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Introduction
Quantitative trait locus (QTL) analyses are those experiments in which a population is 
genotyped with many markers that cover the whole genome, and phenotyped for traits 
of interest. Once that is done, positions along the genome are tested for association, 
either defined by the markers or by some clever estimate such as those used in interval 
mapping [1, 2]. QTL studies have been extremely useful in unravelling genomic regions 
that control or contribute to important plant traits such as disease resistance, yield, crop 
quality or tolerance to abiotic stresses. The precision of these studies has been improved 
by the advent of high-throughput technologies, that facilitated genotyping of thousands 
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to millions of Single Nucleotide Polymorphisms (SNPs) in a single analysis. This is nowa-
days also possible in polyploid organisms, thanks to statistical and computational devel-
opments in the areas of genotyping, linkage map construction and QTL analysis [3, 4].

When trying to find QTLs two aspects will define the outcome obtained: the type of 
population studied, and the QTL modelling approach chosen.

Population types

A classical population type is the biparental cross, a population of siblings obtained 
by crossing two parents, usually contrasting in the trait of interest. If both parents are 
homozygous, as is the case in many self-fertilizing species, QTLs found in this type of 
population will reflect the allelic differences between the two parents. If the parents are 
diploids, there will likely be only two alleles per QTL segregating in that population. 
Since the cross contains only a small fraction of the genetic diversity of the species, QTL 
results from these populations may not be applicable to other populations and markers 
linked to QTLs cannot easily be used in other crosses.

Another possibility is to use a genome-wide association study (GWAS), in which a 
large set of diverse individuals are studied, and thus a large number of QTL alleles is 
expected to segregate. Unlike in biparental crosses, an association between markers and 
QTLs is expected due to Linkage Disequilibrium (LD) rather than direct family linkage. 
These studies produce more widely applicable QTL results, but introduce some draw-
backs: (1) rare allele variants, which will be present at low frequency in a GWAS panel, 
will easily be missed even if they affect the phenotype, and (2) linkage disequilibrium 
(LD) is not spread homogeneously across the population or the genome, an effect known 
as “genetic structure”, and this may generate false positives if not taken into account [5, 
6].

Nevertheless, as described in [7], mapping in biparental populations or GWAS pan-
els represent two extremes of a genetic diversity gradient. An intermediate form can be 
found in multi-parental populations (MPP). An MPP is formed by individuals that share 
a limited number of known ancestors, for instance, a set of connected biparental crosses, 
or multiple lines originating from a small set of founders. As such, the number of QTL 
alleles will be at most of ploidy× founders . Additionally, as the genetic structure in an 
MPP originates from mostly known pedigree relationships, it will be less complex than 
that of GWAS populations, and the allele frequencies will often be more balanced.

The MPP concept fits well the type of populations usually available in breeding pro-
grammes, where multiple crosses are made with some interesting parents. Breeding 
populations become then ad-hoc MPPs and instead of analysing each cross separately, 
the whole breeding program could be analysed at once, increasing statistical power. The 
idea that utilizing breeding populations for QTL analysis might be a better option than 
creating specific experimental populations has been studied previously [7–10], although 
in diploid species under biallelic models.

Modelling approaches

The type of mathematical model used for QTL analysis will heavily depend on the popu-
lation under study. In a classical biparental population an analysis of variance (ANOVA) 
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will easily provide accurate QTL estimates. In contrast, in a GWAS panel, genetic struc-
ture must be taken into account, usually in the form of a mixed model [6]. In the case of 
a MPP, a similar mixed model could be used, although if the genetic structure is simple 
enough, a fixed factor accounting for subpopulations may perform well also [6].

