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Background
The use of single-cell genomics has rapidly expanded due to high throughput, widely 
used commercial technologies. Microfluidic droplet based platforms [11, 21] are 
commonly used for single-cell RNA sequencing (scRNA-seq) due to their ease of use 
and ability to sequence tens to hundreds of thousands of cells per experiment, and 
competitive cost per cell. However, droplet-based methods also have inherent chal-
lenges including multiple cell capture (multiplets) and well-to-well variation. A strat-
egy to address these issues is Cell Hashing [17] Fig.  1), in which antibodies against 
near-ubiquitously expressed surface proteins are conjugated to barcoded Hash Tag 
Oligos (HTO) used to uniquely label samples (Fig.  1A). This allows samples to be 
mixed and processed simultaneously in the same well to enable increased cell loading 
and explicit doublet detection, even when multiple samples originate from the same 
subject. In addition, samples can be mixed and loaded across multiple wells and/or 
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microfluidic chips, eliminating common sources of technical variation and mitigating 
the risk of sample dropout due to loss of any single well (Fig. 1A). We have recently 
implemented this approach at scale for multimodal immunomonitoring of patient 
samples to study the immune system [5].

With the advantages of Cell Hashing come additional complications related to data 
processing: samples are no longer directly associated with a single set of well indi-
ces and must be demultiplexed at two levels, both by well and by sample, for down-
stream analysis (Fig. 1B). Previously published tools for barcode quantification were 
very flexible but slow and did not include the ability to easily repartition count matri-
ces for each sample. To implement Cell Hashing at scale, we developed BarWare, an 
efficient and comprehensive pipeline consisting of two modular tools linked by shell 
scripting: BarCounter, for fast, efficient tabulation of HTO counts per cell barcode, 
and BarMixer, an R package that provides code to quickly redistribute samples across 
wells and report results and quality control (QC) metrics in user-friendly reproduc-
ible RMarkdown reports.

We show that BarCounter outperforms other Hash Tag Oligo (HTO) counting tools 
and demonstrate the BarWare Cell Hashing pipeline using a large benchmark data-
set generated by progressive overloading of the 10x Chromium v3 3′ RNA-seq assay. 
These capabilities, combined with an emphasis on automated quality control report-
ing, make BarWare a scalable, user-friendly, and comprehensive toolkit for Cell Hash-
ing that can be efficiently applied to large-scale sequencing projects with many wells 
of 10x 3′ RNA-seq data.
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Fig. 1  Overview of the Cell Hashing workflow. A Sample collection and distribution overview. Cell Hashing 
allows flexible sample collection, including collection of multiple samples over time from the same donor. 
Each sample can then be thawed and stained with antibodies conjugated to Hash Tag Oligos (HTOs), 
each of which contains a unique barcode sequence. Once stained, samples can be mixed and distributed 
across wells for processing to reduce batch effects. B BarWare pipeline overview. After sequencing, two 
libraries are generated for each 10x Genomics Chromium well: a RNA library, and a HTO library. RNA libraries 
are aligned and converted UMI count matrices containing cell x gene counts (top), and HTO libraries are 
counted by Barcounter to generate cell x HTO counts (bottom). BarMixer is then used to convert HTO counts 
to sample assignments for each cell. BarMixer then combines sample assignments with the scRNA-seq to 
split sample data within each well, and finally merges data from each sample from all wells to generate 
sample-specific output. CellBC, Cell Barcode; UMI, Unique Molecular Identifier; HTO, Hash Tag Oligonucleotide
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Implementation
Efficient barcode counting with BarCounter

We identified HTO counting as a significant bottleneck in the processing of Cell Hashing 
data. In particular we found that a popular and widely used tool, CITE-seq Count [15], 
scaled poorly to highly overloaded wells both in terms of processing time and memory. 
As the cost of single-cell sequencing continues to decline, large Cell Hashing and CITE-
seq experiments on the order of hundreds of thousands to millions of cells are being 
generated. To facilitate rapid and parallel processing of large datasets we developed Bar-
Counter: a fast, scalable HTO counting program implemented in C and optimized with 
speed and memory use in mind. Briefly, BarCounter parses paired-end FASTQ data into 
cell barcode, Unique Molecular Identifier (UMI), and hashtag sequences, then matches 
barcodes and hashtags against a user-provided cell barcode whitelist and hashtag 
sequence list, respectively. To account for sequencing errors, BarCounter allows a single 
base mismatch in hashtag sequences and a single low quality basecall (Q < 20) mismatch 
in cell barcodes. BarCounter processes each read independently and utilizes the trie data 
structure (also known as a prefix tree) to perform cell barcode and UMI lookups in con-
stant time (Fig. 2A–C).

