
BarWare: efficient software tools
for barcoded single‑cell genomics
Elliott Swanson1,2  , Julian Reading1  , Lucas T. Graybuck1*  and Peter J. Skene1*   

Background
The use of single-cell genomics has rapidly expanded due to high throughput, widely
used commercial technologies. Microfluidic droplet based platforms [11, 21] are
commonly used for single-cell RNA sequencing (scRNA-seq) due to their ease of use
and ability to sequence tens to hundreds of thousands of cells per experiment, and
competitive cost per cell. However, droplet-based methods also have inherent chal-
lenges including multiple cell capture (multiplets) and well-to-well variation. A strat-
egy to address these issues is Cell Hashing [17] Fig. 1), in which antibodies against
near-ubiquitously expressed surface proteins are conjugated to barcoded Hash Tag
Oligos (HTO) used to uniquely label samples (Fig. 1A). This allows samples to be
mixed and processed simultaneously in the same well to enable increased cell loading
and explicit doublet detection, even when multiple samples originate from the same
subject. In addition, samples can be mixed and loaded across multiple wells and/or

Abstract 

Background:  Barcode-based multiplexing methods can be used to increase through-
put and reduce batch effects in large single-cell genomics studies. Despite advantages
in flexibility of sample collection and scale, there are additional complications in the
data deconvolution steps required to assign each cell to their originating samples.

Results:  To meet computational needs for efficient sample deconvolution, we devel-
oped the tools BarCounter and BarMixer that compute barcode counts and decon-
volute mixed single-cell data into sample-specific files, respectively. Together, these
tools are implemented as the BarWare pipeline to support demultiplexing from large
sequencing projects with many wells of hashed 10x Genomics scRNA-seq data.

Conclusions:  BarWare is a modular set of tools linked by shell scripting: BarCounter, a
computationally efficient barcode sequence quantification tool implemented in C; and
BarMixer, an R package for identification of barcoded populations, merging barcoded
data from multiple wells, and quality-control reporting related to scRNA-seq data.
These tools and a self-contained implementation of the pipeline are freely available for
non-commercial use at https://​github.​com/​Allen​Insti​tute/​BarWa​re-​pipel​ine.

Keywords:  Single-cell RNA-seq, Cell hashing, Demultiplexing, Genomics

Open Access

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​
creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​mmons.​org/​publi​
cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

SOFTWARE

Swanson et al. BMC Bioinformatics (2022) 23:106
https://doi.org/10.1186/s12859-022-04620-2 BMC Bioinformatics

*Correspondence:
lucasg@alleninstitute.org;
peter.skene@alleninstitute.
org
1 Allen Institute
for Immunology, Seattle,
WA, USA
Full list of author information
is available at the end of the
article

http://orcid.org/0000-0002-0351-6446
http://orcid.org/0000-0002-8533-3992
http://orcid.org/0000-0002-8814-6818
http://orcid.org/0000-0001-8965-5326
https://github.com/AllenInstitute/BarWare-pipeline
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-022-04620-2&domain=pdf

Page 2 of 14Swanson et al. BMC Bioinformatics (2022) 23:106

microfluidic chips, eliminating common sources of technical variation and mitigating
the risk of sample dropout due to loss of any single well (Fig. 1A). We have recently
implemented this approach at scale for multimodal immunomonitoring of patient
samples to study the immune system [5].

With the advantages of Cell Hashing come additional complications related to data
processing: samples are no longer directly associated with a single set of well indi-
ces and must be demultiplexed at two levels, both by well and by sample, for down-
stream analysis (Fig. 1B). Previously published tools for barcode quantification were
very flexible but slow and did not include the ability to easily repartition count matri-
ces for each sample. To implement Cell Hashing at scale, we developed BarWare, an
efficient and comprehensive pipeline consisting of two modular tools linked by shell
scripting: BarCounter, for fast, efficient tabulation of HTO counts per cell barcode,
and BarMixer, an R package that provides code to quickly redistribute samples across
wells and report results and quality control (QC) metrics in user-friendly reproduc-
ible RMarkdown reports.

We show that BarCounter outperforms other Hash Tag Oligo (HTO) counting tools
and demonstrate the BarWare Cell Hashing pipeline using a large benchmark data-
set generated by progressive overloading of the 10x Chromium v3 3′ RNA-seq assay.
These capabilities, combined with an emphasis on automated quality control report-
ing, make BarWare a scalable, user-friendly, and comprehensive toolkit for Cell Hash-
ing that can be efficiently applied to large-scale sequencing projects with many wells
of 10x 3′ RNA-seq data.

B

A

Subject 1

Day 1

1. Flexible Sample Collection

Day 2

S1D1
sample

S2D1
sample

Subject 2

Subject 1

S1D2
sample

S2D2
sample

Subject 2

3. Sample mixing and distribution

Labeled
samples

Mixed
samples

Distribute
across wells

10x chip(s)

2. Sample Labeling with HTOs

S1D1
sample

S2D1
sample

S1D2
sample

S2D2
sample

Ab-PCR-TGATGGCCTATTGGG-B-polyA
Ab-PCR-AGTAAGTTCAGCGTA-B-polyA

Ab-PCR-GTCAACTCTTTAGCG-B-polyA
Ab-PCR-TTCCGCCTCTCTTTG-B-polyA

CellBC

Read 1
scRNA-seq Library

HTO Library

Read 2

Read 1 Read 2

UMI RNA

mixed cell x gene

cell-to-sample
associations
not known

cell x HTO cell x sample origin

count matrix

UMI matrix

UMI HTO
CBC HTO category
AAG... 1 singlet
CGA... 3,4 doublet
TCC... 5 singlet

cellranger
count

BarCounter BarMixer
Parse HTOs

BarMixer
Split Samples

BarMixer
Merge Samples

sample cell x gene

UMI matrix
sample cell x gene

UMI matrix
...

separate cell x gene

combined across wellssplit from each well

UMI matrices

101001
021041
000100
505321
001100

100012
020100
000033
501200
000101

01
41
00
21
00

10
10
01
53
11

10
02
00
50
00

110001
100201
013000
531030
110000

118001
090030
116100
010900
100107

CellBC

Fig. 1  Overview of the Cell Hashing workflow. A Sample collection and distribution overview. Cell Hashing
allows flexible sample collection, including collection of multiple samples over time from the same donor.
Each sample can then be thawed and stained with antibodies conjugated to Hash Tag Oligos (HTOs),
each of which contains a unique barcode sequence. Once stained, samples can be mixed and distributed
across wells for processing to reduce batch effects. B BarWare pipeline overview. After sequencing, two
libraries are generated for each 10x Genomics Chromium well: a RNA library, and a HTO library. RNA libraries
are aligned and converted UMI count matrices containing cell x gene counts (top), and HTO libraries are
counted by Barcounter to generate cell x HTO counts (bottom). BarMixer is then used to convert HTO counts
to sample assignments for each cell. BarMixer then combines sample assignments with the scRNA-seq to
split sample data within each well, and finally merges data from each sample from all wells to generate
sample-specific output. CellBC, Cell Barcode; UMI, Unique Molecular Identifier; HTO, Hash Tag Oligonucleotide

