
Searchlight: automated bulk RNA‑seq 
exploration and visualisation using dynamically 
generated R scripts
John J. Cole1,2*  , Bekir A. Faydaci1, David McGuinness3, Robin Shaw4, Rose A. Maciewicz1,2, 
Neil A. Robertson4 and Carl S. Goodyear1,2* 

Background
Once bulk RNA-seq data has been processed, i.e. aligned and then expression and dif-
ferential tables generated [1], there remains the essential process where the biology is 
explored, visualized and interpreted (herein known as EVI). EVI typically culminates in 
the generation of result figures within a report, thesis, or manuscript.

Abstract 

Background:  Once bulk RNA-seq data has been processed, i.e. aligned and then 
expression and differential tables generated, there remains the essential process where 
the biology is explored, visualized and interpreted. Without the use of a visualisation 
and interpretation pipeline this step can be time consuming and laborious, and is 
often completed using R. Though commercial visualisation and interpretation pipelines 
are comprehensive, freely available pipelines are currently more limited.

Results:  Here we demonstrate Searchlight, a freely available bulk RNA-seq visualisa-
tion and interpretation pipeline. Searchlight provides: a comprehensive statistical and 
visual analysis, focusing on the global, pathway and single gene levels; compatibility 
with most differential experimental designs irrespective of organism or experimental 
complexity, via three workflows; reports; and support for downstream user modifica-
tion of plots via user-friendly R-scripts and a Shiny app. We show that Searchlight offers 
greater automation than current best tools (VIPER and BioJupies). We demonstrate in 
a timed re-analysis study, that alongside a standard bulk RNA-seq processing pipeline, 
Searchlight can be used to complete bulk RNA-seq projects up to the point of manu-
script quality figures, in under 3 h.

Conclusions:  Compared to a manual R based analysis or current best freely available 
pipelines (VIPER and BioJupies), Searchlight can reduce the time and effort needed to 
complete bulk RNA-seq projects to manuscript level. Searchlight is suitable for bioin-
formaticians, service providers and bench scientists. https://​github.​com/​Searc​hligh​t2/​
Searc​hligh​t2.
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Due to improved tools for quality control (QC) and alignment (e.g. FastP [2], STAR 
[3] and Kallisto [4]) and the use of automated pipelines the processing stage is now 
largely trivial, typically taking bioinformaticians only a handful of hours to complete. 
Despite the obvious advantages, the use of automated pipelines for EVI is less preva-
lent. With many choosing a bespoke R based analysis, a process which provides free-
dom in terms of analysis and visualisation but can often take days and sometimes 
weeks to complete.

Commercial tools for the automation of EVI (such as ingenuity pathway analysis 
[5] (IPA) and Partek Flow [6]) are the most widely used and generate a comprehen-
sive range of plots and analysis. Whilst also providing convenient means for users to 
modify plots. Resultantly, they can reduce the time needed to perform the EVI stage 
to only a few hours, and so typically trivialize much of the EVI stage.

Freely available tools are however more limited. For example, the two most compre-
hensive—BioJupies [7] and VIPER [8], do not include typical and often key analysis 
steps, such as heatmaps or boxplots (or similar) of differentially expressed genes. Bio-
Jupies is compatible only with human or mouse experiments and incompatible with 
experiments with greater than two conditions (such as a time-course, comparison 
of two drugs against healthy, or a CRISPR knockout with suitable controls). VIPER 
includes only limited means to explore experiments with greater than two conditions 
(i.e. a Venn diagram but no formal signature analysis). Most critically, neither tool 
provides users with a convenient means to visually modify the plots that they pro-
duce (e.g. font type, axis labels, plot size, grid types, dot or heatmap colors, scaling, 
etc.). This is particularly limiting in VIPER, as its outputs are visually inconsistent 
with each other (i.e. different fonts, grid types, color schemes, etc.).

Consequently, these tools are suitable for a fraction of experimental designs only, 
can require users to backtrack and perform additional manual analysis—even for 
simple experiments, and in the non-trivial situation that users wish to modify plots 
visually, (e.g. to make them consistent with each other, consistent with other non-
omic results, consistent with a journals figure guidelines, or to resize to fit optimally 
into figure space), users can be forced to replot entirely using alternative means such 
as R. Though both tools offer accessible first pass analysis to non-bioinformaticians, 
because of these limitations, they often ultimately provide bioinformaticians with lit-
tle or no time advantage over a manual R (or similar) based analysis.

Herein, we describe Searchlight, a freely available tool that automates the EVI stage 
of bulk RNA-seq analysis. Searchlight aims to:

1.	 Automate bulk RNA-seq EVI further than other freely available EVI tools by provid-
ing a greater range of analysis and visualizations, being suitable for use with a greater 
fraction of experimental designs and by providing means for users to modify the 
plots that it generates.

2.	 Provide a level of bulk RNA-seq EVI automation that is broadly comparable to com-
mercial tools, thereby providing a freely available alternative.

3.	 Provide analysis and visualizations generated using R scripts and so fit with the work-
ing practices of bioinformaticians who typically use R.



Page 3 of 21Cole et al. BMC Bioinformatics          (2021) 22:411 	

We envisage Searchlight to help bioinformaticians, RNA-seq service providers and 
bench scientists progress bulk RNA-seq research projects rapidly and with minimal 
effort, thus freeing up resources for further in-depth analysis or alternative analytical 
approaches.