Assignment of counts to hashed populations

The BarMixer package includes tools to convert raw HTO counts from BarCounter into 
assignments of each cell to their sample of origin. BarMixer assigns barcodes as “singlet”, 
“doublet”, “multiplet”, or “no hash” based on dynamically determined UMI cutoffs spe-
cific to each hash sequence in each well. For each hashtag, a distribution of HTO counts 
across all cell barcodes is generated, and a cutoff value delineating positive and nega-
tive barcodes is assigned (Fig. 2G and “Methods”). Barcode categories are determined 
based on the number of positive hashes, e.g. cell barcodes positive for a single hash are 
classified as singlets. Barcodes are labelled with sample names corresponding to each 

Fig. 2  Implementation of BarCounter and BarMixer. A Trie data structures are used in BarCounter to 
efficiently tabulate barcode frequencies. B Diagram of HTO read structure. Read 1 contains the 16 bp cell 
barcode and the 12 bp UMI. Read 2 contains the 15 bp hashtag. C Overview of the BarCounter workflow. 
At runtime, the user provides a barcode whitelist which is loaded into a trie for rapid lookups, a taglist 
containing all valid hashtag sequences, and paired Read 1 and Read 2 FASTQ files. For each read, checks are 
performed to verify the cell barcode exists in the barcode trie, and the hashtag sequence is in the taglist. 
The UMI sequence is checked against a trie and if it is not present, the trie is updated and the counts for 
the barcode and hashtag combination are incremented. D–F Benchmarking comparisons of BarCounter 
and other available HTO counting algorithms as a function of increasing cell loading per 10x Genomics 
well: cellranger count (10x Genomics); CITE-seq-Count (with or without barcode correction, [15], KITE, [4] 
(single-threaded or with 8 threads). D Maximum memory usage, E Average CPU load, F Elapsed time. 
G Overview of the barcode cutoff determination method used by BarMixer: Raw counts generated by 
BarCounter are clipped to remove low values, then log transformed, and used as input to 2-cluster K-means. 
If cluster medians are separable, the cutoff is set to the lowest value in the positive cluster. Note broken 
y-axis in the first two panels. H–L Visualizations provided by BarMixer QC reporting notebooks. H HTO count 
histograms (green bars) with cutoff values (blue lines), I Fractions of barcodes and reads attributed to singlets 
(dark blue), doublets (light blue), and multiplets (purple), J Counts of cells in each hashing category per 
well in a batch, K Number of UMIs per cell in each HTO category, L Number of genes per cell in each HTO 
category

(See figure on next page.)
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positive hash. Processing metrics are organized into JavaScript Object Notation (JSON) 
and HTML reports for  convenient automated and visual quality control.

Distribution of cells with BarMixer

Sample-specific datasets are prepared via BarMixer by performing three key steps. For 
each well, BarMixer annotates Cell  Ranger filtered HDF5 files with QC characteristics 
and cell metadata. Then, BarMixer uses the sample assignments for each cell to split data 
into separate HDF5 files by sample. Finally, BarMixer merges data across all processed 
wells based on the sample assignments. This yields a separate, merged HDF5 file for each 
sample, a merged HDF5 file for all multiplets, and metric reports in JSON and HTML 
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format. Reports include relevant sequencing QC metrics, alignment distributions by 
barcode category, UMI and gene count distributions by hashtag, and median count data 
by both sample and well.

Progressive cell overloading to assess demultiplexing

We evaluated the BarWare pipeline  and related tools by conducting a progressive cell 
overloading experiment (Fig. 3). We used fluorescence activated cell sorting (FACS) to 
separate a sample of peripheral blood mononuclear cells (PBMCs) into naïve T cells, 
memory T cells, and non-T cell PBMC populations. Each sorted population was divided 
into two technical replicates for a total of six samples that were stained with commer-
cially available HTO antibodies (BioLegend TotalSeq-A). The six samples were pooled 
together and loaded into six wells of a 10x Chromium v3 3′ RNA-seq chip at inputs of 
16k, 24k, 32k, 48k, 64k, and 80k cells per well (Fig. 3A). Sequencing depth was scaled 
linearly with predicted cell recovery by well. Hashtag  read  counts ranged from approxi-
mately 40M for 16,000 cell loading to ~ 163M for 80,000 cell loading (Additional file 3: 
Table S3). This dataset provides a unique test case for HTO counting that is applicable 
across a wide range of cell numbers and read counts.