Page 3 of 14Swanson et al. BMC Bioinformatics (2022) 23:106 	

Implementation
Efficient barcode counting with BarCounter

We identified HTO counting as a significant bottleneck in the processing of Cell Hashing
data. In particular we found that a popular and widely used tool, CITE-seq Count [15],
scaled poorly to highly overloaded wells both in terms of processing time and memory.
As the cost of single-cell sequencing continues to decline, large Cell Hashing and CITE-
seq experiments on the order of hundreds of thousands to millions of cells are being
generated. To facilitate rapid and parallel processing of large datasets we developed Bar-
Counter: a fast, scalable HTO counting program implemented in C and optimized with
speed and memory use in mind. Briefly, BarCounter parses paired-end FASTQ data into
cell barcode, Unique Molecular Identifier (UMI), and hashtag sequences, then matches
barcodes and hashtags against a user-provided cell barcode whitelist and hashtag
sequence list, respectively. To account for sequencing errors, BarCounter allows a single
base mismatch in hashtag sequences and a single low quality basecall (Q < 20) mismatch
in cell barcodes. BarCounter processes each read independently and utilizes the trie data
structure (also known as a prefix tree) to perform cell barcode and UMI lookups in con-
stant time (Fig. 2A–C).

Assignment of counts to hashed populations

The BarMixer package includes tools to convert raw HTO counts from BarCounter into
assignments of each cell to their sample of origin. BarMixer assigns barcodes as “singlet”,
“doublet”, “multiplet”, or “no hash” based on dynamically determined UMI cutoffs spe-
cific to each hash sequence in each well. For each hashtag, a distribution of HTO counts
across all cell barcodes is generated, and a cutoff value delineating positive and nega-
tive barcodes is assigned (Fig. 2G and “Methods”). Barcode categories are determined
based on the number of positive hashes, e.g. cell barcodes positive for a single hash are
classified as singlets. Barcodes are labelled with sample names corresponding to each

Fig. 2  Implementation of BarCounter and BarMixer. A Trie data structures are used in BarCounter to
efficiently tabulate barcode frequencies. B Diagram of HTO read structure. Read 1 contains the 16 bp cell
barcode and the 12 bp UMI. Read 2 contains the 15 bp hashtag. C Overview of the BarCounter workflow.
At runtime, the user provides a barcode whitelist which is loaded into a trie for rapid lookups, a taglist
containing all valid hashtag sequences, and paired Read 1 and Read 2 FASTQ files. For each read, checks are
performed to verify the cell barcode exists in the barcode trie, and the hashtag sequence is in the taglist.
The UMI sequence is checked against a trie and if it is not present, the trie is updated and the counts for
the barcode and hashtag combination are incremented. D–F Benchmarking comparisons of BarCounter
and other available HTO counting algorithms as a function of increasing cell loading per 10x Genomics
well: cellranger count (10x Genomics); CITE-seq-Count (with or without barcode correction, [15], KITE, [4]
(single-threaded or with 8 threads). D Maximum memory usage, E Average CPU load, F Elapsed time.
G Overview of the barcode cutoff determination method used by BarMixer: Raw counts generated by
BarCounter are clipped to remove low values, then log transformed, and used as input to 2-cluster K-means.
If cluster medians are separable, the cutoff is set to the lowest value in the positive cluster. Note broken
y-axis in the first two panels. H–L Visualizations provided by BarMixer QC reporting notebooks. H HTO count
histograms (green bars) with cutoff values (blue lines), I Fractions of barcodes and reads attributed to singlets
(dark blue), doublets (light blue), and multiplets (purple), J Counts of cells in each hashing category per
well in a batch, K Number of UMIs per cell in each HTO category, L Number of genes per cell in each HTO
category

(See figure on next page.)

Page 4 of 14Swanson et al. BMC Bioinformatics (2022) 23:106

positive hash. Processing metrics are organized into JavaScript Object Notation (JSON)
and HTML reports for convenient automated and visual quality control.

Distribution of cells with BarMixer

Sample-specific datasets are prepared via BarMixer by performing three key steps. For
each well, BarMixer annotates Cell Ranger filtered HDF5 files with QC characteristics
and cell metadata. Then, BarMixer uses the sample assignments for each cell to split data
into separate HDF5 files by sample. Finally, BarMixer merges data across all processed
wells based on the sample assignments. This yields a separate, merged HDF5 file for each
sample, a merged HDF5 file for all multiplets, and metric reports in JSON and HTML

D E F

12

16

20

24

Max. Memory (lower is better)

300

400

500

600

CPU Load (lower is better)

15

60

120

240

480 Software

BarCounter

Cell Ranger count

CITE−seq−Count (− correction)

CITE−seq−Count (+ correction)

Elapsed Time (lower is better)

Fraction of
cell barcodes

Fraction of
Reads

J

2735BW-NIV-1 | TTCCGCCTCTCTTTG 2735BW-NIV-2 | AGTAAGTTCAGCGTA

2735BW-NON-1 | AAGTATCGTTTCGCA

0
2000

26763
428

16k
Cells Loaded

24k 32k 48k 64k 80k

1613

8738
HTO Category Counts per Well

HTO Category
doublet

multiplet

no hash

singlet

K L

100

500

1k

5k

10k

50k

100k

250k

100

500

1k

5k

10k

50k

100k

250k

HTO Category HTO Category

do
ub

le
t

lo
g 10

(N
 U

M
Is

 p
er

 C
el

l)

lo
g 10

(N
 G

en
es

 p
er

 C
el

l)

m
ul

tip
le

t

no
 h

as
h

si
ng

le
t

do
ub

le
t

m
ul

tip
le

t

no
 h

as
h

si
ng

le
t

co
un

ts
N

 c
el

ls

co
un

ts

co
un

ts

co
un

ts

4000
6000

0
1000
2000

4000
3000

0
1000
2000

5000
4000
3000

0
1000
2000
3000

0 0

log10(HTO Count)
0 1 2 3 4 5

log10(HTO Count)
0 1 2 3 4 5

log10(HTO Count)
0 1 2 3 4 5

log10(HTO Count)
0 1 2 3 4 5

log10(HTO Count)
0 1 2 3 4 5

log10(HTO Count)
0 1 2 3 4 5

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.002735BW-NON-2 | GGTGCCAGATGTCA

