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Abstract 

Background:  Antimicrobial peptides (AMPs) are oligopeptides that act as crucial 
components of innate immunity, naturally occur in all multicellular organisms, and are 
involved in the first line of defense function. Recent studies showed that AMPs per‑
petuate great potential that is not limited to antimicrobial activity. They are also crucial 
regulators of host immune responses that can modulate a wide range of activities, 
such as immune regulation, wound healing, and apoptosis. However, a microorgan‑
ism’s ability to adapt and to resist existing antibiotics triggered the scientific com‑
munity to develop alternatives to conventional antibiotics. Therefore, to address this 
issue, we proposed Co-AMPpred, an in silico-aided AMP prediction method based on 
compositional features of amino acid residues to classify AMPs and non-AMPs.

Results:  In our study, we developed a prediction method that incorporates compo‑
sition-based sequence and physicochemical features into various machine-learning 
algorithms. Then, the boruta feature-selection algorithm was used to identify discrimi‑
native biological features. Furthermore, we only used discriminative biological features 
to develop our model. Additionally, we performed a stratified tenfold cross-validation 
technique to validate the predictive performance of our AMP prediction model and 
evaluated on the independent holdout test dataset. A benchmark dataset was col‑
lected from previous studies to evaluate the predictive performance of our model.

Conclusions:  Experimental results show that combining composition-based and 
physicochemical features outperformed existing methods on both the benchmark 
training dataset and a reduced training dataset. Finally, our proposed method achieved 
80.8% accuracies and 0.871 area under the receiver operating characteristic curve by 
evaluating on independent test set. Our code and datasets are available at https://​
github.​com/​onkar​S23/​CoAMP​pred.

Keywords:  Antimicrobial peptide, Amino acid composition, Composition-based 
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Background
Antimicrobial peptides (AMPs)

In 1928, Alexander Fleming accidentally discovered the first commercialized antibi-
otic, “Penicillin, " that enormously changed the world of medicine [1]. Over the period, 
this finding was turned into a wonder drug that can miraculously cure bacterial infec-
tions in patients, and countless lives have been saved [2]. Since then, several antibiotics 
were discovered that contributed to revolutionizing the 20th-century healthcare sys-
tem and achieved undeniable success in treating and deterring infectious diseases [3]. 
Unfortunately, however, unnecessary prescribing and overprescribing of antibiotics over 
the years lead to antibiotic resistance in microbes [4]. According to the World health 
organization (WHO) report, 0.7 million people die each year due to antibiotic-resistant 
disease, including 0.23 million deaths from multidrug-resistant tuberculosis, which is 
perhaps the major public health concern today.

Antibiotic resistance is defined as the ability of the pathogen to resist antibiotics to 
which they were first sensitive [5]. There are various mechanisms by which microorgan-
isms gain resistance to antibiotics. First is by limiting the uptake of antibiotics by reduc-
ing their permeability, as in Gram-negative bacteria [6]. Compared to the peptidoglycan 
layer of Gram-positive bacteria, Gram-negative species have a lipopolysaccharide outer 
membrane, which is a superior permeability barrier for bacteria to keep drugs out [7]. 
Similarly some bacteria may also gain resistance to specific antibiotics by altering the 
hydrophobic properties of the outer membrane barrier [8]. Second is by modifying the 
drug targets as the antibiotics may target multiple components of the bacterial cell. 
Therefore, in response to the drug, bacteria also modify its components to enable resist-
ance. For example, Gram-positive bacteria alter the structure and number of PBPs (Pen-
icillin-binding proteins) against β-lactam drugs. PBPs are transpeptidase enzymes that 
help in cell wall biosynthesis by cross-linking peptidoglycans. An increase or decrease 
in the PBPs affects the drug binding to its target [6]. Third is by the inactivation of the 
drug through its modification by the bacterial enzyme. For example, β-lactamase can 
hydrolyze many β-lactam antibiotics like penicillin, cephalosporin, carbapenems, etc., 
making them ineffective [9]. Fourth way of bacterial resistance to antibiotics is by drug 
efflux. Exposure of the antibiotic activates bacterial pathways causing overexpression of 
transporter gene and efflux pumps that can pump out the antibiotics before reaching 
their target sites imparting resistance to the bacteria [10, 11]. Lastly, microbes also gain 
resistance by bypassing the effects of antibiotics by developing new cellular processes. 
For example, trimethoprim drug targets prokaryotic dihydrofolate reductase (DHFR) 
enzyme activity required for DNA synthesis more efficiently than eukaryotic DHFR. 
Nevertheless, Staphylococcus aureus bacteria gain resistance to the antibiotic by sub-
stituting amino acid in the chromosomally encoded DHFR or by horizontal transfer of 
plasmid encoding DHFR enzyme, which is not sensitive to inhibition [12].

As described above, resistance to an antibiotic is a major public health concern, and the 
development of new therapeutics alternatives is much needed. Antimicrobial peptides 
(AMPs) are promising potential candidates to serve as an alternative to antibiotics to 
counteract multidrug-resistant in microbes. AMPs are ancient conserved gene-encoded 
molecules that act as critical components of host innate immunity against invading path-
ogens. These oligopeptides naturally occur in multicellular organisms as the first line of 
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defense against invading microbes [13]. These peptides exhibit a broad spectrum of anti-
bacterial activities against gram-positive and gram-negative bacteria. AMPs consist of 
positively charged (cationic) residues (arginine and lysine) and a large portion (30–60%) 
of hydrophobic residues [14]. The basic properties (amphipathicity, cationic charge, and 
helical structure) of these residues permit them to interact and disturb membranes with 
negatively charged lipopolysaccharide membranes (outer membrane) or with the cyto-
plasmic membrane composed of lipoteichoic acids and peptidoglycan of gram-positive 
bacteria via ‘barrel-stave’, ‘carpet’, or toroidal pore mechanisms [15]. Moreover, AMPs 
also have antibacterial, antifungal, antiviral, and antiparasitic activities [16].