Implementation
Overview of searchlight

From the outset it is important to note that Searchlight is not a processing pipeline, 
as it does not perform alignment, count reads or calculate expression and differential 
expression values. These stages should be completed prior to the use of Searchlight. 
Any processing method is suitable. Searchlight accepts typical RNA-seq inputs (Fig. 1a), 
including a tab-delimited sample sheet, matrix of normalized expression values (EM 
file), genome background file (e.g. as downloaded from Biomart [9]) and any number of 
differential expression tables (DE file). It is compatible with EM and DE files generated 
using any method (e.g. DESeq2 [10], EdgeR [11], etc.) or format (e.g. FPKM, TPM, RLog, 
etc.).

Searchlight is executed as a single command. Firstly, it validates the input files (Fig. 1a) 
and combines them into a single “master gene table”, from which the downstream analy-
sis is based. Next, it iterates through each workflow generating: intermediate files; sta-
tistical analysis result files; per plot and per workflow R scripts, plots; a report in HMTL 
(Fig. 1b); and a Shiny app (Fig. 1c).

Workflows

Core to Searchlight is the use of independent but overlapping workflows, that aim to 
provide compatibility with a broad range of experimental designs. There are three work-
flows: Normalized Expression (NE), Differential Expression (DE) and Multiple Differen-
tial Expression (MDE).

The NE workflow explores and visualizes the expression data and is focused QC 
and providing an experimental overview. It includes: expression distribution analysis 
(Fig. 2a); principal component analysis (PCA) (Fig. 2b, c); distance analysis (Fig. 2d); and 
highly expressed gene analysis (Fig. 2e, f ). See Additional file 1: Table S1 for a full list of 
NE outputs.

The DE workflow explores and visualizes a single differential expression comparison 
between two conditions, but can also handle comparisons where a complex linear model 
was used. It includes: differential gene counts (Fig. 3a); MA plots (Fig. 3b); volcano plots 
(Fig. 3c); significant gene heatmaps (Fig. 3d), tables with statistical analysis (Fig. 3e) and 
violin plots (Fig. 3f ); spatial analysis (differential gene expression by chromosome); and 
pathway analysis (Fig.  3g–j) including over-representation analysis (ORA)(e.g. using 
GO [12], KEGG [13], String [14] etc.) and upstream regulator analysis [5] (URA) (e.g. 
using TRRUST [15]). For each pathway analysis it explores all, up and downregulated 
genes separately and plots top hits (Fig. 3g, h), boxplots of gene expression at the top hits 
(Fig. 3i) and ontology interaction networks (Fig. 3h). See Additional file 1: Table S2 for a 
full list of DE outputs.

The MDE workflow explores and visualizes the relationship between two or more 
sets of differential comparisons. For example, it might compare the genes that change 
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between healthy and disease to those that change between disease and disease plus 
treatment. There is no upper limit to the number of comparisons that can be com-
pared simultaneously with this workflow. It produces analysis and plots such as: sig-
nificant gene counts (Fig. 4a); heatmaps of all significant genes from any comparison 

Fig. 1  Searchlight outline and screenshots. a Searchlight pipeline schematic. Indicating analysis flow 
(arrows), text file inputs and outputs (blue boxes), plot outputs (green box), report outputs (red box) and 
processes (grey boxes). b Screenshot of a Searchlight report, showing plots, the contents side bar and the 
plot description, legend and R code drop down menus. c Screenshot of the Searchlight Shiny app showing 
the workflow and plot navigation panel, the plot modification panel and the plot panel
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(Fig. 4b); overlap analysis (Venn statistics); fold versus fold analysis (Fig. 4c); and dif-
ferential expression signature analysis (Fig.  4d–h). For each signature it produces a 
heatmap (Fig. 4d), meta-gene violin plot (Fig. 4e, g) and ORA top hits plot (Fig. 4f, h). 
See Additional file 1: Table S3 for a full list of MDE outputs.

Each workflow performs its own set of statistical analysis and generates interme-
diate files, R code, plots, and a report. Importantly, each workflow may be included 

Fig. 2  A selection of the default outputs from the Normalised Expression workflow, using the demonstration 
dataset. Three sample groups are presented—Lamina Propria (LP) (red), Mesenteric Lymph (ML) (green) and 
Mesenteric Lymph Node (MLN) (blue). a Density plots of the per sample distribution of expression values—
across all genes. Expression is given on a log10 scale. b Principal component analysis (PCA) proportion of 
variance plot. The % of variation explained by each component is given on the Y-axis. c PC1 versus PC2 
scatter plot. The % of variation explained by each component is given on the axis label. d Sample to sample 
correlation heatmap. Correlations were determined using all genes and a Spearman Correlation Coefficient 
(SCC). Colour indicates SCC with − 1 as the darkest blue and 1 as the darkest red. e Table of the 5 most highly 
expressed genes in MLN. Values indicate the mean expression of each gene in each of the three sample 
groups. f Gene expression violin plot with jitter values for each of the four most highly expressed genes in 
MLN. Black dots denote individual samples. The red dot and whisker denote mean and standard deviation 
respectively
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any number of times in the same run, and different workflows can be included in any 
combination. For example, in an experiment with healthy controls (HC), disease (D) 
and disease with treatment (DT) the user could specify three different DE workflows: 
HC versus D, HC versus DT and D versus DT, resulting in a separate set of results 
(and report) for each comparison. The user could additionally specify a single MDE 
workflow of (HC vs. D) versus (D vs. DT), which would specifically explore the extent 
to which the treatment reverses the effects of the disease. In this way the user can tai-
lor their analysis to suit the experimental design and research questions.