I
H

0

4

8

16 24 32 48 64 80
N Cells loaded (thousands)

m
ax

im
um

 re
si

de
nt

 s
et

 s
iz

e
(G

B
)

0

100

200

16 24 32 48 64 80

pe
rc

en
t C

P
U

 lo
ad

1

5

16 24 32 48 64 80

el
ap

se
d

tim
e

(m
in

ut
es

)

KITE (1 thread)

KITE (8 threads)

2735BW-MEM-1 | GTCAACTCTTTAGCG 2735BW-MEM-2 | TGATGGCCTATTGGG

co
un

ts

co
un

ts

1000
2000

2000

4000
3000

16k cells 80k cells

Cell Barcode (16 bp) UMI (12 bp) Hashtag (15 bp)

Read 1 Read 2

A T C G

AT C CG

Level 1 (root node)

(barcode start)Level 2

Level 3

G A T C G (barcode end)Level 17

Barcode
Whitelist

Antibody
Taglist

Read 2
FastQ

Read 1
FastQ

load whitelist
barcodes into trie

read taglist
into memory

read hashtag

lookup
barcode in trie

if UMI is unique,
increase count

for hashtag

Output results for all barcodes
with positive total counts

ensure hashtag
is in taglist

parse into cell
barcode and UMI

(Per read pair)

A

B

C

G HTO counts Remove count
values < 10

log10 transform
values

2-center
K-means

Do centers
differ by 4-fold?

Set cutoff at min. value
in high cluster

0

500

1000

1500

0 500 1000 1500 2000
HTO UMIs

N
 B

ar
co

de
s

1.0 1.5 2.0 2.5 3.0 3.5
log10(HTO UMIs) 10 10

c2 / c1 = 67.06

1.0 1.5 2.0 2.5 3.0 3.5
log (HTO UMIs)

cutoff = 119

1.0 1.5 2.0 2.5 3.0 3.5
log (HTO UMIs)

c2c114500
15000

0 500 1000 1500 2000
HTO UMIs

8500

9000

Fig. 2  (See legend on previous page.)

Page 5 of 14Swanson et al. BMC Bioinformatics (2022) 23:106 	

format. Reports include relevant sequencing QC metrics, alignment distributions by
barcode category, UMI and gene count distributions by hashtag, and median count data
by both sample and well.

Progressive cell overloading to assess demultiplexing

We evaluated the BarWare pipeline and related tools by conducting a progressive cell
overloading experiment (Fig. 3). We used fluorescence activated cell sorting (FACS) to
separate a sample of peripheral blood mononuclear cells (PBMCs) into naïve T cells,
memory T cells, and non-T cell PBMC populations. Each sorted population was divided
into two technical replicates for a total of six samples that were stained with commer-
cially available HTO antibodies (BioLegend TotalSeq-A). The six samples were pooled
together and loaded into six wells of a 10x Chromium v3 3′ RNA-seq chip at inputs of
16k, 24k, 32k, 48k, 64k, and 80k cells per well (Fig. 3A). Sequencing depth was scaled
linearly with predicted cell recovery by well. Hashtag read counts ranged from approxi-
mately 40M for 16,000 cell loading to ~ 163M for 80,000 cell loading (Additional file 3:
Table S3). This dataset provides a unique test case for HTO counting that is applicable
across a wide range of cell numbers and read counts.

Results and discussion
Comparison of BarCounter to HTO counting tools

We compared BarCounter to other popular software tools for HTO counting, includ-
ing CITE-seq-Count (with and without optional UMI correction), Cell Ranger count
(10x Genomics), and kallisto indexing and tag extraction (KITE) in both single and mul-
tithreaded modes [4]. Some of these methods perform computationally costly Unique
Molecular Identifier (UMI) correction because sequencing errors may artificially inflate
UMI counts and distort the data. This correction is important for rare transcripts or
markers, but commercially available HTO barcode sequences have a universal minimum
hamming distance of three bases to ameliorate the risk of hashtag misidentification.

To evaluate the accuracy of BarCounter compared to a method including UMI cor-
rection, we ran BarMixer (described below) with HTO counts from either BarCounter
or CITE-seq count with UMI correction and compared overlap in barcode classification
and sample identification. For each of the six mixed wells, over 99.8% of barcodes iden-
tified as singlets were identical between the two methods (Additional file 1: Table S1).
Across all wells, 113,414 barcodes were identified as singlets by BarCounter, only 60 of
which were identified as doublets by CITE-seq Count. Counts for the top two hashtags
for these barcodes differed between the methods by an average of 3.8% and 2.5% respec-
tively, with the majority of barcodes having a count ratio between the top two hashtags
greater than three, supporting their classification as singlets (Additional file 2: Table S2).
All 113,268 barcodes identified as singlets by both tools had matching sample identity
classifications. Therefore, the high dynamic range between positive (bound) and nega-
tive (unbound) HTO populations for each cell barcode enables hashtag analysis to be
performed without computationally expensive UMI correction with little loss of accu-
racy in sample identification and doublet detection.

Page 6 of 14Swanson et al. BMC Bioinformatics (2022) 23:106

A

B C

E

G H

F

D

2. Cell Type FACS 3. Split replicates and Add barcodes 4. Pool 5. Overload

Non-T
Non-T

Rep. 1

Rep. 2

Naive T

Naive T
Memory T

Memory T

Non-T Naive TMemory T

10x chip

Pooled cells per well

Sample wells

1. Ficoll Gradient
 Centrifugation

Retain
PBMCs

16k 24k 32k 48k 64k 80k

−10

0

10

−10 −5 0 5 10
UMAP 1

U
M

A
P

 2

4842

0

0

0

0

0

0

4587

3958

2737

2274

1550

Replicate
Population Memory T Naive T Non-T

N
 C

el
ls

Well

1

2

3

4

5

6

1 2 1 2 1 2

16,000

24,000

32,000

48,000

64,000

80,000

8,297

11,982

15,180

20,717

23,905

25,314

Loaded
N Cells

−10

0

10

−10 −5 0 5 10
UMAP 1

U
M

A
P

 2

UMAP colored by Pooled Well

UMAP colored by Sample

Cells per sample in each Pooled Well

−10

0

10

−10 −5 0 5 10
UMAP 1

U
M

A
P

 2

UMAP colored by Cell Type (Seurat L2)