Since the first AMP was discovered, researchers have been inclined to understand 
the importance of amino acid residues in antimicrobial activity to design and yield bet-
ter peptides [17]. Typically, amino acids were substituted to redesign peptides with 
increased positive charges and hydrophobic residues. However, several studies led to the 
discovery of distinct cationic host defense peptides (CHDPs) comprising magainins [18], 
cathelicidins [19], defensins [20], and cecropins [21]. These peptides have remarkably 
different structures and bioactivity profiles from conventional drugs [22]. Comprehen-
sive work done in this field concluded that these bioactive peptides act as direct anti-
microbial agents and are crucial regulators of the innate immune response. They can 
promote recruitment and accumulation of various immune cells at inflammatory sites, 
enhance phagocytosis, stimulate angiogenesis and induce wound repair [23]. Contrary 
to this, all conventional drug screening and design approaches require considerable 
patience and commitment, intensive effort, and atrocious costs with an ancillary work-
force. Additionally, the experimental validation of a vast array of molecules for specific 
healing properties is comparatively challenging.

Literature review

In the past two decades, numerous sequence-based in silico methods were reported 
to help develop novel candidate molecules. Generally, these prediction methods were 
based on exploring sequence-based and physiochemical-based properties of AMPs with 
machine-learning methods. Spänig et al. have recently presented a review introducing 
existing important encodings of amino acids and the efficient models for AMP classifi-
cation [24]. Xiao et al. proposed a two-level prediction method based on pseudo amino 
acid compositions with a fuzzy K-nearest neighbour (FKNN) algorithm [25]. Mehar et al. 
developed a prediction method based on a support vector machine with compositional, 
physicochemical, and structural features of peptides [26]. Bahdra et al.proposed AmPEP, 
a random forest (RF) classifier-based prediction model in which distribution patterns 
of amino acid properties were used as input to develop a highly accurate prediction 
model [27]. In 2018, Veltri et al. developed the first deep-learning method with primary 
sequence composition; for that, they proposed a neural network model with convolu-
tional and recurrent layers. The datasets used in the study were 1,778 AMPs and 1,778 
non-AMPs, respectively, downloaded from the APD vr.3 and UniProt databases. Their 
proposed method’s overall performance showed an accuracy of 91.0% and an area under 
the receiver operating characteristics curve (AUROC) of 0.964 [28]. Lin et  al. devel-
oped a MAMP-Pred prediction model to address the multilevel problem with the PS-RF 
and LC-RF classifiers’ help. They obtained their dataset from APD database with 2,618 
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AMPs, while the 4,371 non-AMP sequences were obtained from UniProt database. The 
overall performance of this model had 85.6% accuracy [29]. Yan et al. proposed another 
convolutional neural network (CNN)-based deep learning prediction model, DEEP-
AmPEP30, with the help of PseKRAAC, with reduced amino acid compositions to pre-
dict short AMPs. The dataset used in their study consisted of comparably shorter (5 ~ 30 
amino acid residues) peptide sequences than previous studies. DEEP-AmPEP30 outper-
formed the existing methods with a similar dataset with an overall accuracy of 77.1% 
and AUROC of 0.851 [30]. ACEP, a deep neural network (DNN)-based deep learning 
method that used a convolutional layer and LSTM layer to generate feature tensors of 
the dataset comprising 3,556 peptide sequences, was divided into three parts: 1,424 for 
training, 708 for tuning, and 1,424 for testing; they achieved an accuracy of 93% with the 
test dataset [31]. All existing methods [28, 29, 31] were developed based on AMP collec-
tions without considering sequence lengths. This observation was first reported by Yan 
et al. [32], tested all existing methods on short AMPs with lengths of 5 ~ 33 amino acid 
residues and found that the prediction accuracy ranged 65% ~ 73%, which was far worse 
than previously reported accuracies of 90% ~ 95%. The significant variation displayed by 
the existing models indicated that large sequences might not contain the optimal com-
positions for antimicrobial activity, and large sequences with 80 ~ 255 amino acid resi-
dues may contain sequence segments that do not depict antimicrobial activity. However, 
AMPs are short-length peptides ranging from 5 ~ 30 amino acid residues. Accordingly, 
it is reasonable to use a maximum sequence cut of 30 amino acid residues with opti-
mal sequence compositions to enhance a model’s effectiveness. We further elucidated a 
hypothesis proposed by the previous study. We developed our model based on several 
encoding schemes of amino acids compositional and physicochemical properties for a 
short-length AMP dataset.

Challenges in AMP predictions

Despite many attractive advantages of AMPs over conventional drugs including lesser 
development of resistance against AMPs [33], inhibition of biofilm formation [34], and 
the modulation of host immune response [35], many fail to reach the market because 
of their low stability, shorter half-lives, and challenges with oral delivery, immunotox-
icity, cytotoxicity, and most importantly, higher manufacturing costs. Several chemical 
strategies were established to address these problems but ended unsuccessfully with 
higher manufacturing costs and limited response rates. Thus, instead of conventional 
approaches for predicting AMPs, researchers have recently been inclined towards in sil-
ico approaches to elucidate the mechanisms of direct killing of pathogens and assist the 
pharmaceutical industry in developing novel therapeutics.

Specific aims of this study

The broad spectra of antimicrobial activities of AMPs with lower rates of resistance 
development make AMPs promising candidates for developing novel broad-spectrum 
antibiotics. This study proposes a prediction method in which composition-based 
sequence and physicochemical features are computed for short-length AMPs incorpo-
rated into several machine-learning algorithms. First, stratified tenfold cross validation 
was performed on the training dataset to test and evaluated multiple times. Second, 



Page 5 of 21Singh et al. BMC Bioinformatics          (2021) 22:389 	

boruta feature selection algorithm was used to identify discriminative features. The con-
structed classifier was used to evaluate the model on the holdout test dataset. The pro-
posed AMP prediction method can further help to develop more-potent antimicrobial 
agents.