Results and discussion
Comparison of BarCounter to HTO counting tools

We compared BarCounter to other popular software tools for HTO counting, includ-
ing CITE-seq-Count (with and without optional UMI correction), Cell Ranger count 
(10x Genomics), and kallisto indexing and tag extraction (KITE) in both single and mul-
tithreaded modes [4]. Some of these methods perform computationally costly Unique 
Molecular Identifier (UMI) correction because sequencing errors may artificially inflate 
UMI counts and distort the data. This correction is important for rare transcripts or 
markers, but commercially available HTO barcode sequences have a universal minimum 
hamming distance of three bases to ameliorate the risk of hashtag misidentification.

To evaluate the accuracy of BarCounter compared to a method including UMI cor-
rection, we ran BarMixer (described below) with HTO counts from either BarCounter 
or CITE-seq count with UMI correction and compared overlap in barcode classification 
and sample identification. For each of the six mixed wells, over 99.8% of barcodes iden-
tified as singlets were identical between the two methods (Additional file 1: Table S1). 
Across all wells, 113,414 barcodes were identified as singlets by BarCounter, only 60 of 
which were identified as doublets by CITE-seq Count. Counts for the top two hashtags 
for these barcodes differed between the methods by an average of 3.8% and 2.5% respec-
tively, with the majority of barcodes having a count ratio between the top two hashtags 
greater than three, supporting their classification as singlets (Additional file 2: Table S2). 
All 113,268 barcodes identified as singlets by both tools had matching sample identity 
classifications. Therefore, the high dynamic range between positive (bound) and nega-
tive (unbound) HTO populations for each cell barcode enables hashtag analysis to be 
performed without computationally expensive UMI correction with little loss of accu-
racy in sample identification and doublet detection.
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For each Cell Hashing well, we processed HTO FASTQ data using each tool and 
tracked performance using the Linux “time -v” command. For each well, BarCoun-
ter had the lowest memory usage (defined as maximum resident set size), lowest CPU 
usage, and lowest user (CPU) time. BarCounter was fastest in real (wall clock) time 
across all comparisons with the exception of the 64,000 and 80,000 cell wells, in which 
eight-threaded KITE processing was 7% and 15% faster, respectively (Fig. 2D–F). Due to 
the low-dimensional nature and inherent background signal of HTO data, we opted to 
output results in the universally readable comma separated values (CSV) format rather 
than a sparse matrix format. Despite this change, BarCounter outputs were the smallest 
in terms of disk space across all comparisons (Additional file 4: Table S4).

Based on these performance metrics, we estimate that data from an eight well experi-
ment loading 16,000 cells and sequencing to a depth of 40M reads (~ 2500 reads per cell 
in this experiment) per well could be processed in parallel on a modest 8 CPU, 20 GB 
RAM computer in less than five minutes. These results demonstrate that BarCounter is 
ideally suited for the parallel processing of large Cell Hashing datasets, including when 
well number, cell recovery, and sequencing depth are high.

Separation of sample data using BarMixer

We developed a second tool to apply Cell Hashing to samples distributed across multiple 
wells (Fig. 1B). BarMixer is an R package and set of Rmarkdown notebooks that enables 
separation of samples within each well (splitting by hash) and reassembly of each sample 
across all wells into sample-specific output files (merging by hash). First, HTO counts 
generated by BarCounter are processed to identify a threshold value for each HTO bar-
code, assign each cell barcode to its corresponding sample(s) as a singlet, doublet, or 
multiplet (Fig. 2G, “Methods”), and generate an HTML-based report for HTO category 
counts and cutoffs (including Fig. 2H). Then, HDF5-formatted count matrix results from 
Cell Ranger count (10x Genomics) are preprocessed to add multiple points of cell meta-
data, assign each cell barcode with a universally unique identifier (UUIDs) to avoid cell 
barcode conflicts between wells, and generate a QC report for each well. Next, the HTO 
category and count data, as well as the metadata-tagged HDF5 count matrix file are used 
to split each well, create separate HDF5 files for each sample and a separate file for mul-
tiplets, and generate a report of sample metadata for each well (including RNA-seq read 
usage as displayed in Fig. 2I). Finally, the results from each sample across all wells are 
merged into a single output file per sample, and a final report summarizing HTO catego-
ries and RNA-seq QC characteristics is generated for all wells (including Fig. 2J–L). This 
modular series of steps and reporting allows for rapid assessment of results using the 
final summary report, as well as step-by-step troubleshooting of each major process in 
the sample demultiplexing pipeline.