Reports

Searchlight collates the results from each workflow into a HTML report, allowing 
convenient interpretation of results (Fig. 1b). Each report includes all plots alongside 
descriptions, guides to interpretation, figure legends, methods, and references. The 
reports also include a hyperlinked contents side bar and cumbersome text sections are 
hidden within drop-down menus, to help investigators focus on result interpretation.

Downstream user modification of plots using R

Searchlight uses the R package GGplots2 to generate each plot, and it saves the inter-
mediate data and R script for each outputted plot in the results directory. Resultantly 
all plots can be conveniently modified and regenerated by altering and re-running 
these scripts in R. Scripts have a consistent and clear layout with common parameter 
names. Many visual parameters (such as plot size, font, axis labels, dot colors, etc.) 
are clearly labelled within each script, and a custom GG theme is used. One script is 
generated per plot type, as well as a parallel combined script, which can be used to 

(See figure on next page.)
Fig. 3  A selection of the default outputs from the differential expression workflow, using the demonstration 
dataset. Comparison of Lamina Propria (LP) to Mesenteric Lymph (ML). Significance for differential genes was 
adjusted p < 0.01 and absolute log2 fold change > 1. Upregulated genes are higher in ML. a Bar chart of the 
number of up and downregulated genes. b MA plot. Significant genes are red and non-significant black. c 
Volcano plot. Significant genes are red and non-significant black. d Gene expression heatmap for the 2342 
significantly differential genes. Colour denotes row scaled (Z-score) expression values, with darkest blue as 
lowest expression and darkest red as highest. The Y-axis has been hierarchically clustered using Spearman 
Correlations, UPMG agglomeration and mean reordering. e Table of the 5 most upregulated genes by p value. 
f Gene expression violin and jitter plots for each of the two most significantly upregulated genes in ML. Black 
dots denote individual samples. The red dot and whisker denote mean and standard deviation respectively. g 
Bar chart of the five most enriched gene-sets (GO Biological Processes). The X-axis shows the − log10 p value 
and the data labels the number of significant genes in each gene-set. h Bar chart of the five most inhibited 
upstream regulators (TRRUST). The X-axis shows the activation Z-score and the data labels the number of 
significant genes associated with each activator. i Gene expression boxplots for each gene in the enriched 
gene-set Adaptive Immune Response. Expression levels are given as per gene Z-scores. Boxes of LP samples 
are red, and ML are blue. j Network plot of the significantly enriched (adjusted p < 0.05) upstream regulators. 
Nodes denote regulators and edges join nodes where > 50% of the regulated genes are shared. Colour 
intensity represents significance (− log10p) and node size the number of regulated genes
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regenerate all plots for a workflow simultaneously. This allows for example the axis 
font of all plots to be modified together, by modifying only one parameter, once.

Downstream user modification of plots using a Shiny app

In addition to R scripts Searchlight also generates a Shiny app, which is stored within 
the results folder. This allows users who are unfamiliar with R to tweak and modify 
the plots generated by each workflow via an intuitive graphical user interface (GUI) 
(Fig. 1c). Plots can then be saved to any dimension in jpeg, svg or png format.

Fig. 3  (See legend on previous page.)
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Auto‑generated R scripts

When generating each R script during runtime Searchlight utilizes a central bin of 
100’s of smaller R-code “snippets”. Each snippet contains code for one small segment 
of the final scripts. For example, snippets exist for the default theme, plot saving func-
tion, default heatmap colors, etc. Searchlight has a master config file, which for each 
workflow type lists each analysis step. For each analysis step the master config file 
points to a per-step config file. Examples of per-step config files are ne_PCA_scatter-
plot and de_significant_genes_heatmap. Each per-step config file lists all the R code 
snippets required to perform that step, in the order that they should appear in the 
final R script. During runtime, these snippets are combined dynamically based on the 
instructions within the master and per-step config files.

Appropriate snippets are shared between scripts. For example, the default theme 
snippet is used during the generation of every script, whereas the default heatmap 
colors snippet is used only in those scripts that involve generating heatmaps. Fur-
thermore, some snippets contain tags that indicate where Searchlight should parse 
certain information (such as p value thresholds or sample group names) into the final 
R script.

Modifying Searchlight’s default behavior

This system allows users that are familiar with R to modify the default behavior of 
Searchlight’s plots, by identifying the appropriate snippet and modifying accordingly. By 
this way users can tailor Searchlight to produce plots of their own visual style by default.

Analysis modules

Searchlight incorporates several widely used and typical statistical analysis modules:

1.	 Over-representation analysis module This determines enriched gene-sets using a 
hypergeometric test with Benjamini–Hochberg (BH) correction. It is compatible 