The number of modelled QTL alleles is also relevant. Typically, since biallelic markers 
are used, two alleles per QTL are modelled. Assuming the presence of only two alleles, 
however, is sensible under very few scenarios. As ploidy, heterozygosity or the num-
ber of founders of a population increase, the number of expected QTL alleles rises. The 
larger the number of alleles, the less realistic the biallelic model becomes for describing 
the observed variance. Nevertheless, as SNP markers have become the standard poly-
morphism in modern genotyping, using them directly implicitly tests a biallelic scenario. 
However, SNP information can be used differently. By combining adjacent SNPs, bial-
lelic SNPs can be turned into multiallelic haplotype markers [11].

Due to the increased genetic diversity present in GWAS and MPP populations, it is 
foreseeable that moving to multiallelic QTL models will provide a gain in statistical 
power. Nevertheless, biallelic models are simpler and thus more powerful, and they have 
a long trajectory of success. There is currently no software available that can perform 
multiallelic QTL analyses in polyploid populations in the presence of genetic structure, 
but such software is being developed. Under which circumstances, if any, will a geneti-
cally diverse population benefit from a multiallelic QTL modelling approach?

To answer this question, we have simulated a series of autotetraploid MPPs with dif-
ferent levels of genetic diversity. Populations were designed following the Nested Asso-
ciation Mapping (NAM) structure, where one central parent is crossed with many 
peripheral parents [12]. We adapted the QTL modelling approach presented in [13] for 
diploid MPPs with inbred founders, expanding it to a polyploid and heterozygous case. 
We present this approach as an R package [14] named “mpQTL” to perform QTL analy-
sis. This package together with the simulated MPPs allowed us to assess the effect of 
biallelic or multiallelic markers on QTL detection and QTL precision under different 
genetic diversity scenarios.

Materials and methods
Statistical models

Mixed models allow to correct for dependence between observations due to genetic 
structure. Yu et  al. (2006)  defined a “unified mixed model”, also known as the Q + K  
model [4], that can accommodate both a population structure matrix ( Q ) and a kinship 
matrix ( K):

where y is the vector of phenotypic trait values, Xβ represents the incidence matrix and 
marker effects (SNP effect in [6]); Qv are the population structure matrix and vector, 
respectively; Zu are design matrix and vector of genetic background effects (polygene 
component in [6]); and ε is the residuals vector. The variances of the random effects, u 
and ε are also defined: K  is the kinship matrix and σ 2

G , the genetic variance; R is a matrix 

(1)y = Xβ + Qv + Zu+ ε Var(u) = Kσ 2
G Var(ε) = Rσ 2

ε
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with off-diagonal numbers being 0 and the diagonal is the reciprocal of the number of 
observations underlying each genotype estimation, and σ 2

ε  is the residual variance.

Fixed term: allele parametrization

Definition of X requires a genetic model, that is, a method to transform genetic data into 
an incidence matrix X . Polyploid genetic models have existed for a long time [15] and 
have inspired more recent versions applied to SNP data [16, 17]. The simplest of them is 
the biallelic model (model B in [7], association mapping in [18]), which considers SNP 
alleles as equal to QTL alleles. In a biallelic model, the SNP dosages are used to predict 
genetic effects, giving the Xβ term the following form:

where δi are the dosages (a value from 0 to ploidy) of one of the SNP alleles, µ is the 
intercept and β the genetic effect of that SNP allele. We denote the incidence matrix as 
Xb for this modelling strategy. Note that this represents an additive model without intra 
or inter-locus interaction, i.e. no dominance or epistasis between alleles is modelled.

Alternatively, Identity-By-Descent (IBD) information can be used to generate an 
ancestral model [13], also known as a PBA model [10] or an LDLA model [9, 19]. Under 
the ancestral model, the dosage of each ancestral allele or haplotype in the NAM popula-
tion is used to estimate genetic effects. The shape of the Xβ term then takes the form:

In this case, the dosages of all alleles except one (the reference allele) are specified. 
Therefore, k is the number of alleles −1 . Each β represents the additive genetic effect of 
each ancestral allele, relative to the effect of the reference ancestral.