Evaluation of sample assignments

To evaluate the fidelity of BarWare’s sample assignments, we utilized the Barware pipe-
line to process a progressive cell overloading dataset, then performed analysis using Seu-
rat v4 [8] to confirm that the samples identified via Cell Hashing and the original FACS 
sorted populations were in agreement (Fig. 3).
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Following simple QC filtering, we performed dimensionality reduction, clustering, and 
visualized the results using uniform manifold approximation and projection (UMAP). 
We observed that cells from all eight wells were mixed evenly, there was complete overlap 
between technical replicates, and that each sorted FACS population showed a high degree 
of separation from the others (Fig. 3C, E). We then mapped our data onto the reference 
PBMC CITE-seq dataset described in [8], and transferred the reference cell type labels to 
our dataset (Fig. 3D, F). As expected, cells with hashes from the non-T cell FACS popula-
tion were assigned to non-T cell identities (32,069 of 32,199 cells; 99.6%), memory T cell 
sorts were assigned memory T cell type identities (35,101 of 36,932 cells; 95%), and naïve T 
cell hashes were most frequently assigned to naïve T cell and double-negative T cell (dnT) 
identities (30,706 of 36,264 cells; 84.7%) (Fig. 3D–F).

We also visualized cell type-specific marker genes on our UMAP and found highly spe-
cific gene expression patterns that support the labelled cell type identities. Expression 
of CD3D was restricted to the naïve and memory T cell populations, CD14 and MS4A1 
(CD20) expression identified classical monocytes and B cells, respectively in the non T cell 
population, and GNLY was specific to labelled NK and CD8 T cells (Fig. 3E). We divided 
the T cell compartment into naïve and memory based on expression of CCR7 or S100A4 
[7], respectively (Fig.  3F), and found their expression to be mutually exclusive and con-
strained to the expected FACS populations.

Taken together, the gene expression results show agreement between sample assignments 
from FACS and Cell Hashing, and confirm that BarWare demultiplexes mixed samples to a 
high degree of accuracy.

Conclusion
We have demonstrated the advantages and efficiency of BarWare through its application to 
a large, multi-well Cell Hashing experiment representing a broad range of cell overloading. 
BarCounter outperformed  other HTO counting tools in terms of speed and computing 
resources with no decrease in accuracy. BarMixer performs barcode demultiplexing and 
provides thorough reports detailing QC metrics, and produces merged, sample-specific 
analysis ready data files along with reports describing the results by sample, by well, and by 
batch.

In addition, our cell overloading dataset demonstrated the utility of BarWare outputs in 
simplifying downstream analysis of complex experiments. Merged outputs reduce the num-
ber of output files and eliminate manual separation of samples, while maintaining experi-
mental metadata such as the original 10x well, identified hashtag, and barcode classification. 
BarMixer’s split and merge approach allows analysis of separate samples, independent of 
the cell pooling performed at the bench, which we have utilized to enable scalable multi-
modal immunosurveilance studies [5]. We expect this feature to become increasingly ben-
eficial as other research institutes and large consortia scale single-cell data generation to the 
order of tens of millions of cells. Finally, the cell overloading dataset provided with these 
tools should be useful in the development of new methods for rapid sample demultiplexing.

BarWare provides a comprehensive set of tools which lowers the barrier to entry of Cell 
Hashing workflows for small laboratories in the field of single-cell sequencing, and should 
be useful for core facilities that can use cell hashing to mix and overload samples to increase 
throughput and allow their customers to use only a fraction of one or many wells.
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Methods
Sample processing

Biological specimens were purchased from Bloodworks Northwest as freshly drawn 
whole blood. All sample collections were conducted by Bloodworks Northwest under 
IRB-approved protocols, and all donors signed informed consent forms. PBMCs were 
isolated in-house using Ficoll Premium (GE Healthcare, 17-5442-03), were cryopre-
served using Cryostor10 (StemCell Technologies, 07930), and stored in liquid nitrogen 
until use. PBMCs were thawed at 37 °C using AIM V medium (Gibco, 12055091).

