the GRS models.

Gene‑environment interaction analysis

Additionally, we also analyzed GxE interaction effects. For the risk of developing ACPA-
positive rheumatoid arthritis, GxE interactions between HLA class II alleles and smok-
ing have been discovered [73, 74]. It might be of interest if traffic-related air pollution 
also interacts with genetic risk factors in the development of rheumatoid arthritis. Thus, 
our logistic regression models for the evaluation of GRS have the shape

for the environmental variable E and covariables C1, . . . ,Cl.
The selection of potential relevant covariables was performed in two steps. First, we 

applied a stepwise logistic regression with the AIC (Akaike information criterion) as the 
selection measure. This lead to the inclusion of the age, the BMI, the current smoking 
status, and the former smoking status. Next, we regarded this selection of variables in 
the final models jointly with the GRS and air pollutants. We excluded covariables which 
worsened the models, i.e., which lead to lower AUCs. After this procedure, only the age 
was left.

Analysis of association and predictive strength

The analysis was conducted in a repeated train-test split scheme. For 100 repetitions, 
we randomly divided the whole data set into 50% training data and 50% test data similar 
to Hüls et al. [11]. The respective training data sets were further randomly divided into 
75% training data for hyperparameter tuning and 25% validation data (for the considered 
values of the hyperparameters, see “Section  Hyperparameter optimization”). The best 

(6)logit(P(Y = 1)) = β0 + β1 ·GRS+ β2 · E + β3 ·GRS · E +
l

∑

i=1

γi · Ci
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performing hyperparameter setting across the average of these 100 validation iterations 
was chosen.

Results of the real data application

A descriptive summary of the most important variables gathered in the data set from the 
SALIA study is given by Table 5. Most noticeably, we considered an unbalanced data set 
with 394 controls and 123 cases considering prevalent rheumatic diseases.

Univariate regression models

In the analysis of the data of the SALIA study, Table 6 summarizes the median p-values 
of GRS analyzed in univariate regression models as in Eq. (5). When testing the influence 
of the GRS on the risk of developing rheumatoid arthritis, conventional random forests 
and logic bagging are the only models achieving significance at a significance level of 5% 
for at least 50% of the evaluations.

Figure 6 summarizes the test AUC values for the tree-based statistical learning proce-
dures and elastic net induced by univariate regression models only based on the GRS. 
For the gene-based approach, most noticeably, random forests and logic bagging yield 
the highest AUCs where random forests achieves a slightly better performance than 
logic bagging. Ordinary logic regression and random forests with a prior variable selec-
tion induce similar results which cannot compete with conventional random forests and 

Table 5  Descriptive statistics of the regarded data set from the SALIA study stratified according to 
the status of rheumatic diseases

Variable Controls Cases

N 394 123

Mean age [years] ± sd 70.87± 3.16 71.50± 2.96

Mean BMI [kg/m2] ± sd 26.42± 3.93 27.46± 3.86

N Currently smoking 21 (5.44%) 5 (4.07%)

N Formerly smoking 61 (15.80%) 15 (12.20%)

Mean pack-years of smoking [years] ± sd 3.78± 10.92 2.85± 9.25

Mean NO2 [μg/m3] ± sd 26.66± 7.34 27.94± 7.69

Mean NOx [μg/m3] ± sd 41.34± 17.71 44.10± 17.68

Mean PM10 [μg/m3] ± sd 26.99± 2.16 27.39± 2.42

Mean PMcoarse [μg/m3] ± sd 9.52± 1.66 9.81± 1.84

Mean PM2.5 [μg/m3] ± sd 17.94± 1.38 18.23± 1.50

Mean PM2.5 absorbance [μg/m3] ± sd 1.47± 0.46 1.58± 0.59

Table 6  Median p-values of the Wald tests for univariate models only including the GRS built on the 
SALIA data set

Algorithm Median p value

Random forests 0.018

Random forests VIM 0.167

Logic regression 0.353

Logic bagging 0.021

Elastic net 0.512
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logic bagging. However, the elastic net yields the lowest AUCs. Here, the lower quartile 
of the AUCs yielded by the elastic net reaches 50%, i.e., the predictive performance of a 
(non-informative) constant classifier.