Results
In the current study, we have used various approaches to classify AMPs over non-AMPs. 
Here we have elaborated all the analysis done in this study, such as AMPs sequence pref-
erence and compositional analysis, model development on the state-of-art dataset, and 
the reduced dataset generated by applying CD-HIT at various sequence identity thresh-
olds. The detailed information is mentioned in the method section.

Sequence preference analysis and compositional analysis

In this study, we visually investigated differences in amino acid residues between posi-
tive and negative dataset based on positional information of charged and hydrophobic 
residues within the primary sequence of the AMP peptides with the help of a two-sam-
ple logo (TSL). The height of the peptide logo was scaled (t-test by p < 0.05) for statis-
tical significance. To further examine amino acid residues’ preferences at the N and C 
termini, we selected the greatest length (i.e., 30 amino acids) of AMPs and non-AMPs. 
Since, the sequence length of all the peptides differs, therefore, we used padding (-) to 
make the peptide lengths equal. Thus, the first 15 amino acid residues represented the 
N-terminal, and the last 15 residues represented the C-terminal. Notably, the most sig-
nificant amino acid represents the relative abundance in the sequences.

Upon examination of the preference analysis based on charge and hydrophobicity, we 
found that in Fig.  1, positively charged residue, i.e., lysine (K), frequently occurred at 
the 7th, 8th, 11th, 12th, and 15th positions in the N-terminal, as well as the 19th, 22nd, 
and 23rd positions in C-terminal of AMPs. On the other hand, in non-AMPs negatively 
charged residues (aspartic acid and glutamic acid) were frequently present at the 2nd, 
3rd, 4th, 5th, 6th, 7th, 8th, 9th, 10th, 12th, 14th, and 15th in N-terminal positions, as 
well as the 20th and 21st positions in the C-terminal. These data indicate that in AMPs, 
lysine is preferred in N-terminals among other cationic residues, while in non-AMPs, 
negatively charged residues are abundant in the N-terminus and dominated almost at 
every position. Similarly, the preference of hydrophobic amino acid residues such as leu-
cine (L), isoleucine (I), and alanine (A) in AMPs were frequent at 2nd, 4th, 5th, 6th, 9th, 

Fig. 1  Two-sample logo shows the preference of positively charged and hydrophobic residues in 
antimicrobial peptides (AMPs) and non-AMPs at different positions. The first 15 positions represent the 
N-terminus of peptides, and the last 15 positions represent the C-terminus of peptides
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and 13th positions of the N-terminal. Whereas at C-terminus, 17th, 20th, 21st, and 25th 
positions of L and I residues were frequent. Conversely, if we look at non-AMPs, hydro-
phobic residues occur only at 11th position in the N-terminal and at 18th, 19th, and 
23rd positions in the C-terminal.

Compositional analysis of AMP datasets

Proteins are combinations of small molecules naturally present in polypeptides, known 
as proteinogenic or natural amino acids. Various organisms can diversify these amino 
acids into hormones, enzymes, antibodies, antibiotics, and many more with discrete 
biological activities. AMPs are cationic (positively charged) and amphiphilic (hydro-
philic and hydrophobic) in nature [36]. With this knowledge, we analyzed AACs of both 
positive and negative AMP datasets. Average compositions of AMPs and non-AMPs are 
shown in Fig. 2. The average composition of positive residues such as lysine (K) and his-
tidine (H) and hydrophobic residues such as alanine (A), isoleucine (I), leucine (L), pro-
line (P), and tryptophan (W) in AMPs were higher than those in non-AMPs. Besides, 
negatively charged residues such as aspartic acid (D) and glutamic acid (E) were more 
abundant in non-AMPs than in AMPs.

Machine‑learning prediction models on the DEEP‑AmPEP30 dataset

In our study, we used various machine-learning algorithms with the help of PyCaret, 
a python library. At first, we collected the dataset from a previous study [32]. Further-
more, we computed a vast array of feature descriptors (1,400 feature descriptors) for a 
given dataset. Then, we performed stratified tenfold cross-validation (CV) on the DEEP-
AmPEP30 training dataset. Next, we used boruta feature-selection algorithm with 
a cutoff of 0.9 to select essential features, i.e., 70 feature descriptors. Then, we imple-
mented several machine-learning algorithms on the selected features. To finalize the 
best model among the classifiers, GBC achieved the optimum performance with an 
AUROC of 0.814, an accuracy of 75.0%, and MCC of 0.504 on the training dataset, and 

Ala Cys Asp Glu Phe Gly His Ile Lys Leu Met Asn Pro Gln Arg Ser Thr Val Trp Tyr
AMP 8.063 4.501 1.887 1.88 5.456 10.496 2.258 7.754 10.725 13.276 1.377 2.718 4.71 1.651 4.512 5.67 3.453 6.347 1.739 1.527
Non-AMP 7.826 2.786 4.803 4.439 4.906 9.265 1.85 5.916 6.942 9.606 2.283 3.925 5.723 3.13 4.951 6.196 4.643 6.714 1.444 2.652
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Fig. 2  Average percentages of amino acid compositions (AACs) in antimicrobial peptides (AMPs) and 
non-AMPs
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an AUROC of 0.871 with an accuracy of 80.8%, and MCC of 0.606 on the test dataset 
with an AUCPR of 0.89. We listed the other classifier’s predictive performance on the 
benchmark DEEP-AmPEP30 training and independent test datasets in Table 1, and the 
AUROC values are given in Fig. 3.