Random term: kinship matrix calculation

In this model, a kinship matrix K  is calculated using the realized relationship [4]:

where D is a dosage matrix with markers on columns and individuals on rows, and the 
mean of each column is zero (column means have been subtracted for each column); and 
� is the mean of the diagonal of the DDt matrix. If haplotypes are used instead of bial-
lelic SNPs, D can consist of concatenated matrices similar to Xa (without the intercept 
column), so that the number of columns is equal to the total number of alleles present 
across all markers used. To mitigate the bias due to differences in marker density across 
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the genome, kinship estimates are calculated on a subset of evenly distributed SNPs (one 
marker per cM).

Haplotyping

Haploblocks were arbitrarily defined using a sliding window of 6 consecutive SNPs with an 
overlap of 4 SNPs (first haplotype is SNP1-SNP2-…-SNP6, second is SNP3-SNP4…-SNP8). 
A haploblock of length 6 can tag a maximum of 26 = 64 alleles if all combinations are pre-
sent, although in our simulations the number of observed alleles was much lower, with the 
average number of observed alleles ranging from 11.23 in NAM1 to 21.8 in NAM10. To 
obtain a haploblock position, the average position of the 6 SNP markers was taken. Haplo-
types were obtained from the simulated phased SNP genotypes generated by PedigreeSim.

Power study

Definition of QTL interval

Single marker QTL methods do not provide an estimate for the QTL interval, yet with a 
defined threshold and a genetic map one can interpret the p value distribution to obtain 
them. Since adjacent markers are not independent, and the closer to a true QTL posi-
tion, the more significant the p-value becomes, one expects a chain of increasingly sig-
nificant markers, pointing towards a true QTL position. Based on this, we define a QTL 
interval as a set of ordered markers above the significance threshold such that:

where dij is the distance between adjacent significant markers i and j , and l represents a 
linking distance. As a result, a QTL interval is defined by a chain of significant markers, 
where adjacent significant markers are at a distance smaller than l . Therefore, for each 
value of l we can define a set of detected QTL intervals. Since the choice of l is arbitrary, 
we performed power calculations with l from 0 to 10 cM in steps of 0.5 cM.
Significance threshold

To adjust for multiple testing, an empirical permutation threshold was calculated for 
each QTL analysis [20]. Thresholds were obtained with 100 permutations on a single 
population for each model, as threshold values did not change substantially between 
populations.

Power estimates

To evaluate the QTL models here presented we will use (1) QTL detection power, the 
probability of detecting a QTL position when present; (2) false positive rate, the prob-
ability of having a significant marker outside a QTL region; (3) QTL accuracy, the close-
ness of a QTL peak (position of maximum probability within an interval) to the true 
position and (4) QTL and marker precision, the probability that a significant QTL inter-
val or marker is a true positive.

QTL detection power can be calculated as the proportion of true QTLs that are 
found by the model. While this is informative, one can easily increase detection power 
by increasing the number of false positives. To estimate the false positive rate, we must 
define the true negative markers (N). We considered as true negatives all markers 

QTL = {m1, . . . ,mn} where dij < l
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outside a 10 cM interval around our true QTL positions (5 cM above and 5 cM below). 
We then define as false positives (FP) those markers that are above the significance 
threshold (they have lower p values, higher significance) and are outside the 10 cM true 
interval. Lastly the false positive rate is calculated as FP/N .

The range of a QTL interval is defined by the positions of its leftmost and rightmost 
markers. QTL intervals will be considered true positives if the QTL range includes the 
simulated QTL position. All markers belonging to a true positive QTL interval are con-
sidered true positive markers, whereas the rest of significant markers present in other 
QTL intervals will be considered false positives. Isolated significant markers will be 
ignored.

Under this framework we can define detected QTLs, true QTLs, significant markers 
and true positive markers. We will use these values to calculate the precision (propor-
tion of true positives over all positives) for both QTLs and markers.