Singlets

Replicate
Population Memory T Naive T Non-T

1 2 1 2 1 2

Memory T, Rep. 1

Memory T, Rep. 2

Naive T, Rep. 1

Naive T, Rep. 2

Non-T, Rep. 1

Non-T, Rep. 2

Well 1 (16k)

Well 2 (24k)

Well 3 (32k)

Well 4 (48k)

Well 5 (64k)

Well 6 (80k)

B intermediate

B memory

B naive

CD14 Mono

CD16 Mono

cDC2

ILC

NK

NK_CD56bright

Other

CD4 CTL

CD4 Naive

CD4 TCM

CD4 TEM

CD8 Naive

CD8 TCM

CD8 TEM

dnT

gdT

MAIT

Treg

Seurat L2 Cell Types

Naive T

Memory T

Other T

Non-T

CD14 Mono

CD16 Mono

cDC2

B intermediate

B memory

B naive

ILC

NK_CD56bright

NK

Other

CD8 Naive

CD4 Naive

dnT

CD4 TCM

CD4 TEM

CD4 CTL

MAIT

CD8 TEM

Treg

CD8 TCM

gdT

0

1

Fraction of
Cell Type

KLRD1

CD79A

CST3

HLA-DRA

CCR7

S100A4

ITGB1

CD3D

Marker gene Marker population

NK cells,
CD8 Mem.

B cells

Myeloid cells

Antigen Presenting cells

Naive T

Memory T, Myeloid

Memory T

T cells

0.6

log10(Median of Non-Zero Normalized Expression)

0.9 1.2 1.5

Fraction of cells
with > 0 expression

0.25

0.50

0.75

1.00

0 1.6 0 1.5 0 2.2 0 1.3CD3D ITGB1 S100A4 CCR7

0 2.5HLA-DRA 0 2.4CST3 0 1.8CD79A 0 1.6KLRD1

Fig. 3  Cell type sorting and progressive overloading to assess overloading and deconvolution. A Overview of
the workflow for generating the progressively overloaded dataset. PBMCs purified from a Ficoll gradient were
sorted into three populations using FACS. Each population was split and stained with a hashing antibody.
All samples were then pooled, and were loaded at increasing cell count into the wells of a 10x 3′ scRNA-seq
chip. B Bar plot showing the cell counts from each population (x-axis) in each well (y-axis). C UMAP plot of
all singlets (n = 105,395 cells) colored based on which well the mixed samples were loaded into. D Heatmap
colored based on the fraction of cells from each hashed population assigned to each cell type using Seurat
v4.0 label transfer methods. E UMAP plot, as in C, colored based on the sorted and hashed replicates.
F UMAP plot, as in C, colored based on cell type assignments from Seurat v4.0 label transfer (legend to
the right). G Dot plot showing the expression of well-known, population-specific marker genes for each
replicate. Size corresponds to the fraction of cells in each group with > 0 expression. Color corresponds to
the log-transformed median of all non-zero, normalized values in each group. H Overlay of the marker gene
expression values per cell on the UMAP plot used in panel C. Color corresponds to normalized expression
values. Color scales are independent per panel, with ranges indicated by the legend at the top-right of each
plot

Page 7 of 14Swanson et al. BMC Bioinformatics (2022) 23:106 	

For each Cell Hashing well, we processed HTO FASTQ data using each tool and
tracked performance using the Linux “time -v” command. For each well, BarCoun-
ter had the lowest memory usage (defined as maximum resident set size), lowest CPU
usage, and lowest user (CPU) time. BarCounter was fastest in real (wall clock) time
across all comparisons with the exception of the 64,000 and 80,000 cell wells, in which
eight-threaded KITE processing was 7% and 15% faster, respectively (Fig. 2D–F). Due to
the low-dimensional nature and inherent background signal of HTO data, we opted to
output results in the universally readable comma separated values (CSV) format rather
than a sparse matrix format. Despite this change, BarCounter outputs were the smallest
in terms of disk space across all comparisons (Additional file 4: Table S4).

Based on these performance metrics, we estimate that data from an eight well experi-
ment loading 16,000 cells and sequencing to a depth of 40M reads (~ 2500 reads per cell
in this experiment) per well could be processed in parallel on a modest 8 CPU, 20 GB
RAM computer in less than five minutes. These results demonstrate that BarCounter is
ideally suited for the parallel processing of large Cell Hashing datasets, including when
well number, cell recovery, and sequencing depth are high.

Separation of sample data using BarMixer

We developed a second tool to apply Cell Hashing to samples distributed across multiple
wells (Fig. 1B). BarMixer is an R package and set of Rmarkdown notebooks that enables
separation of samples within each well (splitting by hash) and reassembly of each sample
across all wells into sample-specific output files (merging by hash). First, HTO counts
generated by BarCounter are processed to identify a threshold value for each HTO bar-
code, assign each cell barcode to its corresponding sample(s) as a singlet, doublet, or
multiplet (Fig. 2G, “Methods”), and generate an HTML-based report for HTO category
counts and cutoffs (including Fig. 2H). Then, HDF5-formatted count matrix results from
Cell Ranger count (10x Genomics) are preprocessed to add multiple points of cell meta-
data, assign each cell barcode with a universally unique identifier (UUIDs) to avoid cell
barcode conflicts between wells, and generate a QC report for each well. Next, the HTO
category and count data, as well as the metadata-tagged HDF5 count matrix file are used
to split each well, create separate HDF5 files for each sample and a separate file for mul-
tiplets, and generate a report of sample metadata for each well (including RNA-seq read
usage as displayed in Fig. 2I). Finally, the results from each sample across all wells are
merged into a single output file per sample, and a final report summarizing HTO catego-
ries and RNA-seq QC characteristics is generated for all wells (including Fig. 2J–L). This
modular series of steps and reporting allows for rapid assessment of results using the
final summary report, as well as step-by-step troubleshooting of each major process in
the sample demultiplexing pipeline.

Evaluation of sample assignments

To evaluate the fidelity of BarWare’s sample assignments, we utilized the Barware pipe-
line to process a progressive cell overloading dataset, then performed analysis using Seu-
rat v4 [8] to confirm that the samples identified via Cell Hashing and the original FACS
sorted populations were in agreement (Fig. 3).

Page 8 of 14Swanson et al. BMC Bioinformatics (2022) 23:106

Following simple QC filtering, we performed dimensionality reduction, clustering, and
visualized the results using uniform manifold approximation and projection (UMAP).
We observed that cells from all eight wells were mixed evenly, there was complete overlap
between technical replicates, and that each sorted FACS population showed a high degree
of separation from the others (Fig. 3C, E). We then mapped our data onto the reference
PBMC CITE-seq dataset described in [8], and transferred the reference cell type labels to
our dataset (Fig. 3D, F). As expected, cells with hashes from the non-T cell FACS popula-
tion were assigned to non-T cell identities (32,069 of 32,199 cells; 99.6%), memory T cell
sorts were assigned memory T cell type identities (35,101 of 36,932 cells; 95%), and naïve T
cell hashes were most frequently assigned to naïve T cell and double-negative T cell (dnT)
identities (30,706 of 36,264 cells; 84.7%) (Fig. 3D–F).