In addition to gene-based GRS, we also constructed genome-wide GRS based on a 
recent GWAS meta-analysis regarding rheumatoid arthritis [72]. A specific comparison 
of the predictive power between the gene-based and genome-wide approaches is sum-
marized in Fig. 6. However, for the genome-wide selection of SNPs, barely a signal can 
be observed in our sample as the AUCs on the test data sets were close to 50%. Thus, the 
genome-wide GRS construction approach was not included in subsequent analyses. The 
inferior predictive performance compared to the gene-based selection is possibly caused 
by the exclusion of HLA genes in the underlying meta-analysis. Nonetheless, the elastic 
net induces the lowest values for the AUC compared to the tree-based methods which is 
in line with our previous experiments. In contrast to the gene-based approach, random 
forests VIM yields a predictive power that can compete with ordinary random forests 
and logic bagging.

Gene‑environment interaction analysis

In the final adjusted models of the form as in Eq. (6), we regarded each air pollutant 
indicator separately and included the respective GxE interaction term. Neither the GRS 
themselves nor the GxE interaction terms are significant at a significance level of 5%. 
The concrete median p-values of the 100 repetitions for the final adjusted models can be 
found in Additional file 1: Table S2.

Figure 7 depicts the predictive performance of the considered statistical learning algo-
rithms for the induction of gene-based GRS in multivariate regression models. Analo-
gously to the univariate analysis, random forests and logic bagging yield the highest 
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Fig. 6  AUC for random forests, random forests VIM, logic regression, logic bagging, and elastic net in the 
application to data from the SALIA study evaluated on the test data. Results for single unadjusted models also 
considering the alternative genome-wide construction approach
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predictive power where the overall best values are reached for PM2.5 . For this air pol-
lutant, random forests achieves the best performance. The elastic net, random forests 
VIM, and logic regression yield similar performances which, again, cannot compete with 
random forests and logic bagging.

We also evaluated the GRS on the training data sets themselves. The best perform-
ing procedures random forests and logic bagging tend to heavily overfit the data as can 
be seen by the high discrepancy between the test and the training data analyses. These 
two algorithms achieve training AUCs of nearly 100% whereas the other methods lead to 
more homogeneous results. The corresponding AUCs can be found in Additional file 1: 
Fig. S24.

Smoking is a major risk factor for rheumatoid arthritis [75]. As can be seen in Table 5, 
the fractions of current smokers and former smokers in the excerpt from the SALIA 
study are higher among controls than among cases which is in contradiction to the lit-
erature. Since only 19.7% of the study participants in the data excerpt are current or 
former smokers, we conducted a sensitivity analysis excluding all current and former 
smokers from the data. Again, we are not able to identify any significant GxE interac-
tions. The resulting AUCs are very similar to the former analysis. Random forests and 
logic bagging yield the highest test AUC values, whereas elastic net induces substantially 
lower values. The concrete results can be found in Additional file 1: Fig. S25.

Discussion
In this analysis, we evaluated tree-based statistical learning approaches for the construc-
tion of GRS. We used the elastic net as a reference model and analyzed the tree-based 
statistical learning methods in a simulation study considering several scenarios, focus-
ing on marginal and epistatic genetic effects, respectively. To confirm our findings, we 
constructed and assessed GRS on a real data set from the German SALIA cohort study.
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Fig. 7  AUC for random forests, random forests VIM, logic regression, logic bagging, and elastic net in the 
application to data from the SALIA study evaluated on the test data. Results for the final age-adjusted models 
with different air pollution indicators
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As our analyses showed, a modification of logic regression, namely logic bagging, was 
able to outperform the reference GRS construction procedure, the elastic net, in almost 
every scenario of the simulation study.

Similarly, logic bagging lead to a comparably strong predictive performance in the 
real data application. Logic regression could only compete when considering large effect 
sizes in the simulation studies and yielded inferior results in the analysis of the SALIA 
data. This indicates that logic regression fits highly variant models which can indeed 
benefit from a variance reduction via an ensemble approach like bagging. For larger 
genetic effects, bagging does not seem to be necessary due to a more consequent identi-
fication of the underlying signal.