Finally, we considered the ability of a model to predict the position of QTL within an 
interval. We can define a QTL peak as the most significant marker within a QTL inter-
val, as is done when applying logarithm of odds (LOD) scores. QTL accuracy can then be 
calculated as the average distance of a QTL peak in a true QTL to the true QTL position.

Power measures were calculated for each of the three models in 11 populations for 
each level of genetic diversity (total of 44 populations).

Implementation

All computations in this study were done in R [14].
Ridge regression using a restricted maximum likelihood procedure was used to obtain 

the mixed model estimates, which in this context are equivalent to the Best Linear Unbi-
ased Predictions (BLUP) [21, 22]. Such calculations can be performed using the mpQTL 
package, where the solution algorithm, F-test approximation and p value calculation 
where based on the mixed.solve() function of the rrBLUP package [23].

To improve computational efficiency, the EMMAX/P3D approach was applied [24, 
25], which approximates variance components once, and recycles these components at 
each marker position, reducing the amount of large matrix multiplications that must be 
performed.

Simulation

Multiparental population design and genotype simulation

Nested Association Mapping (NAM) populations were generated using PedigreeSim 
V2.0, a simulation software that can simulate not only diploid but also polyploid mei-
osis [26]. PedigreeSim generates genotypes given a genetic map, a pedigree and the 

QTLprecision =
true positive QTLs

detected QTLs

markerprecision =
true positive markers

significant markers
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genotypes of the first generation (founders) of that pedigree. Simulations were per-
formed using Haldane’s mapping function, allowing only bivalents with random pairing 
and the parameter “NATURALPAIRING” set to 1.

To speed up the calculations, an adapted tetraploid potato genetic map was used 
[27] containing only the first five chromosomes (3509 markers representing 485  cM). 
The individuals used in this study were simulated in a two-stage process: firstly, ances-
tor individuals were generated and used to obtain ten separate populations (ancestral 
groups); secondly, from each ancestral group a set of NAM founders were chosen to 
obtain parallel NAM populations.

For each ancestral group (AG), 10 ancestor individuals were generated with random 
SNP scores at each marker. Each SNP position is also given an “IBD allele”, unique to 
each homologue of each ancestor (even if the SNP state is the same). Each ancestral 
group has 10 founders, and thus a total of 40 IBD alleles will segregate in each AG. These 
alleles we will name ancestral alleles. Each ancestor is randomly crossed (without selfing, 
as potato is an outbreeder) to produce a first generation of 100 individuals, which will 
serve as parents of the second generation. This process was repeated for 50 generations, 
maintaining a constant generation size of 100 individuals. Finally, 100 individuals per 
AG were obtained as potential parents for the creation of NAM populations.

A NAM population consisted of one central parent crossed with nine peripheral par-
ents, without any of the subsequent inbreeding that was originally proposed for NAM 
crossing scheme for selfing crops [12]. Each cross produced 50 offspring, thus totalling 
at 460 individuals per NAM. To simulate NAMs with different degrees of genetic diver-
sity, parents were sampled from the same or from different AGs. A NAM1 contains par-
ents from only one AG, while a NAM5 contains parents from 5 different AGs, with the 
same number of parents per group when possible. When the numbers of parents per 
AG was not equal the central parent always originated from the AG providing the most 
parents. For each level of genetic diversity, 11 populations were simulated. At the end of 
the process, the genotypes of each individual were obtained in terms of ancestral alleles 
(IBD alleles) and in terms of SNP dosages.
Phenotype simulation

Phenotypes were simulated based on the simulated genotypes: genotypic values were 
obtained by assigning genetic effects to the ancestral alleles at pre-defined QTL posi-
tions. Each individual will then harbour four QTL alleles at each QTL position and the 
final phenotype is equal to the added effects of all QTL alleles plus a normally distrib-
uted noise. No interactions between alleles in one QTL or among QTL loci were simu-
lated, and thus additive phenotypes were obtained.