We also visualized cell type-specific marker genes on our UMAP and found highly spe-
cific gene expression patterns that support the labelled cell type identities. Expression
of CD3D was restricted to the naïve and memory T cell populations, CD14 and MS4A1
(CD20) expression identified classical monocytes and B cells, respectively in the non T cell
population, and GNLY was specific to labelled NK and CD8 T cells (Fig. 3E). We divided
the T cell compartment into naïve and memory based on expression of CCR7 or S100A4
[7], respectively (Fig. 3F), and found their expression to be mutually exclusive and con-
strained to the expected FACS populations.

Taken together, the gene expression results show agreement between sample assignments
from FACS and Cell Hashing, and confirm that BarWare demultiplexes mixed samples to a
high degree of accuracy.

Conclusion
We have demonstrated the advantages and efficiency of BarWare through its application to
a large, multi-well Cell Hashing experiment representing a broad range of cell overloading.
BarCounter outperformed other HTO counting tools in terms of speed and computing
resources with no decrease in accuracy. BarMixer performs barcode demultiplexing and
provides thorough reports detailing QC metrics, and produces merged, sample-specific
analysis ready data files along with reports describing the results by sample, by well, and by
batch.

In addition, our cell overloading dataset demonstrated the utility of BarWare outputs in
simplifying downstream analysis of complex experiments. Merged outputs reduce the num-
ber of output files and eliminate manual separation of samples, while maintaining experi-
mental metadata such as the original 10x well, identified hashtag, and barcode classification.
BarMixer’s split and merge approach allows analysis of separate samples, independent of
the cell pooling performed at the bench, which we have utilized to enable scalable multi-
modal immunosurveilance studies [5]. We expect this feature to become increasingly ben-
eficial as other research institutes and large consortia scale single-cell data generation to the
order of tens of millions of cells. Finally, the cell overloading dataset provided with these
tools should be useful in the development of new methods for rapid sample demultiplexing.

BarWare provides a comprehensive set of tools which lowers the barrier to entry of Cell
Hashing workflows for small laboratories in the field of single-cell sequencing, and should
be useful for core facilities that can use cell hashing to mix and overload samples to increase
throughput and allow their customers to use only a fraction of one or many wells.

Page 9 of 14Swanson et al. BMC Bioinformatics (2022) 23:106 	

Methods
Sample processing

Biological specimens were purchased from Bloodworks Northwest as freshly drawn
whole blood. All sample collections were conducted by Bloodworks Northwest under
IRB-approved protocols, and all donors signed informed consent forms. PBMCs were
isolated in-house using Ficoll Premium (GE Healthcare, 17-5442-03), were cryopre-
served using Cryostor10 (StemCell Technologies, 07930), and stored in liquid nitrogen
until use. PBMCs were thawed at 37 °C using AIM V medium (Gibco, 12055091).

FACS

PBMCs were fluorescence activated cell sorted (FACS) into naïve T-cells (CD45+ CD3+
CD45RA+ CD27+), memory T-cells (CD45+ CD3+, excluding CD45RA+ CD27+)
and a non-T-cell bulk population (CD45+ CD3−). Briefly, cells were incubated with
TruStain FcX (BioLegend, 422302) for 10 min on ice, followed by staining with anti-
bodies (Additional file 6: Table S6) for 20 min on ice. Cells were washed with AIM V
medium plus 25 mM HEPES and sorted on a BD FACSAria Fusion. An aliquot of each
post-sort population was used to collect 2,000 events to assess post-sort purity.

Cell hashing

FACS sorted cells were stained according to the New York Genome Center Technology
Innovation Lab protocol (v2019-02-13; https://​cites​eq.​files.​wordp​ress.​com/​2019/​02/​
cell_​hashi​ng_​proto​col_​190213.​pdf). Briefly, one million cells of each population were
resuspended in 100 μl of staining buffer: DPBS without calcium and magnesium (Corn-
ing 21-031-CM) supplemented with 2% w/v BSA (Sigma-Aldrich A2934, “PBS + BSA”).
10 μl TruStain FcX (BioLegend, 422302) was added and cells were incubated on ice for
10 min, after which they were stained with 0.5 μg of a TotalSeq-A hashing antibody
(Additional file 6: Table S6) on ice for 30 min. Stained cells were washed three times with
1 mL of PBS + BSA. Cells from each population were pooled together in equal numbers
and passed through a 35 μm Falcon Cell Strainer (Corning, 352235). All cell counts were
performed using a Cellometer Spectrum Cell Counter (Nexcelom) using ViaStain Acrid-
ine Orange/Propidium Iodide solution (Nexcelom, C52-0106–5).

10x library preparation

Libraries were prepared using the Chromium Single Cell 3′ v3 reagent kit (10x Genom-
ics, 1000075) following the 10x Genomics User Guide (CG000183 Rev A), with the
only modification being cell overloading. All libraries were sequenced on an Illumina
NovaSeq S4 flowcell. Target read counts were 30,000 reads per cell for RNA libraries and
2,000 reads per cell for HTO libraries.

Data pre‑processing

Raw sequencing data was converted from BCL to FASTQ format using bcl2fastq2
(Illumina v2.20.0.422, parameters: –use-bases-mask = Y28,I8,Y91, –create-fastq-for-
index-reads, –minimum-trimmed-read-length = 8, –mask-short-adapter-reads = 8,
–ignore-missing-positions, –ignore-missing-controls, –ignore-missing-filter,

https://citeseq.files.wordpress.com/2019/02/cell_hashing_protocol_190213.pdf
https://citeseq.files.wordpress.com/2019/02/cell_hashing_protocol_190213.pdf

Page 10 of 14Swanson et al. BMC Bioinformatics (2022) 23:106

–ignore-missing-bcls, -r 18 -w 18 -p 50, –barcode-mismatches = 0). Gene expression
data was processed using Cell Ranger count(10x Genomics v4.0.0) and aligned to the
GRCh38 (hg38) reference genome (refdata-cellranger-atacGRCh38-1.1.0) with the
option –expect-cells set to 40,000 for all wells. After running Cell Ranger count, the
BarMixer Rmarkdown notebook add_tenx_rna_metadata.Rmd was used to prepare
Cell Ranger outputs for downstream analysis.