Random forests lead to the best predictive performance on the real data set. Consid-
ering the simulation study, in a likewise comparable scenario, i.e., small data sets, low 
marginal genetic effects, and higher amounts of statistical noise, random forests could 
induce comparably high values for the AUC as well. In the analysis of marginal genetic 
effects, random forests’ performance decreased for increasing amounts of noise. This 
phenomenon can be partly explained by the random selection scheme of predictors for 
partitioning. The input variables are drawn with equal probabilities without replace-
ment. Therefore, considering the setting with 44 noise SNPs in the first simulation sce-
nario, in a decision tree branch where already three of the six influential SNPs and no 
noise are included, the probability of regarding one of the three remaining influential 
SNPs for the next split with the standard setting mtry = ⌊

√
50⌋ = 7 is about only 39%. 

Thus, choosing a set of SNPs containing only statistical noise is more likely in this case. 
We also allowed higher settings for mtry in the hyperparameter optimization as could be 
seen in Table 4. For higher amounts of statistical noise, the higher setting for mtry could 
in fact increase the performance of random forests.

A related issue was the high amount of overfitting by random forests which could 
be observed in all three simulation scenarios as well as in the real data application. We 
addressed this by considering minimum terminal node sizes of up to 10% of the number 
of observations in each leaf and by performing a prior variable selection based on vari-
able importance measures. The former solution, i.e., the tuning of the minimum node 
size, was important to optimize the performance on the general population, since the 
standard setting is set to one observation for classification trees. However, for appropri-
ate probability estimates, Malley et al. [35] recommend choosing 10% of the total sample 
size.

The latter approach, i.e., the usage of random forests VIM, needed higher amounts of 
statistical noise and stronger marginal genetic effects to achieve test data performances 
comparable to random forests. Nonetheless, this alternative approach could substan-
tially reduce the amount of overfitting in any case. Presumably caused by weak indi-
vidual genetic effects, random forests VIM yielded an inferior predictive performance 
compared to ordinary random forests on the application to the SALIA data. However, in 
the analyses conducted by Speiser et al. [76], the random forests VIM approach utilizing 
the Boruta variable selection was able to yield lower error rates than conventional ran-
dom forests. Thus, studies specifically comparing random forests variable selection pro-
cedures with conventional random forests in low signal-to-noise ratio scenarios, such as 
applications considering SNP data, might be beneficial.
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The reference procedure, the elastic net, could not compete with logic bagging and 
random forests when considering stronger gene-gene interaction effects. Even for solely 
marginal genetic effects, the regularization procedure had difficulties achieving AUCs as 
high as the ones of logic bagging. However, for strong GxE interaction effects, the elas-
tic net could induce similar predictive performances as random forests. Before decid-
ing to choose the penalty parameter � based on the minimum cross-validation error, we 
evaluated the elastic net based on the maximum � which yielded a cross-validation error 
in the range of one standard error of the minimum error. This approach is also recom-
mended by Waldmann et al. [77] for GWAS-level amounts of SNPs and used by Hüls 
et al. [49] for the construction of GRS. However, in our applications including both the 
simulation study and the real data application, the elastic net had difficulties recognizing 
a signal at all with this approach which was presumably caused by high errors in general. 
Thus, we chose the minimizing � which enhanced our fitted elastic net models.

In practice, the conventional {0, 1, 2} SNP coding is utilized when constructing GRS 
with regularized regression approaches such as the elastic net [11, 16]. Thus, we focused 
on this standard procedure in our analyses, which lead to comparatively weak perfor-
mances. However, when splitting each considered SNP into two binary variables, i.e., 
when using the binary {0, 1} SNP coding also for the elastic net, its performance in the 
simulation study increased due to now being able to differentiate between the dominant 
and recessive modes of inheritance. Therefore, the results for the {0, 1} SNP coding sug-
gest that it might be preferable to employ the {0, 1} coding when fitting GRS using the 
elastic net. Nonetheless, logic bagging still yielded higher predictive performances than 
the elastic net in the gene-gene interaction simulation scenario when considering the 
{0, 1} coding for all procedures.