FACS

PBMCs were fluorescence activated cell sorted (FACS) into naïve T-cells (CD45+ CD3+ 
CD45RA+ CD27+), memory T-cells (CD45+ CD3+, excluding CD45RA+ CD27+) 
and a non-T-cell bulk population (CD45+ CD3−). Briefly, cells were incubated with 
TruStain FcX (BioLegend, 422302) for 10  min on ice, followed by staining with anti-
bodies (Additional file 6: Table S6) for 20 min on ice. Cells were washed with AIM V 
medium plus 25 mM HEPES and sorted on a BD FACSAria Fusion. An aliquot of each 
post-sort population was used to collect 2,000 events to assess post-sort purity.

Cell hashing

FACS sorted cells were stained according to the New York Genome Center Technology 
Innovation Lab protocol (v2019-02-13; https://​cites​eq.​files.​wordp​ress.​com/​2019/​02/​
cell_​hashi​ng_​proto​col_​190213.​pdf ). Briefly, one million cells of each population were 
resuspended in 100 μl of staining buffer: DPBS without calcium and magnesium (Corn-
ing 21-031-CM) supplemented with 2% w/v BSA (Sigma-Aldrich A2934, “PBS + BSA”). 
10 μl TruStain FcX (BioLegend, 422302) was added and cells were incubated on ice for 
10  min, after which they were stained with 0.5  μg of a TotalSeq-A hashing antibody 
(Additional file 6: Table S6) on ice for 30 min. Stained cells were washed three times with 
1 mL of PBS + BSA. Cells from each population were pooled together in equal numbers 
and passed through a 35 μm Falcon Cell Strainer (Corning, 352235). All cell counts were 
performed using a Cellometer Spectrum Cell Counter (Nexcelom) using ViaStain Acrid-
ine Orange/Propidium Iodide solution (Nexcelom, C52-0106–5).

10x library preparation

Libraries were prepared using the Chromium Single Cell 3′ v3 reagent kit (10x Genom-
ics, 1000075) following the 10x Genomics User Guide (CG000183 Rev A), with the 
only modification being cell overloading. All libraries were sequenced on an Illumina 
NovaSeq S4 flowcell. Target read counts were 30,000 reads per cell for RNA libraries and 
2,000 reads per cell for HTO libraries.

Data pre‑processing

Raw sequencing data was converted from BCL to FASTQ format using bcl2fastq2 
(Illumina v2.20.0.422, parameters: –use-bases-mask = Y28,I8,Y91, –create-fastq-for-
index-reads, –minimum-trimmed-read-length = 8, –mask-short-adapter-reads = 8, 
–ignore-missing-positions, –ignore-missing-controls, –ignore-missing-filter, 

https://citeseq.files.wordpress.com/2019/02/cell_hashing_protocol_190213.pdf
https://citeseq.files.wordpress.com/2019/02/cell_hashing_protocol_190213.pdf
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–ignore-missing-bcls, -r 18 -w 18 -p 50, –barcode-mismatches = 0). Gene expression 
data was processed using Cell Ranger count(10x Genomics v4.0.0) and aligned to the 
GRCh38 (hg38) reference genome (refdata-cellranger-atacGRCh38-1.1.0) with the 
option –expect-cells set to 40,000 for all wells. After running Cell Ranger count, the 
BarMixer Rmarkdown notebook add_tenx_rna_metadata.Rmd was used to prepare 
Cell Ranger outputs for downstream analysis.

HTO counting

Hashtag counting was profiled using the Linux “time -v” command (GNU time v1.7, 
https://​www.​gnu.​org/​softw​are/​time/) on a Google Cloud Platform Compute Engine 
VM Instance with 12 vCPUs (Intel Skylake or later) and 78 GB of RAM. A list of fil-
tered cell barcodes provided by Cell Ranger count as “barcodes.tsv” files were used 
as the barcode whitelist input to HTO counting software tools where necessary. Bar-
Counter was run with default parameters. KITE (v0.0.2, https://​github.​com/​pacht​
erlab/​kite, [4]) was run with default parameters and evaluated both single threaded 
and using eight threads. Cell Ranger count was run in Feature Barcode Only mode 
(10x Genomics v4.0.0, parameters: –nosecondary –nopreflight –disable-ui –expect-
cells = 40,000). CITE-seq Count was run with default parameters including UMI cor-
rection [15], https://​hoohm.​github.​io/​CITE-​seq-​Count/, v1.4.3, parameters: -cbf 1 
-cbl 16 -umif 17 -umil 28 -cells 40,000), as well as without UMI correction by includ-
ing the additional parameter –no_umi_correction.