Additionally, to evaluate the robustness of our model on the different independent test 
set. We retrieved the dataset used in the previous study IAMp-2L [25]. Initially, the test 
dataset contains 920 AMPs and 920 non-AMPs sequences. Then, we further processed 
the data by applying CD-HIT at a 90% sequence identity threshold to remove redundant 
sequences and finally, we obtained 674 AMPs and 630 non-AMPs. Our best model GBC 
achieved the AUROC of 0.951 with an accuracy of 88.3%. Contrastingly, we observed 

Table 1  Performances of machine-learning models on the benchmark training and independent 
test datasets. Values shown are mean ± SD for the training dataset

The given data in bold font indicates the top performance of the model on the test dataset

GBC, gradient boosting classifier; LGBM, light gradient boosting machine; ETC, extra trees classifier; RF, random forest; 
AUROC, area under the receiver operating characteristics curve; MCC, Mathew’s correlation coefficient; SD, standard 
deviation

Algorithm Dataset Accuracy AUROC Recall Precision Kappa MCC

GBC Training 75.0%
± 0.038

0.816
± 0.035

77.4%
± 0.082

73.9%
± 0.033

0.500
± 0.0755

0.504
± 0.075

Test 80.3% 0.873 79.7% 80.6% 0.606 0.606
CatBoost Training 74.4%

± 0.055
0.815
± 0.045

75.3%
± 0.107

73.9%
± 0.045

0.488
± 0.110

0.492
± 0.109

Test 78.7% 0.879 78.7% 78.7% 0.574 0.574

LGBM Training 73.8%
± 0.060

0.810
± 0.052

73.3%
± 0.124

73.8%
± 0.039

0.476
± 0.102

0.479
± 0.099

Test 77.6% 0.868 78.7% 77.0% 0.553 0.553

ETC Training 74.3%
± 0.055

0.794
± 0.066

75.0%
± 0.097

73.9%
± 0.049

0.487
± 0.109

0.491
± 0.108

Test 77.6% 0.776 77.6% 77.6% 0.553 0.553

RF Training 74.1%
± 0.044

0.798
± 0.052

75.5%
± 0.101

73.1%
± 0.039

0.482
± 0.088

0.487
± 0.086

Test 78.1% 0.811 78.7% 77.8% 0.563 0.563

ROC of class 0, AUC= 0.87
ROC of class 1, AUC= 0.87
micro-average ROC curve, AUC= 0.87
macro-average ROC curve, AUC= 0.87

ROC of class 0, AUC= 0.78
ROC of class 1, AUC= 0.78
micro-average ROC curve, AUC= 0.78
macro-average ROC curve, AUC= 0.78

ROC of class 0, AUC= 0.81
ROC of class 1, AUC= 0.81
micro-average ROC curve, AUC= 0.82
macro-average ROC curve, AUC= 0.82

ROC of class 0, AUC= 0.88
ROC of class 1, AUC= 0.88
micro-average ROC curve, AUC= 0.87
macro-average ROC curve, AUC= 0.88

ROC of class 0, AUC= 0.86
ROC of class 1, AUC= 0.86
micro-average ROC curve, AUC= 0.86
macro-average ROC curve, AUC= 0.87
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Fig. 3  The area under the receiver operating characteristic (AUROC) curve shows the models’ performance 
developed using selected features on the independent test dataset
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improved performance on the iAMp-2L test dataset compared to the DEEP-AmPEP30 
independent test dataset. This improved performance is mainly affected by peptide 
sequence length distribution in both (DEEP-AmPEP30 and iAMp-2L) independent test 
sets and the benchmark training dataset. The differences in sequence length distribution 
are shown in Fig. 4. The performance of our models on the iAMp-2L test set is shown in 
Additional file 1.

Machine‑learning model predictions on the reduced training datasets

CD-HIT is indeed the state-of-art method that is widely used in biological studies. We 
used CD-HIT to examine the benchmark dataset to minimize redundant sequences 
and address the overfitting problem. We used three different (i.e., 90%, 80%, and 70%) 
sequence identity thresholds to create three different training datasets. All these training 
datasets were used to train the model. Furthermore, we computed all feature descriptors 
listed in Table 2. We performed stratified tenfold cross-validation on the training set to 

Fig. 4  Sequence length distribution between training and test dataset. a) Sequence length distribution 
between DEEP-AMP30 training and independent test dataset. b) Sequence length distribution between 
DEEP-AMP30 training and iAMP-2L independent test dataset

Table 2  List of all descriptors along with their abbreviations and numbers of features

Feature type Descriptor Abbreviation No. of features

Simple composition Amino acid composition AAC​ 20

Dipeptide composition DPC 400

Atom-type composition ATC​ 5

Bond-type composition BTC 4

Physicochemical properties Amino acid index AAI 553

Physicochemical property PCP 30

Distribution & repeats Distance distribution of repeats DDR 20

Residue repeat information RRI 20

Property repeat index PRI 24

Shannon entropy Shannon entropy of a residue SER 20

Shannon entropy of properties SEP 25

Shannon-entropy of a protein SE 1

Miscellaneous Amphiphilic pseudo amino acid composition APAAC​ 23

Pseudo amino acid composition PAAC​ 21

Composition enhanced transition and distribu‑
tion

CeTD 189

Quasi-sequence order QSO 42

Sequence order coupling number SOC 2
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fit and evaluate models’ multiple times. Based on the wrapper algorithm, we used boruta 
feature-selection method with a selection threshold of 0.9 to select the most important 
biological features, i.e., 171, 98, and 96 feature descriptors. With the obtained feature set, 
we used several machine-learning algorithms to predict AMPs on the holdout set. We 
listed all prediction performances in Additional files 2–4.

Discussion
This study tried to understand the importance of the PCPs of AMPs and their sequence-
based amino acid compositions. The dataset had significant impact on machine-learning 
tasks. Hence, we collected training and benchmark test datasets from a previous study 
[32]. First, we developed our model on the same dataset for a comparative analysis with 
the state-of-the-art method and created other reduced datasets with CD-HIT at 90%, 
80%, and 70% sequence identity thresholds from the training dataset. Second, we used 
available software packages and webservers to compute 1,400 feature descriptors from 
the peptide sequences.