We considered a situation where three unique QTL positions (at chromosome 1, 
67.88  cM; chromosome 2, 61.2  cM and chromosome 4, 100.49  cM) were segregating. 
Each AG has a random allelic mean, and allele effects are drawn from a normal distribu-
tion around that mean. Additionally, 50 small-effect QTLs were added randomly across 
the genome to simulate a polygenic effect.

For further information see Additional file 1.
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Results
Population simulation

Ten Ancestral Groups (AGs) were simulated, each of them being founded with 40 differ-
ent founder alleles. After 50 generations of random mating with a generation size of 100 
individuals, each locus contained 8 to 20 founder alleles, with an average between 12.5 
and 13.5 depending on the AG.

Parents from the last generation of AGs were used to obtain NAM populations. Differ-
ent degrees of genetic diversity were simulated by sampling parents from the same or dif-
ferent AGs, thus producing genetic structure. This is visualized for one example in Fig. 1, 
which shows a heatmap of the relatedness matrix K  and a Principal Coordinate Analysis 
(PCoA) plot of the same matrix. On the left, we see how cross 3, 4 and 5, derived from 
crosses between AG1 and AG2 (A1 × A2 in Fig. 1), have a higher relatedness between 
them than with any other cross. Similarly, in the PCoA plot we observe how the individ-
uals from these crosses (light blue dot cloud) cluster together in the midpoint between 
X (from AG1) and the three parents B (from AG2). These indications confirm that our 
two-step approach was successful in generating NAM populations with genetic struc-
ture. A similar outcome can be observed in the NAM1 to NAM10 simulations.

Population comparison

For each level of diversity, 11 populations were tested with the three proposed models. 
In almost all cases, al models were able to detect all QTL regions. Regardless of the link-
ing distance used for QTL estimation, lower diversity resulted in higher detection power 
(Table 1). This can be observed at l = 3 using haplotype markers: NAM1 has a detec-
tion power of 1 (all QTLs were found in the 11 populations), but this power decreases 
to 0.818 in NAM10. Similarly, the false positive rate decreases as diversity increases and 
is lowest in the SNP model than in IBD or haplotype models. In Fig.  2 the 99th per-
centile profiles also highlight the increased power in lower diversity populations, where 
the dark blue line representing NAM1 populations had higher significance values for all 

Fig. 1  Visualization of genetic distance matrix K. Left: Heatmap of K, where lighter colours indicate higher 
genetic similarity between individuals. (P, parents; An × Am, cross between AG n and AG m; Cn, cross n). 
Right: Individual genotypes plotted on the two first principal components of the K matrix. Dot clouds 
correspond to offspring of crosses 1–9 (X, central parent, of AG1; A, peripheral parents of AG1; B, peripheral 
parents of AG2; C, peripheral parents of AG3)
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QTL peaks and for all models. As diversity increases, a similar decrease can be observed 
for QTL precision. Finally, the mean peak distance from the QTL peak to the true QTL 
position was also larger (lower accuracy) at a higher level of diversity in the populations 
(Table 1).

Table 1  Power comparison across genetic diversity and marker types. Each estimate is an average 
of 11 populations for each diversity level, with l = 3 cM . SNP refers to the biallelic model, IBD refers 
to the ancestral, multiallelic model and Hap refers to the haplotype-based approach. For detection 
power and QTL precision, higher numbers indicate a better model, while for false positive rate and 
accuracy, lower numbers indicate a better model

Detection power False positive rate QTL precision Accuracy (cM from 
true position)