Fig. 4  A selection of the default outputs from the Multiple Differential Expression workflow, using the 
demonstration dataset. Using three sample groups—Lamina Propria (LP) (red), Mesenteric Lymph (ML) 
(green) and Mesenteric Lymph Node (MLN) (blue), and two differential comparisons ML versus LP and MLN 
versus ML. Significance for differential genes was adjusted p < 0.01 and absolute log2 fold change > 1. a Bar 
chart of the number of up and downregulated genes for each comparison. b Gene expression heatmap of 
the 3,220 significant genes from either comparison. Colour denotes row scaled (Z-score) expression values, 
with darkest blue as lowest expression and darkest red as highest. The Y-axis has been hierarchically clustered 
using Spearman Correlations, UPMG agglomeration and mean reordering. c Fold versus Fold scatterplot 
comparing MP versus LP (Y-axis) to MLN versus ML (X-axis) at each gene. Each dot is one gene, with black 
dots being non-significant, blue being significant in MLN versus ML only, green in ML versus LP only and 
red in both. The Spearman correlation coefficient (SCC) is − 0.25. d Gene expression heatmaps for four of 
the identified differential expression signatures (1–4). Further plot details are as (c). e Differential expression 
signature meta-gene violin plot with jitter values for signature number 1. The mean expression (Z-score) 
across all genes in the signature is given on the Y-axis. Black dots denote individual samples. The red dot and 
whisker denote mean and standard deviation respectively. f Bar chart of the five most enriched gene-sets 
(GO Biological Processes) for the genes in signature number 1. The X-axis shows the − log10 p value and the 
data labels the number of significant genes in each gene-set. All gene-sets are significant at p < 0.05. g As (e) 
however for signature number 4. h As (f) however for signature number 4

(See figure on next page.)
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with any gene-set database (such as GO [12], KEGG [13] and String [14]) provided it 
is in the GMT format [16]. A selection of databases is included with the software.

2.	 Upstream regulator analysis module This module determines likely activated or 
inhibited upstream regulators using the method outlined in IPA [5]. It is compatible 
with any database of upstream regulators, so long as it is in the TRRUST [15] format.

3.	 Spatial enrichment analysis module This module determines expression or differen-
tial expression bias at each chromosome in three different ways; bias towards expres-
sion, bias towards differential expression, and bias towards up- or down-regulation. 
All comparisons use a Fishers Exact Test with BH correction.

Fig. 4  (See legend on previous page.)
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4.	 Overlap analysis module This module determines the size, enrichment and statistical 
significance of the overlap between two gene lists, using a Hypergeometric test.

5.	 Differential expression signature module This module generates differential expres-
sion signatures based on UPMGA agglomeration. Initially, genes are binned by their 
differential expression profile (e.g. (A vs. B up), plus (B vs. C up), or (A vs. B up) plus 
(B vs. C down)). Next, a meta-gene list is generated for each profile, using the per 
sample median of all per gene z-scores (for each profile). Next, the meta-genes are 
iteratively merged based on their correlation with each other [Spearman’s Rank Cor-
relation Coefficient (SCC)]. In each iteration the two profile meta-genes of highest 
correlation are merged, and the meta-gene recalculated. The process continues until 
no two meta-genes correlate above a given SCC threshold as assigned by the user. 
The resultant genes in each meta-gene are the differential expression signatures.

Methods
RNA‑seq processing pipeline

To process raw RNA-seq datasets prior to use by Searchlight we used the following 
pipeline. Firstly, the fastQ files were QC’d using FastQC [17] (v0.11.7) and then were 
aligned to the reference genome using STAR [3] (v2.6) with –quantMode GeneCounts 
–outFilterMultimapNmax 1 and –outFilterMatchNmin 35. For each dataset, we used 
a Star index with a –sjdbOverhang of the maximum read length − 1. Next, read count 
files were merged and genes with mean of < 1 read per sample were excluded. Finally, 
the expression and differential expression values were generated using DESeq2 [10] 
(v1.24). For differential comparisons we used an A versus B model with no additional 
covariates, except for re-analysis dataset two (which was paired) where the patient ID 
was also included. All other parameters were left to default. For the demonstration 
data (dendritic cell migration) sequences were aligned to the genome and transcrip-
tome GRCm38 (release 93). For the re-analysis datasets sequences were aligned to the 
genome and transcriptome GRCh38 (release 91).

Demonstration dataset

To demonstrate Searchlight’s outputs (see “Workflows” section), we used a pub-
licly available bulk RNA-seq dataset (GEO ID: GSE160156) from flow cytometri-
cally-sorted CD103+ CD11b− dendritic cells (live, single, CD45+, CD64− MHCIIhigh 
CD11c+), that had been acquired from the lamina propria (LP), mesenteric lymph 
(ML) and mesenteric lymph node (MLN) of C57BL/6 mice (n = 3) under steady state 
conditions, as previously described [18, 19]. The raw data was processed as described 
in the RNA-seq processing pipeline section. The dataset was explored using Search-
light (v2.0), specifying two differential expression workflows (see “Workflows” sec-
tion) (LP vs. ML and ML vs. MLN) and one multiple differential expression workflow 
[(LP vs. ML) versus (ML vs. MLN)]. Over-representation and upstream regulator 
analysis were specified using the mouse GO Biological Process [12] and TRRUST [15] 
databases, respectively. All other parameters were left to default.
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Re‑analysis of highly cited datasets

To provide example of the utility and time saving features of Searchlight we re-analyzed 
two highly cited (> 100 citations each) RNA-seq datasets [20, 21] under timed condi-
tions. The bioinformatician was given a raw dataset that they had no previous knowl-
edge of, and they were not permitted web or journal access, or to discuss the dataset. 
They were given a sample sheet listing sample names and sample conditions but no fur-
ther information. The bioinformatician was then asked to process, explore, visualize and 
interpret the dataset, and create a single figure (with multiple panels) that they felt best 
described the biology. To do so they could use the processing pipeline (see RNA-seq 
processing pipeline), Combat [22] (for batch correction where appropriate)(v3.38.0) and 
Searchlight only. As a concession to the one figure limitation investigators were permit-
ted to modify plot sizes and axis text (using R), crop and add data labels where appropri-
ate. They were timed from when they received the raw data and sample sheet, to when 
the figure as presented in Figs. 5 and 6 was completed. The time spent waiting for the 
alignment software to run was deducted from the final time. Finally, an alternative inves-
tigator then compared the figure to that of the original manuscript, to assess whether the 
findings had broadly replicated.