Evaluation of the top 10 selected features

For real-world machine-learning problems, data representation often uses several fea-
tures. However, few of them may be relevant to the target variable. In such cases, fea-
ture selection is crucial to accelerate the learning process and improve prediction 
performance [37]. Therefore, we have applied feature selection on our dataset that was 
initially created by Bhadra et  al., in their study AmPEP, by retrieving naturally occur-
ring and experimentally validated AMP sequences from three major databases namely 
CAMPR3 [38], APD3 [39], and LAMP [40]. Since, there is not enough evidence reported 
for experimentally validated non-AMPS in literature. Therefore, the author followed 
data preparation procedure undertaken by other studies to create negative dataset [25, 
41]. Furthermore, all sequences retrieved from UniProt were processed by removing 
sequences that were annotated as AMP, membrane, toxic, secretory, defensive, antibi-
otic, anticancer, antiviral, and antifungal. Subsequently, the subset of the AmPEP data-
set was used in the state of art method Deep-AmPEP30. Similarly, we used benchmark 
training dataset from the state of art method and generated three additional training 
datasets by applying CD-HIT with the cutoff of 90%, 80%, and 70% to remove highly 
similar sequences within the Deep-AmPEP30 training set. Later, we computed vast array 
of features from available webservers and standalone packages. To identify discrimina-
tive biological features for predicting AMPs, the boruta feature-selection algorithm was 
used to select optimal features among other feature descriptors. This algorithm works 
on an all-relevant variable selection method, where the boruta algorithm attempts to 
curate the subset of features from the dataset to all-relevant stopping points to identify 
relevant features for a given classification task [42]. As a result, we respectively obtained 
70, 171, 98, and 96 feature descriptors for the benchmark training dataset and the three 
other reduced training datasets. Finally, we presented the top 10 selected feature impor-
tance plots in Fig. 5.

Based on the structure activity relationship (SAR) studies of antimicrobial pep-
tides, various parameters have been shown to influence the specificities and bio-
logical activity of peptides. These parameters are secondary structure, charge, 



Page 10 of 21Singh et al. BMC Bioinformatics          (2021) 22:389 

hydrophobicity, and amphipathicity [43]. In general, AMPs are classified into four 
major structural categories such as helical peptides, β-strand/sheet peptides, mixed 
helical/sheet peptides and extended non-helical/sheet peptides [44]. However, amphi-
pathic, α-helical conformation is assumed to be the important class of AMPs as they 
permit efficient interaction with the lipid bilayer [45]. Most AMPs are known to carry 
net positive charge ranging from + 2 to + 9 and target negatively charged bacterial 
membranes through electrostatic interactions [46, 47]. Moreover, as we increase the 
net positive charge up to + 9 antimicrobial activity gradually increases. However, if 
the charge increases beyond + 9 the antimicrobial activity decreases [47]. Hydropho-
bicity is essential factor for interaction with membranes, and as it is believed that 
cytoplasmic membrane is the main target of AMPs and hydrophobicity is the cru-
cial parameter for their biological activity. Usually AMPs contain approximately 
50% hydrophobic residues [48]. Similar to charge, various studies have revealed that 
increasing the hydrophobicity, at optimal hydrophobicity window, can increase the 
antimicrobial activity [49]. The importance of charge, structure and hydrophobic-
ity is not limited as we discussed above, but these three factors also jointly form an 
amphipathic structure, that too is of greater importance. Usually all AMPs form some 
kind of amphipathic structure which is crucial factor for potent anti-microbial activ-
ity of AMPs [50].These physicochemical property of AMPs allows peptides to attack 
membrane by interacting with the hydrophobic-hydrophilic character of the lipids. 
The quantitative measure of amphipathicity is hydrophobic moment (μH) that is the 
total of amino acid two dimensional vectorial hydrophobicity’s [51]. Several studies 
reported that hydrophobic moment is strongly correlated with antimicrobial activity, 
as an increase in hydrophobic moment will increase the disruption of bacterial mem-
brane and hemolytic activity [49].

Interestingly, we found in our study that the selected features fell into parameters 
which modulate AMP activities and specificities. These includes, structure, charge, 

Fig. 5  Top 10 feature importance plot for benchmark DEEP-AMP30 training and reduced training datasets at 
90%, 80%, and 70% sequence identity thresholds
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hydrophobicity, and amphipathicity that were equally important in our datasets, for 
example top features like distance distribution for residues methionine (DDR_M) 
and arginine (DDR_R) imparts two major characteristics, hydrophobicity and posi-
tive charge, respectively. Hydrophobicity is an essential feature for AMP-membrane 
interactions [52] and cationic residues help AMPs to direct them to negatively 
charged bacterial membranes via electrostatic attraction [53]. Therefore, balance 
between these two characteristics is crucial for selective antimicrobial activity. Phys-
icochemical features generated from AAI includes alpha-helix weight at position 6 
(QIAN880113), hydrophobicity (ZIMJ680104), net charge (KLEP840101), depend-
ence of the partition coefficient on the ionic strength (ZAS820101), non-bonded 
energy per atom (OOBM850104), activation of Gibbs energy (YUTK870103), normal-
ized positional frequency at helix termini C4’ (AURR98012), and the hydropathy scale 
based on the self-information value in two-state model (NADH010101).

Using stringent criteria to reduce redundant sequences from the state-of-the-art 
dataset, we observed that our machine learning models’ performances gradually 
decreased in the training dataset and increased in the test dataset. In Sect. 3.4, we dis-
cussed three different training datasets created from the benchmark DEEP-AmPEP30 
training dataset by reducing peptide sequences at various sequence identity thresh-
old (CD-HIT, 90%, 80%, and 70%). By applying CD-HIT with a 90% sequence identity 
threshold, we obtained 2136 peptide sequences (1076 AMPs and 1060 non-AMPs). 
GBC achieved 92.9% accuracy on this training data and 70.2% accuracy on the test 
dataset (Additional file  2). Similarly, we applied CD-HIT at 80% sequence identity 
threshold where we get a total of 1957 peptides (946 AMPs and 1011 non-AMPs). 
GBC achieved 80.6% accuracy on this training dataset and 76.6% accuracy on the 
test dataset (Additional file  3). After applying CD-HIT at 70%, the total number of 
sequences obtained was significantly reduced as compared to the original dataset, 
comprising 1697 peptides (787 AMPS and 910 non-AMPs). Overall performance on 
CD-HIT 70% training dataset obtained by GBC is 79.9% accuracy, and 78.1% accuracy 
on the test dataset (Additional file  4). Therefore, we hypothesized that to develop a 
more accurate and reliable method; ideally, one should use more stringent redundant 
sequence-reduction criteria to train the model and evaluate it on an experimentally 
verified independent test dataset.