HTO counting

Hashtag counting was profiled using the Linux “time -v” command (GNU time v1.7,
https://​www.​gnu.​org/​softw​are/​time/) on a Google Cloud Platform Compute Engine
VM Instance with 12 vCPUs (Intel Skylake or later) and 78 GB of RAM. A list of fil-
tered cell barcodes provided by Cell Ranger count as “barcodes.tsv” files were used
as the barcode whitelist input to HTO counting software tools where necessary. Bar-
Counter was run with default parameters. KITE (v0.0.2, https://​github.​com/​pacht​
erlab/​kite, [4]) was run with default parameters and evaluated both single threaded
and using eight threads. Cell Ranger count was run in Feature Barcode Only mode
(10x Genomics v4.0.0, parameters: –nosecondary –nopreflight –disable-ui –expect-
cells = 40,000). CITE-seq Count was run with default parameters including UMI cor-
rection [15], https://​hoohm.​github.​io/​CITE-​seq-​Count/, v1.4.3, parameters: -cbf 1
-cbl 16 -umif 17 -umil 28 -cells 40,000), as well as without UMI correction by includ-
ing the additional parameter –no_umi_correction.

HTO category assignment

Cells were assigned to individual HTO-defined samples, doublet, multiplet, or no
hash categories using a multi-step process contained in the BarMixer package for R,
all of which are performed in sequence for a given well using the hto_processing.Rmd
script provided in BarMixer. The matrix of HTO counts per cell barcode is read from
BarCounter outputs, and cutoffs for positive or negative cell barcodes are defined
for each HTO separately. Cutoffs are determined by removing all counts below 10.
Then, a test of unimodality is performed using the modetest function from the mul-
timode package for R (v1.4 [1], parameters: method = “HH” and B = 20) to use the
Dip Test of Unimodality [9] with 20 replicates. If the distribution is unimodal, the
cutoff is set to the mean value plus 2 times the standard deviation of log-transformed
values. This allows capture of some positive hashes when the distribution of hashes is
not bimodal, though clear bimodal separation is ideal. If the distribution of counts
is not unimodal, the values are log-transformed, and 2 center K-means clustering is
performed using the base R kmeans function. Cluster centers are then compared to
determine if the higher center is more than fourfold greater than the lower center. If
so, the cutoff is set to the minimum value in the higher cluster. Otherwise, the cutoff
is set to the maximum value of all cell barcodes, and no barcodes are considered pass-
ing. After setting a cutoff for each HTO, cell counts are converted to a binary matrix
of passing (1 = greater than or equal to the cutoff) or failing (0 = less than the cutoff)
values, and the number of passing values are counted for each cell barcode. Cells with

https://www.gnu.org/software/time/
https://github.com/pachterlab/kite
https://github.com/pachterlab/kite
https://hoohm.github.io/CITE-seq-Count/

Page 11 of 14Swanson et al. BMC Bioinformatics (2022) 23:106 	

a single passing value are assigned to "singlets", two passing values to "doublets", more
than two passing values to "multiplets", and no passing values to "no hash" catego-
ries. This information is used to generate a table of hashing categories and the HTO
barcode(s) assigned to each cell barcode.

Splitting and merging data by sample

After performing HTO category assignment for each well, a second script in the Bar-
Mixer package, split_h5_by_hash.Rmd, is used to split singlet cells from each sample
and from non-singlet categories. This script reads both the HTO category assignment
table generated above for each well and the HDF5-formatted count matrix gener-
ated by Cell Ranger (10x Genomics). For each well, this script generates a separate
HDF5 file for each sample per well. After performing this split step for each well in
the experiment, a third script from BarMixer, merge_h5_by_hash.Rmd, assembles
the HDF5 files for each sample across all wells into a single HDF5 output, and uses
the combined information from these files to generate a comprehensive QC report
for data from all wells. All steps for category assignment, splitting, and merging can
be performed using wrapper script provided in the BarWare-pipeline repository, 02_
run_BarMixer.sh, available at https://​github.​com/​Allen​Insti​tute/​BarWa​re-​pipel​ine.

RNA‑seq analysis

Merged HDF5 files from the final step of the BarWare pipeline were used as input and
analyzed using Seurat (v4.0.3 [8]). Singlet data was read using the BarMixer (v1.2.0)
function read_h5_seurat and merged into a single Seurat Object . Low quality bar-
codes and extreme outliers were filtered out by subsetting barcodes with less than
25% mitochondrial counts, RNA UMI counts of at least 1000 and less than 25,000,
and at least 500 genes detected. We normalized the data using the Seurat function
SCTransform [6], performed dimensionality reduction using the RunPCA function,
generated a two-dimensional UMAP projection from the first 50 principal compo-
nents using the RunUMAP function, and clustered the cells using the first 50 prin-
cipal components using the FindNeighbors and FindClusters functions. We mapped
our dataset to a reference PBMC CITE-seq dataset from [8] using the FindTransfer-
Anchors function (parameters: dims = 1:50) and transferred cell type labels from the
reference to our dataset using the MapQuery function.

Data analysis and visualization software

Visualization of HTO profiling results and gene expression data was performed using
R v.3.6.3 and greater [13] in the Rstudio IDE or using the Rstudio Server Open Source
Edition [16] as well as the following packages: for data visualization, ggplot2 [18],
cowplot [20], ggrastr [12], pheatmap [10]; for general data analysis and manipula-
tion, dplyr [19], data.table [2], and janitor [3]; for scRNA-seq data analysis, Seurat [8].
Comparison of barcode classifications between HTO counting tools was performed
using Python (v3.7.3) and the Pandas module [14].

https://github.com/AllenInstitute/BarWare-pipeline

Page 12 of 14Swanson et al. BMC Bioinformatics (2022) 23:106

Availability and requirements
Project name: BarWare pipeline
Project home page: https://​github.​com/​Allen​Insti​tute/​BarWa​re-​pipel​ine
Operating system(s): UNIX/Linux operating systems.
Programming language: C, R, and bash
Other requirements: R v3.6.3 or higher
License: Allen Institute Software License (modified 2-clause BSD license)
Any restrictions to use by non-academics: redistribution and use for commercial

purposes restricted without further permission.

Abbreviations
CellBC: Cell Barcode; CSV: Comma Separated Values; FACS: Fluorescence Activated Cell Sorting; GEO: Gene Expression
Omnibus; HDF5: Hierarchical Data Format 5; HTO: Hash Tag Oligonucleotide; JSON: JavaScript Object Notation; KITE:
Kallisto Indexing and Tag Extraction; IRB: Institutional Review Board; PBMC: Peripheral Blood Mononuclear Cell; QC: Qual-
ity Control; scRNA-seq: Single-cell ribonucleic acid sequencing; UMAP: Uniform manifold approximation and projection;
UMI: Unique Molecular Identifier; UUID: Universally Unique Identifier.