Re-analysis dataset 1 [20] (GEO ID: GSE97358) explored the effect of TGFB1 on pri-
mary cardiac fibroblasts and had two sample groups (control cells or those treated with 
TGFB1). The starting point was a table of raw counts, and the investigator (J.J.C.) setup 
Searchlight for one DE Workflow (TGFB1 versus control) and specified the human GO 
Biological Process and TRRUST databases for over-representation and upstream regula-
tor analysis respectively. All other parameters were left to default.

Re-analysis dataset 2 [21] (ENA ID: PRJEB9942) explored the synergistic effect of 
using a combination of RITA, which binds p53 and blocks its degradation, and CPI-
203 (CPI), a bromodomain and extra terminal protein (BET) inhibitor on Chronic 
myeloid leukemia (CML) haemopoietic stem cell (HSC) survival. It had four sample 
groups Control, RITA, CPI, and RITA plus CPI (Combo). The investigator (J.J.C.) setup 
Searchlight for six DE (one for each possible combination) and one MDE Workflow 
((Combo versus Control) versus (CPI versus control) versus (RITA versus Control)). 
The initial analysis revealed a strong donor batch effect and so the investigator re-ran 
the DESeq2 analysis using donor as an additional covariate. In addition, the expression 
matrix was corrected for the effects of donor using Combat. Searchlight was executed 
twice—initially using default settings for order and SCC, and then using the order Con-
trol + RITA + CPI + COMBO for all workflows (for visualisation purposes) and using 
a SCC of 1 for greater resolution of the differential expression signatures. The human 
GO Biological Process and TRRUST databases were used for over-representation and 
upstream regulator analysis respectively. All other parameters were left to default.

Comparison to other automated EVI tools

Searchlight was compared, using the OMICtools [23] database as a guide, to other freely 
available tools for automated bulk RNA-seq EVI. We therefore did not include tools 
that: were solely focused on the processing stage (e.g. HppRNA [24] and PRADA [25]); 
had a limited scope for the exploration and visualisation of whole experiments (e.g. 
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Fig. 5  Results from re-analysis of dataset 1 [20] (GEO ID: GSE97358). Comparison between control and TGFB1 
treated primary cardiac fibroblasts using Searchlight. Significance for differential expression was adjusted 
p < 0.05 and absolute log2 fold > 1. Upregulated genes are higher in TGFB1 treated. a PCA scatter plots, 
showing PC1 versus PC2 (top plot) and PC3 versus PC4 (bottom plot). The percent variation is given on the 
axis label. b Volcano plot of control versus TGFB1. Significant genes are labelled and in red. c Gene expression 
violin plots for each of the four most significantly differential genes. Significance at p < 0.05 and absolute 
log2 fold > 1 is denoted by an asterisk. Black dots denote individual samples. The red dot and whisker denote 
mean and standard deviation respectively. d Network plot of the enriched (adjusted p < 0.05) gene-sets 
(GO Biological Processes) for the 737 significant genes. Nodes denote gene-sets and edges join nodes 
where > 50% of the genes are shared. Node colour intensity represents enrichment (− log10 p value) and 
node size the number of significant genes in the gene-set. Representative names for node clusters are given
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QuickRNASeq [26], Consensus Path DB [27], Trapline [28]); were platforms that allow 
a range of EVI applications but are not inherently automated (e.g. PlotsOfData [29] and 
Expression Plot [30]); or were platforms for building pipelines but are not necessarily 
one themselves (e.g. Bioconductor [31] and Galaxy [32]). Having applied these criteria 
two freely available published tools remained, Biojupies [7] and Viper [8].

We compared Viper, Biojupies and Searchlight under the categories: ease of use, range 
of compatible experiments, the number and range of outputs (depth of analysis), rele-
vance of analysis, presentation of results and support for downstream modification of 
plots.

When determining the numbers of outputs per software, we used the following cri-
teria: (1) data that was presented several times only differing in plot parameters were 
counted only once (e.g. labelled and unlabeled volcano plots); (2) heatmaps of the same 
data in un-clustered and clustered forms, or using different clustering algorithms were 
counted once each; and (3) for practical reasons, over-representation analysis visualiza-
tions were counted once each regardless of the number of different databases they could 
be or were used with by default (i.e. we compare the method and visualizations, not the 
number of databases theoretically available). The outputs of all three tools are summa-
rized in Additional file 1: Table S4.

Results
Re‑analysis of highly cited datasets

To provide examples of the utility and time saving features of Searchlight we re-analyzed 
two highly cited (> 100 citations each) RNA-seq datasets [20, 21], under timed condi-
tions. See “Methods” section for full details.