Positional preferences and composition analysis of AMPs

The widespread class of AMPs is cationic amphipathic with an alpha-helical domain [54]. 
These AMPs have two distinct features, i.e., a net positive charge and an amphipathic 
character, with a nonpolar face and a polar/charged face [55]. Similarly, the top selected 
features emphasized the characteristics of AMPs. In addition, we used TSL and compo-
sitional analytics to analyze preferential positions of amino acid residues in AMPs and 
non-AMPs. Our positional analysis based on charge revealed that the positively charged 
lysine (K) residue often occurred in AMPs, while negatively charged aspartic acid and 
glutamic acid residues were abundantly present in non-AMPs. In addition, a preference 
study based on hydrophobic residues suggested that hydrophobic residues such as leu-
cine (L), isoleucine (I), and alanine (A) were favored in AMPs and not in non-AMPs.
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Performance comparison with state‑of‑the‑art methods

Using the benchmark dataset and the reduced training dataset at various sequence 
identity thresholds, we compared our Co-AMPpred (composition-based antimicro-
bial peptide prediction) method with six state-of-the-art general AMP prediction 
methods. As shown in Table 3, our Co-AMPpred and CO-AMPpred70 classifiers out-
performed all available AMP prediction methods and short-length AMP prediction 
models on most performance matrices. Co-AMPpred attained the best performance 
with 80.3% accuracy, an AUROC of 0.871, and MCC of 0.606 on the benchmark data-
set. Moreover, CO-AMPpred70 achieved better performance than the state-of-the-art 
methods with an accuracy of 78.6%, an AUROC of 0.861, and MCC of 0.554. In this 
study, we used various approaches to examine the performance of our model. We first 
developed our model on the benchmark Co-AMPpred dataset and attained the best 
performance among other classifiers developed in this study. Then, to further evalu-
ate our model performance, we created other dataset by applying CD-HIT at vari-
ous sequence identity thresholds to reduce redundant sequences from the benchmark 
training dataset. Among all classifiers developed on reduced training datasets (i.e., 
Co-AMPpred70, Co-AMPpred80, and Co-AMPpred90), Co-AMPpred70 attained the 
best performance and outperformed the existing state-of-the-art methods.

Limitations of the study

In our study, we developed a prediction method to identify AMPs and non-AMPs. 
The dataset we used comprised AMPs from different sources to develop our classi-
fication model. Tentatively, one should develop host-specific methods for predicting 
AMPs. We will shortly try to develop a host-specific AMP classification model with 
perfect size data to develop a precise and more reliable method. This study exploits 
several compositional and physicochemical-based features to develop the best pos-
sible models in the current situation.

Table 3  Performance comparison with existing methods on the benchmark test dataset

The given data in bold font indicates the top performance of the model on the test dataset

Acc., accuracy; AUROC, area under the receiver operating characteristics curve; AUCPR, area under the precision-recall curve; 
Sen., sensitivity; Spe., specificity; MCC, Matthew’s correlation coefficient; SD, standard deviation

Method Acc AUROC AUCPR Kappa Sen Spe MCC References

iAMP-2L 65.4% – – 0.318 82.9% 47.9% 0.329 Xiao et al. [25]

iAMPpred 70.7% – – 0.415 80.8% 60.6% 0.424 Meher et al. [26]

AmPEP 68.0% 0.751 0.686 0.362 93.6% 42.5% 0.421 Bhadra et al. [27]

AMP Scanner DNN 73.4% 0.806 0.777 0.468 80.8% 65.9% 0.473 Veltri et al. [28]

RF-AmPEP30 77.1% 0.854 0.868 0.543 77.6% 76.6% 0.542 Yan et al. [32]

Deep-AmPEP30 77.1% 0.853 0.853 0.543 76.6% 77.7% 0.543 Yan et al. [32]

Co-AMPpred 80.8% 0.871 0.890 0.606 79.7% 81.9% 0.606 This study

Co-AMPpred70 78.6% 0.861 0.860 0.553 80.9% 74.5% 0.554 This study

Co-AMPpred80 76.6% 0.851 0.840 0.532 78.7% 74.5% 0.532 This study

Co-AMPpred90 70.2% 0.843 0.860 0.404 89.4% 51.1% 0.438 This study
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Conclusions
AMPs are evolutionary conserved molecules which act as the first defense line in all mul-
ticellular organisms. AMPs have different mechanisms to disrupt bacterial membranes. 
However, all these mechanisms are dependent on various factors such as physicochemi-
cal properties, amino acid sequences, secondary structures, charges, and amphipathic 
properties. AMPs can demonstrate a broad spectrum of activities to modulate immune 
responses and demonstrate antiviral, antifungal, antibacterial, and even anticancer activ-
ities [56]. Increasing resistance of microbes against conventional antibiotics motivates 
researchers to develop new therapeutic alternatives such as AMPs. In the past two dec-
ades, several in silico-based approaches were developed. However, in this study, we used 
various encoding schemes of an amino acid, compositional and physicochemical proper-
ties to develop our prediction model. As a result, the top selected informative features 
yield better performance and outperformed the-state-of-art-method.

Our findings also indicate that our classification task’s top selected features repro-
duce the parameters that modulate AMPs’ activities and specificities, such as structure, 
charge, hydrophobicity, and amphipathicity. Along with selected feature importance 
values, we further investigated the position preference and composition analysis of the 
AMPs/non-AMPs to understand the importance of amino acid compositions in AMPs. 
Finally, our investigation revealed that selected features imparted distinct characteris-
tics of the amino acid residues available in AMPs. Although our positional preference 
and compositional analysis corresponded well with other biological studies [57], further 
insights should be validated experimentally in the future.