The most important advantage of the tree-based methods regarded in this article is to 
not being restricted to model assumptions such as linearity, i.e., being able to autono-
mously detect gene-gene interactions. The assumption of oversimplified genetic archi-
tectures in linear models might be the main cause for random forests and logic bagging 
outperforming the elastic net in most analyses. However, it is well known that gene-gene 
interactions also play a role in the heritability of diseases [8, 9].

Another practically interesting question would be, how well the introduced tree-based 
methods can construct GRS for significantly larger amounts of SNPs, e.g., when using 
a broader SNP selection from GWAS. Winham et al. [22] found in their studies that for 
increasing amounts of SNPs, the identification of interactions becomes more difficult 
for random forests. For logic regression, with increasing amounts of explanatory vari-
ables, the amount of possible states increases linearly, therefore, requiring more simu-
lated annealing iterations and generally deeper greedy searches and, hence, increasing 
the model fitting time. This model building time must be further increased when consid-
ering higher values for the parameters of maximum trees and maximum leaves which is 
reasonable due to potentially more influential predictors for more total input variables.

Unsurprisingly, elastic net models could be fitted and evaluated in the least amount 
of time due to their simplicity compared to the considered tree-based models. Ran-
dom forests with 2000 trees could be fitted and evaluated in less than 10  s in most 
cases. Random forests VIM needed slightly more time which was to be expected. 
Logic bagging models needed more time, however, conventional logic regression 
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models utilizing simulated annealing as search procedure consumed the most amount 
of time and needed up to 1 minute for fitting and evaluating the GRS. In Additional 
file 1: Fig. S1, the concrete times for the third simulation scenario are depicted.

For increasing odds ratios, the measured sensitivity decreases in the marginal 
effects and gene-gene interaction effect simulation scenarios, which does not seem 
to be plausible at first glance. However, this phenomenon can be explained by the 
data structure considered in this analysis and the requirement to dichotomize the 
risk predictions into two classes for estimating the sensitivity and specificity. For con-
structing GRS, discrete input variables, more exactly SNPs exhibiting three different 
outcomes, are used. Thus, the constructed and possibly true underlying GRS also fol-
low a discrete pattern depending on the SNP setting. For the marginal effects simula-
tion scenario, there are 7 distinct GRS values in the true underlying model due to Eq. 
(2). In Additional file 1: Fig. S26, a corresponding GRS distribution is depicted. Due to 
the additivity in this model, the GRS just below 0.5 occurs in approximately 30% of all 
observations. Therefore, dichotomizing the GRS at 0.5 leads to classifying only 35% of 
all observations as cases which explains the low sensitivity in this setting. Lowering 
the classification threshold to a value such as 0.45 shifts the issue to the specificity, 
since, in this case, only 35% of all observations will be classified as controls. Thus, the 
sensitivities and specificities determined in this analysis need to be interpreted with 
caution because of the discrete nature of the considered input variables.

In our real data application, we analyzed a relatively small data set containing 517 
observations with only 123 cases. The missing balance as well as the comparably low 
sample size complicated meaningful analyses, especially when considering the need 
for splitting the data set into training and test data sets. Generally, important covari-
ates such as the smoking status and the BMI were not included in the final models 
due to lowering the predictive performance. This decrease in performance was pre-
sumably caused by the low sample size and amount of cases yielding unintuitive sta-
tistics such as the higher fraction of smokers among controls.

Conclusion
As our analyses on simulated as well as on real data showed, the tree-based statis-
tical learning methods random forests and logic bagging can be valuable tools for 
constructing GRS. Especially when little prior knowledge about the gene-response 
relationships is available or if no appropriate external weights for the regarded disease 
or population are available, these two algorithms should also be taken into considera-
tion when building GRS. Regardless of the presence of gene-gene interactions in the 
heritability of a certain disease, the discussed methods have the potential to outper-
form regularized linear methods.
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