Re-analysis dataset 1 [20] (GEO ID: GSE97358) explored the effect of TGFB1 on 
primary cardiac fibroblasts and had two sample groups (control and cells treated with 
TGFB1). The analysis, interpretation, and figure generation (Fig.  5) was completed 
with 44 min and 30 s of labour from a starting point of raw counts. The PCA (Fig. 5a) 

Fig. 6  Results from re-analysis dataset 2 [21] (ENA ID: PRJEB9942). Comparison between Control, RITA, CPI, 
and RITA plus CPI (Combo) treated Chronic myeloid leukemia (CML) haemopoietic stem cells (HSCs). Three 
differential comparisons were used RITA versus Control, CPI versus Control and Combo versus Control. 
Significance for differential expression was adjusted p < 0.05 and absolute log2 fold > 1. a PCA scatterplot 
showing PC1 versus PC2. The percent variation is given. b Gene expression heatmap combining all 2237 
significant genes from the three comparisons. Colour denotes row scaled (Z-score) expression values, with 
darkest blue as lowest expression and darkest red as highest. The Y-axis has been hierarchically clustered 
using Spearman Correlations. c As (b) however showing the 329 genes in differential expression signature 
4. d Differential expression signature four meta-gene violin with jitter values. The mean expression (Z-score) 
across all genes in the signature is given on the Y-axis. Black dots denote individual samples. The red dot and 
whisker denote mean and standard deviation respectively. e Bar chart of the five most enriched (adjusted 
p < 0.05) gene-sets (GO Biological Processes) for signature four. f Bar chart of the five most enriched (adjusted 
p < 0.05) upstream regulators (TRRUST) for Combo versus Control. g Network plot of the significantly 
enriched (adjusted p < 0.05) upstream regulators for Combo versus Control. Nodes denote regulators and 
edges join nodes where > 50% of the regulated genes are shared. Colour intensity represents significance 
(− log10p) and node size the number of genes that are potentially being regulated. h Bar chart of the five 
most activated upstream regulators (TRRUST) for Combo versus Control. Significantly activated regulators 
(activation Z-score > 2) are red. i Gene expression boxplot for each gene in the enriched upstream regulator 
TP53. Expression levels are given as per gene Z-scores

(See figure on next page.)
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showed a clear split between control and TGFB1 treated, which was confirmed by the 
volcano plot (Fig.  5b), showing 737 differentially expressed genes (adjusted p < 0.05 
and absolute log2 fold > 1). The most significantly differential genes were XYLT1, 
IL-11, PMEPA1 and WNT11 (Fig. 5c). A network of enriched (adjusted p < 0.05) gene-
sets (GO Biological Process) for the 737 differential genes showed enrichment for 
Inflammatory Response, Vascular and Muscle System Processes, Hormone Metabo-
lism functions and the role of Erk 1 and 2 signal transduction (Fig.  5d). This repli-
cated the original manuscripts findings that TGFB1 has a profound effect on cardiac 
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Fig. 6  (See legend on previous page.)



Page 15 of 21Cole et al. BMC Bioinformatics          (2021) 22:411 	

fibroblasts expression, with IL-11 and its related pathways as one of the top upregu-
lated genes (see Figure 2 in Schafer et al. [20].

Re-analysis dataset 2 [21] (ENA ID: PRJEB9942) explored the synergistic effects of 
using a combination of RITA and CPI-203 on CML HSC survival. It had four sample 
groups Control, RITA, CPI and Combo. The analysis, interpretation, and figure genera-
tion (Fig. 6) was completed using 2 h, 37 min, and 11 s of labour from a starting point 
of raw sequence data. The PCA showed a clear split between all four groups, with PC1 
(28%) differentiating samples on CPI treatment and PC2 (16%) on RITA treatment 
(Fig. 6a). The heatmap of all 2237 significantly differential genes (adjusted p < 0.05 and 
absolute log2 fold > 1) between Control, RITA, CPI or Combo showed CPI to have a 
much larger effect than RITA (Fig. 6b), and the Combo to reflect the sum of the individ-
ual RITA and CPI transcriptional differences. The resultant 329 gene signature from the 
Combo analysis (Fig. 6c–e), which included BBC3, FOS, FOSB, JUN, JUNB and MDM2, 
was highly enriched (adjusted p < 0.05) for the gene-sets Apoptotic Signaling Pathway, 
Leukocyte Differentiation and Response to Molecules of Bacterial Origin. Further-
more, in Combo compared to Control, TP53 was the most enriched upstream regulator 
(adjusted p < 0.05) and Jun the most activated (activation z-score > 2) (Fig.  6f–i). TP53 
activation was consistent with downregulation of MYC. These observations replicate 
and expand on the original manuscripts’ findings, that a subset of genes demonstrated 
extreme synergy. With most genes differentially expressed in response to the combina-
tion deregulated in the same direction with RITA or CPI-203. Furthermore, that the 
combination induced enrichment of TP53 and MYC related pathways (see in Abraham 
et al. [21] Figure 5 and Extended Data Figures 6 and 7).

In summation, from a starting point of raw data, the bioinformatician was able to 
broadly recreate the original analysis and conclusions of both datasets (having not 
previously seen those analysis or conclusions) and present them as figures using 
under 3 h of labour in each case.

Comparison to other automated EVI tools

We compared Searchlight to the two tools that currently provide the greatest level of 
EVI automation—Biojupies [7] and VIPER [8] (Table  1, Additional file  1: Table  S4). 
Note: these also automate the processing step. For full details on selection criteria for 
comparison see the Methods section.

Ease of use

We found as a web-tool BioJupies the most user-friendly initially, however as it is only 
partially automated VIPER and Searchlight were more user-friendly once set-up.