The state-of-the-art method inspired us to develop a model with short sequences of 
AMPs (5 ~ 30 residues). We also addressed the bias caused by redundant sequences 
within training data and developed a model based on reduced training datasets. Experi-
mental results showed that the combining composition-based and physicochemical 
features outperformed existing methods on both the benchmark training dataset and 
the reduced training dataset at a 70% sequence identity threshold. However, we further 
observed that minimizing redundant sequences at various sequence identity thresholds 
affected the machine-learning prediction performances: the more stringent the crite-
ria, the better was the prediction performance of the models on the independent test 
dataset.

Material and methods
Dataset preparation and pre‑processing

We used an initial training dataset consisting of 1,529 AMP and 1,529 non-AMP 
sequences originally compiled in Deep-AmPEP30 [32]. The study aims to predict 
short anti-microbial peptides. Nevertheless, the test dataset used in the previous 
study was constructed without considering the peptide length. To address this issue, 
we constructed an independent dataset from the benchmark dataset reported in the 
recent publication [58]. Sequences that are 5–30 amino acids in length were taken 
as positive samples, whereas negative samples were selected randomly to generate 
a balanced test dataset by following the procedure reported in the state-of-the-art 
method. Furthermore, we checked whether or not the benchmark dataset contains 
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highly similar sequences (> 90%) to either the training dataset of our method or exist-
ing AMP methods with which we made comparisons in our study. Then, CD-HIT was 
applied with an 80% cutoff to remove highly similar sequences within the dataset to 
reduce redundancy and avoid bias. Finally, the constructed independent set contains 
94 AMPs and 94 non-AMPs.

To deal with the overfitting problem of the prediction model, we then performed 
a major pre-processing step. We first used CD-HIT [59, 60] to decrease sequence 
redundancy within the training data with maximum sequence identities of 90%, 80%, 
and 70%. After checking for any redundant peptides, a new training dataset was 
developed to train our model. However, the more stringent the criterion, steadier the 
performance like a 30% or 40% sequence identity cutoff we noted. Despite this, the 
sequence length of the reduced dataset was < 30 amino acid residues. If we applied a 
stringent criterion of < 70%, the number of available AMPs was significantly reduced, 
and we were unable to retrieve datasets employed by this state-of-the-art method. We 
describe all datasets with various sequence identity thresholds in Table 4.

Feature extraction

Feature representation plays a crucial role in the accuracy prediction by machine-
learning models. Sequence transformation is essential to obtain a numerical repre-
sentation of amino acids before using them as input for machine-learning models. 
Various approaches have been reported to encode amino acid sequences into numeri-
cal vectors, which have been rigorously used in biomedical classification. However, 
there is no precise guideline published that allows researchers to use specific encod-
ings for a biomedical classification task. Moreover, in a recent publication, Spänig 
et al. attempted to investigate the performance of various encoding schemes on previ-
ously published datasets. Their performance results indicate that none of the encod-
ings are superior across all biomedical domains. Despite this, some encodings often 
perform better than others, thus reducing the initial encoding selection considerably 
[61]. It is evident that amino acids are the building blocks of peptides and proteins, 
and each of 20 amino acids maintains unique and different properties. The composi-
tion of amino acids with their unique properties can influence protein’s structural and 
functional diversification and characteristics. This study aimed to develop a predic-
tion model by employing numerous features of protein and peptide sequences.

Table 4  Benchmark datasets used for the antimicrobial peptide (AMP) prediction

Dataset Training dataset Test dataset

AMPs Non-AMPs AMPs Non-AMPs

Benchmark datasets 1529 1529 94 94

CD-HIT (90%) 1076 1060 94 94

CD-HIT (80%) 946 1011 94 94

CD-HIT (70%) 787 910 94 94
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Composition and physicochemical feature descriptors

Composition-based features and each amino acid residue’s physicochemical properties 
are widely used in computational biology [62]. In the current study, we used available 
webservers and standalone packages to generate a broad spectrum of feature-encod-
ing schemes derived from protein and peptide sequences [63, 64]. Composition-based 
features were subcategorized into five different modules. First, a simple composition 
included the amino acid composition (AAC), dipeptide composition (DPC), atom-type 
composition (ATC), and bond-type composition (BTC). The AAC represents the occur-
rence frequency of each amino acid in query peptides [65]. Similarly, the DPC calculates 
the amino acid pair frequency in query peptide sequences [66]. The second module rep-
resents physicochemical properties (PCPs) and amino acid index (AAI) of residues. This 
feature represents the overall sum of all PCPs and AAI residue values of discrete types. 
The third is a repeat and distribution module, which comprises three feature schemes of 
distance distribution of repeats (DDR), residue repeat information (RRI), and property 
repeat information (PRI). Fourth is the Shannon entropy module, which also consists 
of three feature descriptors, i.e., Shannon entropy of a residue (SER), Shannon entropy 
of properties (SEP), and Shannon-entropy of protein (SE) to measure the complexity at 
the protein and residue levels. Finally, the fifth module of composition-based features 
was a collection of several feature schemes. For example, the amphiphilic amino acid 
composition (APAAC) and pseudo amino acid composition (PAAC) are somewhat like 
the AAC and contain more information on discrete correlation factors. This additional 
information gives more insight into the hydrophobic and hydrophilic distribution pat-
terns of peptide chains [67, 68]. Autocorrelation descriptors are used to compute the 
distribution of amino acid properties and sequences [69]. Composition-enhanced transi-
tion and distribution (CeTD) compute the overall composition, enhanced transition, and 
distribution (CTD) of amino acid attributes, such as hydrophobicity, normalized Van der 
Waal volume, polarity, polarizability, charge, secondary structure, and solvent accessi-
bility of protein sequences [70]. Quasi-sequence order (QSO) and the sequence order 
coupling number (SOC) descriptors can be used to represent the distribution patterns 
of PCPs along the peptide sequence [71]. We describe the complete list of all descriptors 
along with feature numbers in Table 2.