SNP IBD Hap SNP IBD Hap SNP IBD Hap SNP IBD Hap

NAM1 0.939 1 1 0.012 0.066 0.055 0.917 0.850 0.941 0.593 0.161 0.121

NAM3 0.909 0.970 0.970 0.008 0.065 0.054 0.865 0.814 0.886 0.550 0.192 0.130

NAM7 0.545 0.939 0.909 0.005 0.064 0.040 0.697 0.842 0.879 0.687 0.325 0.331

NAM10 0.606 0.848 0.818 0.005 0.055 0.038 0.773 0.932 0.850 0.665 0.312 0.621

Fig. 2  Overlap of p value distribution across all populations in the three models. Top, biallelic SNP model; 
middle, multiallelic IBD model; bottom, multiallelic haplotype model. Coloured solid lines represent the 99th 
percentile of all p values observed in each genetic diversity level at a particular position. The red dotted line 
marks the estimated permutation threshold for each model (SNP: 10−4.22 , IBD: 10−3.27 , haplotype: 10−3.67)
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Marker comparison

Across NAM populations and at a linking distance ( l ) of 3 cM, detection power aver-
aged at 0.74 for SNPs, 0.93 for IBD and 0.92 for haplotypes and was stable for l > 1 cM. 
The decrease in detection power as genetic diversity increased was markedly larger in 
the SNP models than in the multiallelic models (Table 1). This can be clearly observed in 
the 99th percentile lines in Fig. 2: when diversity increases, the trend line is below the sig-
nificance threshold in the SNP models, while for both multiallelic models all trend lines 
stay well above their respective thresholds. In Fig. 3 left and centre panels, we can see 
how the proportion of true positives increases as the value of l increases. For l > 1 cM, 
QTL precision is on average higher for multiallelic models (0.91 IBD, 0.92 haplotype) 
than for the SNP model (0.86). Marker precision is also higher for the multiallelic mod-
els (0.99 IBD, 0.99 haplotype, 0.92 SNP). The choice of l has an impact on this difference, 
as for lower values of l (but above 1) precision is much lower for the SNP model. This is 
due to the presence of significant markers further away from the true QTL position in 
the SNP model than in the multiallelic models (Fig. 4).

Peak accuracy (Fig. 3, right panel) is stable from l > 1 at 0.25 cM for IBD and 0.30 cM 
for haplotype models. In the SNP model, peak accuracy is lower and shows more varia-
tion. At l = 1 peak accuracy is similar to the IBD and haplotype models, yet many false 
positives are present in the QTL analysis (see Fig. 4). At higher l , average peak distance 
increases from 0.33 cM at l = 2 to 0.83 cM at l = 7.

Discussion
Model comparison

The essence of a QTL study is the genetic linkage between observed markers and unob-
served QTL alleles. When dense genetic maps are used, the purpose of a QTL model 
should be to obtain an increasing marker significance as the analysis approaches a 
true QTL position. The definition of QTL interval used in this study stems from such 

Fig. 3  Power measures for each model with different values of l. Power was calculated with l = 0 to 10 in 
steps of 0.5 cM over 44 NAM populations (11 of each: NAM1, NAM3, NAM7 and NAM10), for the SNP dosage 
model (snp), true IBD model (ibd) and haplotype model (hap). Coloured areas represent the 20th to 80th 
percentile of power values for each model, and trend lines represent the average of each. Both lines and area 
edges where smoothed using a LOESS regression
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reasoning: we expect a chain of contiguous significant markers that form a peak struc-
ture, pointing towards the true QTL position.

Classical QTL experiments were carried out on inbred diploid experimental crosses. 
In this setup one can expect only two alleles per QTL to segregate, and thus biallelic SNP 
markers are able to uniquely tag each allele. In this context, a SNP regression is equiva-
lent to testing the difference in phenotype due to having 0, 1 or 2 copies of each marker 
allele [1, 28]. However, when we move to scenarios where more than two alleles per QTL 
are expected to segregate at a single locus, for instance when heterozygosity is expected 
to be high or in multiparental populations, single SNPs no longer tag QTL alleles 
uniquely. Thus, each SNP allele might tag more than one functional QTL allele, creat-
ing a situation where the regression test is being performed between groups that do not 
represent a unique effect. Only if, by chance, those groups happen to divide functional 
alleles between those with large effects and those with small effects, will SNP markers be 
significant. Since two factors are affecting the significance of biallelic markers (i.e. dis-
tance to the true QTL position and the grouping of multiple effects), they become worse 
at estimating the true QTL position.