HTO category assignment

Cells were assigned to individual HTO-defined samples, doublet, multiplet, or no 
hash categories using a multi-step process contained in the BarMixer package for R, 
all of which are performed in sequence for a given well using the hto_processing.Rmd 
script provided in BarMixer. The matrix of HTO counts per cell barcode is read from 
BarCounter outputs, and cutoffs for positive or negative cell barcodes are defined 
for each HTO separately. Cutoffs are determined by removing all counts below 10. 
Then, a test of unimodality is performed using the modetest function from the mul-
timode package for R (v1.4 [1], parameters: method = “HH” and B = 20) to use the 
Dip Test of Unimodality [9] with 20 replicates. If the distribution is unimodal, the 
cutoff is set to the mean value plus 2 times the standard deviation of log-transformed 
values. This allows capture of some positive hashes when the distribution of hashes is 
not bimodal, though clear bimodal separation is ideal.  If the distribution of counts 
is not unimodal, the values are log-transformed, and 2 center K-means clustering is 
performed using the base R kmeans function. Cluster centers are then compared to 
determine if the higher center is more than fourfold greater than the lower center. If 
so, the cutoff is set to the minimum value in the higher cluster. Otherwise, the cutoff 
is set to the maximum value of all cell barcodes, and no barcodes are considered pass-
ing. After setting a cutoff for each HTO, cell counts are converted to a binary matrix 
of passing (1 = greater than or equal to the cutoff ) or failing (0 = less than the cutoff ) 
values, and the number of passing values are counted for each cell barcode. Cells with 

https://www.gnu.org/software/time/
https://github.com/pachterlab/kite
https://github.com/pachterlab/kite
https://hoohm.github.io/CITE-seq-Count/
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a single passing value are assigned to "singlets", two passing values to "doublets", more 
than two passing values to "multiplets", and no passing values to "no hash" catego-
ries. This information is used to generate a table of hashing categories and the HTO 
barcode(s) assigned to each cell barcode.

Splitting and merging data by sample

After performing HTO category assignment for each well, a second script in the Bar-
Mixer package, split_h5_by_hash.Rmd, is used to split singlet cells from each sample 
and from non-singlet categories. This script reads both the HTO category assignment 
table generated above for each well and the HDF5-formatted count matrix gener-
ated by Cell Ranger (10x Genomics). For each well, this script generates a separate 
HDF5 file for each sample per well. After performing this split step for each well in 
the experiment,  a third script from BarMixer, merge_h5_by_hash.Rmd, assembles 
the HDF5 files for each sample across all wells into a single HDF5 output, and uses 
the combined information  from these files to generate a comprehensive QC report 
for data from all wells.  All steps for category assignment, splitting, and merging can 
be performed using wrapper script provided in the BarWare-pipeline repository, 02_
run_BarMixer.sh, available at https://​github.​com/​Allen​Insti​tute/​BarWa​re-​pipel​ine.

RNA‑seq analysis

Merged HDF5 files from the final step of the BarWare pipeline were used as input and 
analyzed using Seurat (v4.0.3  [8]). Singlet data was read using the BarMixer (v1.2.0) 
function read_h5_seurat and merged into a single Seurat Object . Low quality bar-
codes and extreme outliers were filtered out by subsetting barcodes with less than 
25% mitochondrial counts, RNA UMI counts of at least 1000 and less than 25,000, 
and at least 500 genes detected. We normalized the data using the Seurat function 
SCTransform [6], performed dimensionality reduction using the RunPCA function, 
generated a two-dimensional UMAP projection from the first 50 principal compo-
nents using the RunUMAP function, and clustered the cells using the first 50 prin-
cipal components using the FindNeighbors and FindClusters functions. We mapped 
our dataset to a reference PBMC CITE-seq dataset from [8] using the FindTransfer-
Anchors function (parameters: dims = 1:50) and transferred cell type labels from the 
reference to our dataset using the MapQuery function.