Machine‑learning algorithms

In the present study, we used various machine-learning algorithms to develop a clas-
sification model for AMPs and non-AMPs. To deploy several machine-learning mod-
els together, we used PyCaret, an open-source, low code machine-learning library in 
python [72]. This python library includes 15 different machine-learning algorithms, 
including CatBoost classifier, gradient boosting classifier (GBC), extra trees classifier 
(ETC), extreme gradient boosting (XGB), light gradient boosting machine (LGBM), ran-
dom forest (RF), ada boost classifier (ABC), logistic regression (LR), SVM-linear ker-
nel, naive Bayes (NB), decision tree (DT), ridge classifier, K-nearest neighbor classifier 
(KNN), quadratic discriminant analysis (QDA), and linear discriminant analysis (LDA). 
We briefly describe information about the top five algorithms used for prediction. The 
CatBoost classifier is a newly developed machine learning algorithm based on gradient 
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boosting [73]. GBCs are used for regression and classification problems. This model’s 
strength is that it creates weak prediction models and merges them to produce the best 
prediction model [74]. The ETC is an ensemble machine-learning algorithm that creates 
many randomized decision trees using a training dataset and combines average predic-
tion accuracies of all decision trees to improve the prediction accuracy [75]. Similarly, we 
used another supervised machine-learning method, the RF classifier, an ensemble learn-
ing method that creates a random decision tree from the training set and uses majority 
voting to identify the final output [76]. Light gradient boosting, a tree-based learning 
algorithm, grows vertically and can easily handle a large dataset with low memory con-
sumption [77].

Evaluation measures

Model assessment becomes crucial when the nature of predictions needs to be meas-
ured. We used a training set to build up or train the predictive model and a test set to 
test a classifier’s performance. Although receiver operating characteristic (ROC) curves 
are the best choice for comparing models, we also considered other scalar metrics that 
are still popular among the machine learning community, such as recall/sensitivity (Sen.) 
in Eq.  (1) and the specificity (Spe.) in Eq.  (2), to measure how well a classifier detects 
AMPs and non-AMPs in the dataset. Precision, as shown in Eq. (3), defines the propor-
tion of positively predicted AMPs that are true real positives. Accuracy (Acc.) in Eq. (4) 
is the summation of true positives and true negatives divided by the total number of the 
data. The area under the ROC curve (AUROC) [78] and the area under the precision-
recall curve (AUCPR) [79]. Equation (5) states Matthew’s correlation coefficient (MCC), 
which is also used to measure the quality of our binary classification task, and Eq.  (6) 
defines the kappa statistic [80].

where TP is the number of true positives, TN is the number of true negatives, FP is 
the number of false positives, and FN is the number of false negatives. The ROC curve is 
used to assess the performance during parameter selection; AUROC is the most appro-
priate performance measure, as it is non-parametric and threshold dependent. In the 
ROC curve, the true positive rate (sensitivity) is plotted as a function of the false positive 

(1)Sen. = Recall =
TP

TP + FN

(2)Spe. =
TN

TN + FP

(3)Precision =
TP

TP + FP

(4)Acc. =
TP + TN

TP + TN + FP + FN

(5)MCC =
TP × TN − FP × FN

√
(TP + FP)(TP + FN )(TN + FP)(TN + FN )
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rate (1—specificity) for different parameter cutoff points. The AUCPR plots the positive 
predictive value against the true positive rate. The MCC measures the quality of a binary 
classification task. Kappa statistics measure inter-rater reliability, where p0 is the overall 
accuracy of the model as shown in Eq. (7), and pe is the measure of agreements between 
the model prediction and the actual class values expected by chance in Eq. (8) [80].

We used a training dataset for internal validation, where models were trained and 
tested using a stratified10-fold cross-validation method. The constructed classifier was 
later used to evaluate our model on the holdout test dataset.

(6)Kappa =
po− pe

1− pe

(7)p0 =
TP+ TN

TP+ FN+ TN+ FP

(8)pe =
(TP+ FN)× (TP+ FP)× (TN+ FN)× (TN+ FP)

(TP+ FN+ TN+ FP)2

Dataset

Feature extraction and 
selection

(Deep-AmPEP30)
Training Data

(1529 AMPs and 
1529 non-AMPs)

(Deep-AmPEP30)
Testing Data

(94 AMPs and 94 
non-AMPs)

Redundancy reduction with CD-
HIT at 90%, 80% and 70% 
similarity threshold within 

training dataset

� GBC
� CatBoost
� LGBM
� ETC
� RF

Best prediction model
Final prediction performance 

Training and 
evaluation

Fig. 6  The systematic architecture of the proposed method, Co-AMPpred, includes collecting the dataset, 
removing redundant sequence at 90%, 80%, and 70% sequence identity thresholds, feature generation and 
selection, machine-learning algorithms, and evaluation process
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System architecture

The system architecture of our proposed method for predicting AMPs is shown in Fig. 6. 
The analytical workflow involved various steps, including collecting AMPs for input, fea-
ture extraction, feature selection, machine-learning algorithms, and prediction results. 
First, we downloaded oligopeptides using the existing state-of-the-art method. Along 
with the benchmark dataset, we created three additional datasets by applying CD-HIT 
with sequence identity thresholds of 90%, 80%, and 70% to reduce redundant sequences. 
Further, sequence-based compositional features and PCPs were extracted and encoded 
with the aid of various available webservers and standalone packages [63, 64] for both 
training and test dataset. Then, we performed a stratified tenfold CV on the training 
dataset. Boruta feature-selection algorithm was incorporated to select only discrimina-
tive biological features to build an optimal model that was later evaluated on the holdout 
set [42]. Finally, we examined all the models, and the execution of the prediction model 
was illustrated. Our system architecture represents the systematic procedures followed 
in this study. The name of our proposed method is Co-AMPpred (composition-based 
antimicrobial peptide prediction).
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