Figure  4 illustrates this situation. The three panels represent the same population 
being analysed with the three models presented in this study. It can be seen how in the 
SNP model there are three significant markers at approximately 54.5 cM, while the true 
QTL position is at 61.2 cM. Meanwhile there are quite some markers near the true posi-
tion that are not significant. Such behaviour is not seen in the multiallelic models where 
markers near the true QTL position form a clear peak and more distant markers show 
no significance.

The consequences of this can be seen in Figs. 2 and 3. First, SNP models have overall 
lower significance at the QTL regions (Fig. 2), an effect that is increased when genetic 
diversity increases and biallelic markers become increasingly worse at tracking the 
multiple effects present in the population. This explains the lower detection power of 

Fig. 4  Example of QTL interval detection. p value distributions are shown for the same region in the same 
population using the three models (left, SNP; middle, IBD and right, haplotype). Detected QTLs are presented 
above each plot for three values of l: 1, 3 and 5 cM. Horizontal red dotted lines represent the permutation 
threshold for each model, and grey vertical lines highlight the true QTL position. In the SNP model with 
l = 1 cM, three QTL intervals are detected, of which only one contains the true QTL position, while with higher 
values of l, only one QTL interval is detected. In the IBD and haplotype models, a single true QTL is detected 
for all l values shown



Page 12 of 16Thérèse Navarro et al. BMC Bioinformatics           (2022) 23:67 

biallelic models when genetic diversity is increased (Table 1). Secondly, we see how at 
low linking distances, SNP models have a high number of significant markers in false-
positive QTL intervals (Fig.  3 middle). As l is increased, marker precision increases 
(there are less false-positive QTLs), but at the cost of accuracy (Fig.  3 left): the QTL 
intervals become larger (Fig. 4), including markers at some distance of the QTL position 
with higher significance than those at the simulated QTL position.

Thus, in a context of high genetic diversity, the usefulness of SNP models will depend 
on marker density, as higher density gives higher chances of having at least one marker 
at the QTL position that divides functional QTL alleles in two groups with statistically 
different means. Even if such a marker is found and the location of the QTL is detected, 
the effect estimated by a regression model does not realistically represent the true func-
tional alleles present in the population.

Considering the lower detection power, lower accuracy and inability of biallelic QTL 
models to estimate effects for multiple alleles, it is clear that SNP-based biallelic models 
are a limited and limiting tool when applied to multiallelic populations.

Multiallelic markers

In order to apply multiallelic models, one must be able to obtain multiallelic geno-
types. One possibility is to utilize markers that are multiallelic per se, such as SSR 
markers, but these markers are less common along the genome, their detection 
cannot be automated, and they are therefore hard to apply within high-throughput 
pipelines.

Alternatively, several studies have proposed the use of multiallelic haplotypes: groups 
of phased adjacent SNPs. This type of markers has the advantage of being predictive of 
two parts of IBD: family IBD, regions of chromosomes from two individuals that origi-
nate from the same parental chromosome; and ancestral IBD, chromosomal regions 
originating from the same ancestral chromosome that could occur in more than a single 
founder and that are broken down by recombination events [29].

While in our simulations haplotyping was trivial because the genotype of each indi-
vidual was known, haplotyping of real SNP data requires phasing. For instance, if two 
adjacent marker genotypes of an individual are AAAB and AAAB, the underlying four 
haplotypes could be both AA-AA-AB-BA or AA-AA-AA-BB. Some approaches have 
been developed for haplotyping in polyploids [30–32] but regardless of the method, hap-
lotype estimation from SNP data carries a certain degree of uncertainty due to the high 
number of possible solutions with similar probabilities. This uncertainty is not present 
in the haplotypes used in this study, meaning that the haplotype model here presented is 
performing better than what would be expected with real data, depending on the accu-
racy of haplotype estimation.