Supplementary Information
The online version contains supplementary material available at https://​doi.​org/​10.​1186/​s12859-​022-​04620-2.

Additional file 1: Table S1. HTO category agreement across wells. Fraction of agreement of cell barcode assign-
ment to each HTO category for each pooled sample well based on BarCounter and CITE-seq-Count processing. Well:
Pooled sample well. Frac_singlet: Fraction of singlet calls that agree using BarCounter and CITE-seq-Count. Frac_dou-
blet: Fraction of doublet calls that agree using BarCounter and CITE-seq-Count. Frac_multiplet: Fraction of multiplet
calls that agree using BarCounter and CITE-seq-Count. Frac_no-hash: Fraction of no hash detected calls that agree
using BarCounter and CITE-seq-Count.

Additional file 2: Table S2. Barcode category assignment discrepancies. Counts and count-derived metrics
obtained for each of the top two hashes are shown for each cell barcode assigned to the singlet category Bar-
Counter results. but considered a doublet based on CITE-Seq-Count results. Well: Pooled sample well. Barcode:
Cell barcode. BarCounter_1st: Counts for the highest-scoring hash based on BarCounter. BarCoutner_2nd: Counts
for the second highest-scoring hash based on BarCounter. CITE_1st: Counts for the highest-scoring hash based
on CITE-seq-Count. CITE_2nd: Counts for the second highest-scoring hash based on CITE-seq-Count. Change_1st:
Difference in counts for the highest-scoring hash (BarCounter_1st—CITE_1st). Change_2nd: Difference in counts for
the second highest-scoring hash (BarCounter_2nd—CITE-seq-Count_2nd). Prop_Change_1st: Difference in counts
for the highest-scoring hash as a proportion of BarCounter counts (BarCounter_1st—CITE_1st) / BarCounter_1st.
Prop_Change_2nd: Difference in counts for the second highest-scoring hash as a proportion of BarCounter counts
(BarCounter_2nd—CITE_2nd) / BarCounter_2nd. Ratio_1st:2nd: Ratio of the highest-scoring BarCounter counts to
the second high-scoring BarCounter counts (BarCounter_1st / BarCounter_2nd).

Additional file 3: Table S3. Sequenced read count statistics. Library ID: Pooled library ID. # Cells: Number of cells
loaded. Reads: Number of sequenced read trios for each library (I1, R1, and R2). Reads per cell: Mean number of
sequenced reads per cell barcode.

Additional file 4: Table S4. Benchmarking statistics for HTO counting methods. Tool: Software tool used for bench-
marking. Well: Pooled sample well. Elapsed Time (h:mm:ss): Elapsed (clock) time passed to analyze each well. User
Time (s): User Time elapsed to analyze each well. % CPU: Maximum CPU load during well analysis. Max Resident Set
Size (KB): Maximum resident memory set size during well analysis. Output Size (bytes): Output file size after analysis.

Additional file 5: Table S5. BarWare HTO category assignment counts. Well: Pooled sample well. Total Barcodes:
Number of cell barcodes identified for each well. Singlet: Number of cell barcodes assigned to the singlet category.
Doublets: Number of cell barcodes assigned to the doublet category. Multiplets: Number of cell barcodes assigned
to the multiplet category. No Hash: Number of cell barcodes assigned to the no hash detected category.

Additional file 6: Table S6. Antibodies used for Cell Hashing and FACS. Manufacturer: Reagent manufacturer.
Catalog No.: Manufacturer catalog number. Conjugate: Moiety (fluorophore or oligonucleotides) conjugated to each
antibody. Target: Antibody binding target(s). Clone: Antibody clone. Vol per M cells (µL): Volume of antibody added
per million cells for staining.

Acknowledgements
We thank Thomas F. Bumol for his leadership and support, Olivia Fong and Qiuyu Gong for assistance with data deposit
to dbGaP and GEO, Richard Green for assistance with report drafting, and the Human Immune System Explorer (HISE)
software development team at the Allen Institute for Immunology for their support and dedication. The authors thank
the Allen Institute founder, Paul G. Allen, for his vision, encouragement, and support.

https://github.com/AllenInstitute/BarWare-pipeline
https://doi.org/10.1186/s12859-022-04620-2

Page 13 of 14Swanson et al. BMC Bioinformatics (2022) 23:106 	

Authors’ contributions
P.J.S., L.T.G., and E.S. designed the study. E.S. and L.T.G. developed the software pipeline. E.S. and J.R. performed experi-
ments. E.S. and L.T.G. performed hashed scRNA-seq data processing and analysis. L.T.G., E.S., and P.J.S. wrote the manu-
script with input from J.R. All authors read and approved the final manuscript.

Funding
All work presented in this manuscript was funded internally by the Allen Institute for Immunology, without external
funding from a grant agency.

Availability of data and materials
Raw data is deposited in the NCBI Database of Genotypes and Phenotypes (dbGaP, Accession ID: phs002695.v1) for
controlled access. Processed data has been deposited in the NCBI Gene Expression Omnibus database (GEO, Series
Accession ID: GSE181862). Code and documentation for the BarcodeTender pipeline, including BarCounter and BarMixer,
are available on Github at https://​github.​com/​Allen​Insti​tute/​BarWa​re-​pipel​ine. Code used for benchmarking and figure
generation in this manuscript are available on Github at https://​github.​com/​Allen​Insti​tute/​BarWa​re-​manus​cript. A
demonstration dataset with scripts for running the BarWare pipeline and all output files are available in the Zenodo
repository at https://​zenodo.​org/​record/​56208​59.

Declarations

Ethics approval and consent to participate
Biological specimens were purchased from Bloodworks Northwest as freshly drawn whole blood. All sample collections
were conducted by Bloodworks Northwest under an IRB-approved protocol (Sponsor Protocol No. BT001) administered
by the Western Institutional Review Board (WIRB at time of filing, now WCG IRB; Study Number: 1148916; IRB Track-
ing Number: 20141589). All donors have signed informed consent forms administrated under IRB protocol approval
(see above). This consent allows for the use of material from donors for research purposes that protect the privacy and
confidentiality of genetic data. To meet these standards, data published as part of this manuscript and through open-
access repositories do not contain personally identifying information, and raw data will be deposited to the NIH dbGaP
database for controlled access.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1 Allen Institute for Immunology, Seattle, WA, USA. 2 Present Address: Department of Genome Sciences, University
of Washington School of Medicine, Seattle, WA, USA.