Range of compatible experiments

Being compatible only with human or mouse datasets and only those with two groups 
of samples Biojupies had the smallest range. Both Searchlight and VIPER had no 
restrictions.
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Depth of analysis

Overall BioJupies provided the lowest depth of analysis, followed by VIPER, and 
Searchlight the greatest (Biojupies = 12, VIPER = 20, Searchlight = 50 plot types) 
(Additional file  1: Table  S4). Notably, Searchlight provided 3.7–6.6 times more plot 
types for differential expression analysis (VIPER = 5, BioJupies = 9, Searchlight = 33), 
at least 10 times more plot types for multiple differential expression (BioJupies = 0, 
VIPER = 1, Searchlight = 10), and 2.5–4.2 times more plot types overall. Searchlight 
was therefore more capable of exploring differential expression and complex experi-
ments than BioJupies and VIPER.

Table 1  Searchlight features and comparison with VIPER and Biojupies

Feature Searchlight Viper BioJupies

Source code available Yes Yes Yes

Type of tool Command line Command line Web

Operating system Linux/Unix/Windows Linux/Unix Any

Computing resources 
needed (EVI)

1 core, 1 GB RAM 1 core, 1 GB RAM None

Easy to set up and run Yes Yes Yes—very

Graphical user interface for 
pipeline

No No Yes

Level of automation Full Full Partial

Organism Any Any Human and mouse

Processing pipeline No Yes Yes

EVI pipeline Yes Yes Yes

Intermediate files Yes Yes Yes

Support for complex experi-
mental designs (i.e. more 
than two different groups 
of samples)

Yes Partial None

Pathway analysis Over-representation, 
upstream regulator, 
differential expression 
signatures

Over-representation, gene-
set enrichment, gene 
interaction

Over-representation

Total visualisation types (n) 50 20 12

Quality control visualisation 
types (n)

1 5 1

Expression visualisation 
types (n)

7 6 2

Differential expression visu-
alisation types (n)

33 5 9

Multiple differential expres-
sion visualisation types (n)

9 1 0

Other visualisation types (n) 0 3 0

Plots visually consistent Yes No Yes

Support for downstream 
user modification of plots

Yes No Partial

Graphical user interface for 
plot modification

Yes No Yes

Produces a report Yes Yes Yes

Full report (i.e. descriptions, 
legends and methods)

Yes No Yes
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Relevance of analysis

Overall BioJupies showed the least relevant analysis (Additional file  1: Table  S4), 
uniquely including only a predominantly single-cell relevant clustergram and a thor-
ough small molecules analysis. But having only one type of pathway analysis (ORA). 
BioJupies had the next most relevant analysis, uniquely including a sample features 
correlation plot, gene-set enrichment analysis (GSEA) (somewhat a duplication 
against ORA), gene interaction analysis and the relatively specialized gene-fusion, 
HLA and virus-seq analysis. Searchlight exhibited the greatest relevance, uniquely 
including over one of VIPER or BioJupies PCA contributions, PCA beyond compo-
nent two, sample correlations, an MA plot, significant gene counts, tables of the most 
differential genes and overlap analysis. Importantly, Searchlight uniquely over both 
tools included highly expressed gene analysis, heatmaps of differentially expressed 
genes, violin and jitter plots of the most differential genes, a spatial analysis, boxplots 
and networks of the most enriched gene ontologies, upstream regulator analysis, fold 
versus fold analysis and differential signature analysis. Furthermore, Searchlight was 
more thorough in showing both labelled and unlabeled plot variants (e.g. PCA, Vol-
cano, MA, etc.), clustered and unclustered heatmaps, and all, up- and downregulated 
genes separately. Searchlight therefore exhibited greater analysis relevance particu-
larly in differential expression and comparison of complex multiple sample groups.

Presentation of results

We found VIPER to have the least clear presentation of results, notably as visually its 
plots were not consistent with each other (i.e. font, grids, borders, scaling, dot type, 
color schemes, etc., differed between plots). BioJupies and Searchlight both had simi-
larly clear and consistent plots. Searchlight had a marginally better presented report, 
as it included legends (unlike VIPER), a hyperlinked contents bar and it hid cumber-
some text.

Support for downstream modification of plot visuals

VIPER provided no support for downstream modification of plots. BioJupies provided 
limited support, where users can pre-modify a small number of plot set-up features 
(e.g. p value cut-off, z-score transformation, clustering method, etc.) but none for plot 
visuals (e.g. font, axis text, dot size, dot type, grids, borders, colors, etc.). Searchlight 
provided the most support for downstream modification of plots via a Shiny app and 
standalone per plot and workflow R-code. Both of which were comprehensive.

Over all the criteria Searchlight automated EVI the most comprehensively by some 
way. Particularly the fraction of experiments it was suitable for exploring, the depth of 
analysis it provided, and the means for users to modify and tweak plots downstream.

Discussion
To date, most freely available pipelines for the automation of bulk RNA-seq focus on 
the processing step, to a greater extent than the downstream EVI [8, 23–28, 32]. To 
our knowledge, Searchlight is the first freely available, fully automated pipeline aimed 
exclusively at the downstream EVI step. Though the use of pipelines for automation 
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of the processing step is widespread [1], it is less prevalent for the EVI step. With 
many researchers favoring at least partly manual methods, such as R. For example, of 
the 100 most recent (1st May 2021) bulk RNA-seq datasets on the Gene Expression 
Omnibus (GEO) [33], that had a linked manuscript (for which our institution had 
access), only 8 cited a commercial or freely available EVI pipeline. Whereas 70 cited 
R or an R package. The more comprehensive EVI pipelines such as VIPER, BioJupies, 
Galaxy, Web Gestaldt and IPA, though highly cited (64, 87, 5048, 1684 and 2463 cita-
tions respectively), can only account for the analysis of a small fraction of the 156,493 
RNA-seq datasets on GEO alone.