Data analysis and visualization software

Visualization of HTO profiling results and gene expression data was performed using 
R v.3.6.3 and greater [13] in the Rstudio IDE or using the Rstudio Server Open Source 
Edition [16] as well as the following packages: for data visualization, ggplot2 [18], 
cowplot [20], ggrastr [12], pheatmap [10];  for general data analysis and manipula-
tion, dplyr [19], data.table [2], and janitor [3]; for scRNA-seq data analysis, Seurat [8].  
Comparison of barcode classifications between HTO counting tools was performed 
using Python (v3.7.3) and the Pandas module [14].

https://github.com/AllenInstitute/BarWare-pipeline
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Availability and requirements
Project name: BarWare pipeline
Project home page: https://​github.​com/​Allen​Insti​tute/​BarWa​re-​pipel​ine
Operating system(s): UNIX/Linux operating systems.
Programming language: C, R, and bash
Other requirements: R v3.6.3 or higher
License: Allen Institute Software License (modified 2-clause BSD license)
Any restrictions to use by non-academics: redistribution and use for commercial 

purposes restricted without further permission.

Abbreviations
CellBC: Cell Barcode; CSV: Comma Separated Values; FACS: Fluorescence Activated Cell Sorting; GEO: Gene Expression 
Omnibus; HDF5: Hierarchical Data Format 5; HTO: Hash Tag Oligonucleotide; JSON: JavaScript Object Notation; KITE: 
Kallisto Indexing and Tag Extraction; IRB: Institutional Review Board; PBMC: Peripheral Blood Mononuclear Cell; QC: Qual-
ity Control; scRNA-seq: Single-cell ribonucleic acid sequencing; UMAP: Uniform manifold approximation and projection; 
UMI: Unique Molecular Identifier; UUID: Universally Unique Identifier.
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Additional file 1: Table S1. HTO category agreement across wells. Fraction of agreement of cell barcode assign-
ment to each HTO category for each pooled sample well based on BarCounter and CITE-seq-Count processing. Well: 
Pooled sample well. Frac_singlet: Fraction of singlet calls that agree using BarCounter and CITE-seq-Count. Frac_dou-
blet: Fraction of doublet calls that agree using BarCounter and CITE-seq-Count. Frac_multiplet: Fraction of multiplet 
calls that agree using BarCounter and CITE-seq-Count. Frac_no-hash: Fraction of no hash detected calls that agree 
using BarCounter and CITE-seq-Count.

Additional file 2: Table S2. Barcode category assignment discrepancies. Counts and count-derived metrics 
obtained for each of the top two hashes are shown for each cell barcode assigned to the singlet category Bar-
Counter results. but considered a doublet based on CITE-Seq-Count results. Well: Pooled sample well. Barcode: 
Cell barcode. BarCounter_1st: Counts for the highest-scoring hash based on BarCounter. BarCoutner_2nd: Counts 
for the second highest-scoring hash based on BarCounter. CITE_1st: Counts for the highest-scoring hash based 
on CITE-seq-Count. CITE_2nd: Counts for the second highest-scoring hash based on CITE-seq-Count. Change_1st: 
Difference in counts for the highest-scoring hash (BarCounter_1st—CITE_1st). Change_2nd: Difference in counts for 
the second highest-scoring hash (BarCounter_2nd—CITE-seq-Count_2nd). Prop_Change_1st: Difference in counts 
for the highest-scoring hash as a proportion of BarCounter counts (BarCounter_1st—CITE_1st) / BarCounter_1st. 
Prop_Change_2nd: Difference in counts for the second highest-scoring hash as a proportion of BarCounter counts 
(BarCounter_2nd—CITE_2nd) / BarCounter_2nd. Ratio_1st:2nd: Ratio of the highest-scoring BarCounter counts to 
the second high-scoring BarCounter counts (BarCounter_1st / BarCounter_2nd).
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sequenced reads per cell barcode.

Additional file 4: Table S4. Benchmarking statistics for HTO counting methods. Tool: Software tool used for bench-
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Time (s): User Time elapsed to analyze each well. % CPU: Maximum CPU load during well analysis. Max Resident Set 
Size (KB): Maximum resident memory set size during well analysis. Output Size (bytes): Output file size after analysis.
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to the multiplet category. No Hash: Number of cell barcodes assigned to the no hash detected category.
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