Received: 23 August 2021 Accepted: 28 February 2022

References
	1.	 Ameijeiras-Alonso J, Crujeiras RM, Rodríguez-Casal A. Multimode: an R package for mode assessment. 2018. arXiv

[stat.CO]. arXiv. http://​arxiv.​org/​abs/​1803.​00472.
	2.	 Dowle M, Srinivasan A. 2020. Data.table: extension of ‘data.frame’. https://​CRAN.R-​proje​ct.​org/​packa​ge=​data.​table.
	3.	 Firke S. 2020. Janitor: simple tools for examining and cleaning dirty data. https://​CRAN.R-​proje​ct.​org/​packa​ge=​janit​

or.
	4.	 Gehring J, Park JH, Chen S, Thomson M, Pachter L. Highly multiplexed single-cell RNA-Seq by DNA oligonucleotide

tagging of cellular proteins. Nat Biotechnol. 2020;38(1):35–8.
	5.	 Genge PC, Roll CR, Heubeck AT, Swanson E, Kondza N, Lord C, Weiss M, Hernandez V, Phalen C, Thomson Z, Torger-

son TR, Skene PJ, Bumol TF, Reading J. Optimized workflow for human PBMC multiomic immunosurveillance studies.
STAR Protoc. 2021;2:100900.

	6.	 Hafemeister C, Satija R. Normalization and variance stabilization of single-cell RNA-Seq data using regularized nega-
tive binomial regression. Genome Biol. 2019;20(1):296.

	7.	 Haining WN, Ebert BL, Aravind Subrmanian E, Wherry J, Eichbaum Q, Evans JW, Mak R, et al. Identification of an
evolutionarily conserved transcriptional signature of CD8 memory differentiation that is shared by T and B cells. J
Immunol. 2008;181(3):1859–68.

	8.	 Hao Y, Hao S, Andersen-Nissen E, Mauck WM 3rd, Zheng S, Butler A, Lee MJ, et al. Integrated analysis of multimodal
single-cell data. Cell. 2021;184(13):3573-87.e29.

	9.	 Hartigan JA, Hartigan PM. The dip test of unimodality. Ann Stat. 1985;13(1):70–84.
	10.	 Kolde R. 2019. Pheatmap: pretty heatmaps. https://​CRAN.R-​proje​ct.​org/​packa​ge=​pheat​map.
	11.	 Macosko EZ, Basu A, Satija R, Nemesh J, Shekhar K, Goldman M, Tirosh I, et al. Highly parallel genome-wide expres-

sion profiling of individual cells using nanoliter droplets. Cell. 2015;161(5):1202–14.
	12.	 Petukhov V, van den Brand T, Biederstedt E. 2020. Ggrastr: Raster layers for “ggplot2.” https://​CRAN.R-​proje​ct.​org/​

packa​ge=​ggras​tr.
	13.	 R Core Team. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Comput-

ing; 2021.

https://github.com/AllenInstitute/BarWare-pipeline
https://github.com/AllenInstitute/BarWare-manuscript
https://zenodo.org/record/5620859
http://arxiv.org/abs/1803.00472
https://CRAN.R-project.org/package=data.table
https://CRAN.R-project.org/package=janitor
https://CRAN.R-project.org/package=janitor
https://CRAN.R-project.org/package=pheatmap
https://CRAN.R-project.org/package=ggrastr
https://CRAN.R-project.org/package=ggrastr

Page 14 of 14Swanson et al. BMC Bioinformatics (2022) 23:106

•

fast, convenient online submission

 •

thorough peer review by experienced researchers in your field

•

rapid publication on acceptance

•

support for research data, including large and complex data types

•

gold Open Access which fosters wider collaboration and increased citations

maximum visibility for your research: over 100M website views per year •

 At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research ? Choose BMC and benefit from: ? Choose BMC and benefit from:

	14.	 Reback J, jbrockmendel, McKinney W, Van den Bossche J, Augspurger T, Cloud P, Hawkins S, et al. Pandas-Dev/pan-
das: Pandas 1.3.2. Zenodo. 2021. https://​doi.​org/​10.​5281/​ZENODO.​35091​34.

	15.	 Roelli P, bbimber, Flynn B, santiagorevale, Gui G. Hoohm/CITE-Seq-Count: 1.4.2. 2019. https://​doi.​org/​10.​5281/​
zenodo.​25901​96.

	16.	 RStudio Team. RStudio: integrated development environment for R. Boston: Rstudio, PBC; 2020.
	17.	 Stoeckius M, Zheng S, Houck-Loomis B, Hao S, Yeung BZ, Mauck WM 3rd, Smibert P, Satija R. Cell hashing with

barcoded antibodies enables multiplexing and doublet detection for single cell genomics. Genome Biol.
2018;19(1):224.

	18.	 Wickham H. ggplot2: elegant graphics for data analysis. Springer; 2016.
	19.	 Wickham H, François R, Henry L, Müller K. Dplyr: a grammar of data manipulation. 2020. https://​CRAN.R-​proje​ct.​org/​

packa​ge=​dplyr.
	20.	 Wilke CO. Cowplot: streamlined plot theme and plot annotations for “ggplot2.” 2020. https://​CRAN.R-​proje​ct.​org/​

packa​ge=​cowpl​ot.
	21.	 Zheng GXY, Terry JM, Belgrader P, Ryvkin P, Bent ZW, Wilson R, Ziraldo SB, et al. Massively parallel digital transcrip-

tional profiling of single cells. Nat Commun. 2017;8:14049.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.5281/ZENODO.3509134
https://doi.org/10.5281/zenodo.2590196
https://doi.org/10.5281/zenodo.2590196
https://CRAN.R-project.org/package=dplyr
https://CRAN.R-project.org/package=dplyr
https://CRAN.R-project.org/package=cowplot
https://CRAN.R-project.org/package=cowplot

	BarWare: efficient software tools for barcoded single-cell genomics
	Abstract
	Background:
	Results:
	Conclusions:

	Background
	Implementation
	Efficient barcode counting with BarCounter
	Assignment of counts to hashed populations
	Distribution of cells with BarMixer
	Progressive cell overloading to assess demultiplexing

	Results and discussion
	Comparison of BarCounter to HTO counting tools
	Separation of sample data using BarMixer
	Evaluation of sample assignments

	Conclusion
	Methods
	Sample processing
	FACS
	Cell hashing
	10x library preparation
	Data pre-processing
	HTO counting
	HTO category assignment
	Splitting and merging data by sample
	RNA-seq analysis
	Data analysis and visualization software

	Availability and requirements
	Acknowledgements
	References