The scope for greater application of automated EVI methods is likely considerable. 
GEO reports 40,588 bulk RNA-seq datasets deposited in 2020. Assuming a similar 
ratio to the most recent 100 datasets, roughly 28,412 of these datasets were at least 
partly manually analyzed. Though it’s impossible to precisely gauge the time used 
to explore, visualize and interpret these datasets, our experiences are that typically 
this process (up to the point of manuscript figures) takes 2–4  weeks. If we assume 
conservatively that a bioinformatic researcher costs $25,000 per year, the global bur-
den of manual EVI therefore exceeds 1092 researcher years and $27 million in labour 
costs, per annum. Thus, EVI remains a major bottleneck in bulk RNA-seq analysis 
and the underuse of automated EVI pipelines a major unsolved issue in RNA-seq 
bioinformatics.

The core feature of any automated EVI bulk RNA-seq pipeline is that it should make 
analysis faster and easier for the user. Thus, ideally it should (1) provide sufficient 
analysis that users don’t need to perform extensive additional analysis, (2) be compat-
ible with the majority of experiments, organisms and designs users wish to investi-
gate, (3) recognize and allow users to exhaustively change images up or downstream, 
(4) use files and analysis tools that are familiar to as wide range of users as possible. 
Accordingly, we have tried to implement all these features within Searchlight.

Searchlight is not a complicated pipeline. Its strength lies in: its range of power-
ful and widely used analysis and visualization methods; its use of three independent 
workflows—covering expression, differential expression and signature analysis, that 
together provide compatibility with a range of experimental designs, whilst also sim-
plifying the analysis; its use of R and R Shiny, as a deliberate attempt to both make it 
easy to modify visualizations, and appeal to the large number of bioinformaticians 
who use R.

Consequently, we have shown that Searchlight provides a level of EVI automation 
that is greater than existing freely available tools. Notably, when compared to VIPER 
and Biojupies Searchlight produced a 2.5–4.2 greater range of analysis and visualiza-
tions, permitted exploration of a greater fraction of experimental designs and unlike 
VIPER and Biojupies, supported comprehensive up and downstream user modifica-
tion of plots. Furthermore, we demonstrated that by using Searchlight (alongside a 
standard Star2 processing pipeline) users were able to re-align, process, explore, 
interpret, visualize and collate manuscript quality figures that broadly recreated the 
original analysis, of two highly cited datasets [20, 21], using under 3 h of labour each. 
Where it is difficult to judge exactly how long this process would take using man-
ual means (it will depend on the dataset, questions, and investigator), it is typically 
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measured in days or weeks. Therefore, our demonstration that it can be completed in 
a handful of hours represents a reasonable improvement. In a sense this is obvious, as 
effective pipelining is clearly more time and labour efficient than manual approaches.

Searchlight can provide sufficient analysis to complete small or simple projects (with 
minor plot tweaks in R), or a comprehensive first pass analysis for larger more compli-
cated projects. Thus, it can help progress research projects rapidly and with minimal 
effort, freeing up bioinformatic resources for further in-depth analysis, or alternative 
analytical approaches. Searchlight is suitable for use by bioinformaticians, RNA-seq ser-
vice providers and bench scientists.

Conclusions
We have shown that Searchlight automates bulk RNA-seq EVI more completely than the 
current best freely available tools (VIPER and Biojupies). Providing a 2.5–4.2 greater range 
of analysis and visualizations, permitting exploration of a greater fraction of experimental 
designs and organisms, and unlike VIPER and Biojupies, supporting comprehensive user 
modification of plots. We demonstrated via reanalysis of two highly cited (> 100 citations) 
publicly available datasets, that it was possible to blindly recreate the original observa-
tions in under 3 h of labour. From raw fastQ files to manuscript quality figures. Including 
all analysis, interpretation and plot tweaking in between. Searchlight therefore provides 
a rapid and comprehensive alternative to manual R based or current freely available bulk 
RNA-seq exploration, visualisation, and interpretation methods. Thus, helping free up bio-
informatic resources for deeper analytical approaches or additional omic projects.

Availability and requirements

Project name: Searchlight.
Project home page: https://​github.​com/​Searc​hligh​t2/​Searc​hligh​t2.
Operating system(s): Ubuntu, Windows, Mac OS.
Programming language: Python, R, HTML.
Other requirements: Python, R.
License: MIT.
Any restrictions to use by non-academics: None.
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bromodomain and extra terminal protein inhibitor; CPI: CPI-203; DE: Differential expression; EVI: Exploration, visualisa-
tion, and interpretation; GEO: Gene Expression Omnibus; GSEA: Gene set enrichment analysis; HSC: Haemopoietic stem 
cell; IPA: Ingenuity pathway analysis; LP: Lamina propria; MDE: Multiple differential expression; ML: Mesenteric lymph; 
MLN: Mesenteric lymph node; NE: Normalized expression; PCA: Principal component analysis; ORA: Over representation 
analysis; QC: Quality control; SCC: Spearman correlation coefficient; URA​: Upstream regulator analysis.
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