Nevertheless, sequencing technologies are becoming a mainstream approach for gen-
otyping, and haplotypes can be directly observed in longer sequencing reads. Identifying 
haplotypes for different individuals given a set of reads is a complex mathematical prob-
lem that has spurred the development of a variety of tools [31, 33–35]. The haplotypes 
obtained from these methods could also be used with the multiallelic polyploid model 
introduced in this paper, allowing to perform QTL analysis in genetically diverse poly-
ploid populations based on sequence data.
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Lastly, in this simulated population each founder allele had a different QTL effect. In 
nature this might not be the case, as it is well known that many mutations are in fact 
neutral and thus do not change the QTL effect of that mutated allele. This could imply 
that the number of haplotypes would be higher than the number of QTL effects in a 
population, thus decreasing the usefulness of haplotype-based multiallelic markers.

Preparing multiparental populations

When organizing an MPP, the power to be able to detect the effects of an allele at 
a QTL depends on its frequency. The more individuals harbour one QTL allele, the 
more information the MPP provides about it. The expected frequency of founder 
alleles is directly affected by two factors: founder genetic diversity and offspring per 
founder.

The number of alleles segregating in a population is a direct reflection of the genetic 
diversity of its founders. When relatedness between founders is high, the chances of 
two founder chromosomes harbouring the same allele is also high. In MPPs where 
founders are very related, ultimately not many alleles can be expected to segregate. 
In contrast, when relatedness between founders is low, they have high chances to 
contribute unique alleles. The approach here presented estimates one parameter per 
each allele in the population, and thus, if population size is maintained constant, the 
power of the model decreases as the number of alleles increases. This hypothesis was 
confirmed by our simulation study where systematically, higher diversity populations, 
which require more allele effect parameters, presented lower QTL detection power, 
lower precision and lower QTL accuracy (Fig. 2, Table 1).

A second aspect to be considered is the number of offspring per founder. The larger 
the contribution of a founder to the individuals of the MPP, the higher the power to 
detect and estimate the effects of its alleles [36]. For instance, using our NAM design, 
the alleles present in the central parent were present in all crosses. Alleles from periph-
eral parents not shared with the central parent had fewer individuals contributing to 
their effect estimation, meaning these estimations will be less powerful.

Considering the previous points, we suggest that MPPs should be developed with an 
intermediate diversity and ensuring that those alleles to be studied are kept at a relatively 
high frequency. Following this logic, a few parents from the same ancestral group (AG) 
can be selected (which likely share some alleles) and crossed with several other AGs. If 
all AGs are equally interesting for the QTL study, then all AGs should have a similar con-
tribution to the offspring [36]. If an MPP is designed from an already-existing set of con-
nected F1 crosses, then each cross should be of similar size and the number of crosses 
per AG should be similar. When more complex pedigrees are used, ancestry coefficients 
can help guide the design of MPP.

Conclusion
Genetic diversity is the basis of breeding, and thus, characterizing it becomes essen-
tial in the development of new varieties. The methods developed within the “mpQTL” 
package  add to the growing toolset for polyploid organisms. It is now possible to apply 
multiallelic models in polyploid organisms in the presence of genetic structure, which 
we have shown are more powerful, especially in the presence of high genetic diversity. 
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Additionally, this study supports an alternative approach to the study of genetic diver-
sity. Instead of using a diversity panel to perform a GWAS, a selection of these diverse 
accessions can be used as founders of an MPP. Each biparental cross within the MPP 
will add information to the QTL study, and future crosses can be added to the overall 
MPP analysis. This approach shows much promise in the context of breeding, particu-
larly for its ability to connect and share information between crosses that in traditional 
approaches would remain separate.
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