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Background
Over the last decade, DNA sequencing technology has achieved dramatic improvements 
in both cost and throughput. With the $100-per-genome sequencing goal emerging as a 
realistic target in the near future, the amount of genomic data generated by sequencing 
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performance–accuracy trade-offs that limits its effectiveness.
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on identifying optimal candidates. To do so, SEE transforms the read and reference 
strings from edit distance regime to the Hamming regime by embedding them using a 
randomized algorithm, and uses Hamming distance over the embedded set to identify 
optimal candidates. To show that SEE performs well in practice, we present Accel-
Align an SEE-based short-read sequence mapper and aligner that is 3–12× faster than 
state-of-the-art aligners on commodity CPUs, without any special-purpose hardware, 
while providing comparable accuracy.

Conclusions:  As sequencing technologies continue to increase read length while 
improving throughput and accuracy, we believe that randomized embeddings open 
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is only poised to grow faster. The first, and often one of the most time consuming steps, 
in analyzing genomic datasets is sequence alignment—the process of determining the 
location in the reference genome of each sequencing read. Sequence alignment can be 
boiled down to a string matching problem. Given a string G as the reference genome, 
and a set of substrings R as the sequencing reads, the task of read alignment is to find 
the origin location of each read r ǫ R in G. However, due to sequencing errors, and dif-
ferences between the reference genome and the sequenced organism, a read might not 
exactly align at any candidate location in the reference genome. Thus, an aligner has to 
perform approximate string matching to tolerate errors.

The error-handling capability of a string matching algorithm is related to the distance 
metric used for comparing strings. The two popular string distance metrics are Ham-
ming distance which only counts the number of position-wise mismatches between two 
strings, and edit distance or Levenshtein distance, which counts the difference between 
two strings while allowing for characters to be inserted or deleted. Aligners can be classi-
fied into ungapped or gapped depending on whether they use Hamming or Levenshtein 
distance for computing mismatch between reads and the reference  [1]. As modern 
sequencers can produce both substitution and INDEL errors, gapped aligners are pre-
ferred in practice over their ungapped counterparts.

Modern gapped read aligners, like Bowtie2, BWA-MEM, and Minimap2, can map 
thousands of reads per second to the reference genome. However, as sequencing datasets 
continue to grow at a rapid pace, even these state-of-the-art aligners face scalability bot-
tlenecks due to a crucial design aspect that is universal across all gapped read aligners–
the use of edit-distance as a string comparison metric. Computing edit distance between 
two sequences is a computationally-expensive task that takes approximately quadratic 
time in the length of the input sequences. Given that sub-quadratic computation of edit 
distance is extremely unlikely  [2], the brute force approach of trying to align a read at 
each position in the reference is infeasible even for a single read due to sheer number 
of edit-distance computations that would be required. State-of-the-art aligners add to 
this complexity through the use of affine-gap penalty scoring function with optional soft 
clipping. Thus, all modern aligners focus on minimizing the number of such computa-
tions using a seed-filter-extend (SFE) strategy for performing alignment [1].

SFE strategy works by first indexing the reference genome. Each read is processed in 
three steps. First, reads are broken down into smaller segments, referred to as seeds, and 
these seeds are used to look up potential mapping locations in the reference genome 
using an index. Second, candidate filtering techniques are used to filter out as many 
candidate locations as possible to minimize the overhead of the extension stage. Third, 
during the extension stage, the entire read is aligned at each of unfiltered candidate loca-
tions using the edit-distance-based approximate string matching algorithms.

Candidate filtering plays an important role in determining the overall through-
put and scalability of read alignment, as it can eliminate many locations that would 
result in an incorrect mapping. However, current candidate filtering techniques 
present a performance–accuracy trade-off. State-of-the-art candidate filtering tech-
niques can be classified broadly as elimination-based or selection-based depending 
on the type of filtering strategy used. Elimination-based techniques, like adjacency 
filtering  [3], shifted hamming distance  [4, 5], focus on maintaining a high accuracy 
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by conservatively eliminating candidate locations without significantly increasing the 
probability of misalignment due to accidental elimination of a true match. Recent 
research has demonstrated that such techniques create computational bottlenecks of 
their own that need to be addressed using specialized hardware [6, 7]. Selection-based 
techniques, like voting in Subread [8], in contrast, use computationally less intensive 
selection criteria to directly pick a few candidate locations. Thus, they trade off accu-
racy for performance, as the selection criteria can end up eliminating a true match.

In this paper, we investigate a new selection-based candidate filtering strategy 
based on recent theoretical advances in the design of randomized algorithms that 
can perform embedding from edit distance into Hamming distance with very low 
distortion [9]. These algorithms provide a one-to-one mapping f that can be used to 
transform a set of strings S into another set of strings S’, such that the worst case 
ratio between Hamming distance of any two strings f(x) and f(y) in S’, and the edit 
distance of their equivalent strings x and y in S, also called distortion, is very low. In 
this work, we investigate the use of such randomized algorithms in designing a Seed-
Embed-Extend (SEE) aligner. An SEE aligner uses seeding to identify candidate loca-
tions similar to other SFE aligners. Randomized algorithms are then used to embed 
the reference string at each candidate location, and the Hamming distance between 
the embedded reference and the embedded read is used to rank the candidate loca-
tions based on likelihood of being an actual alignment target. Finally, candidates with 
the highest rank are chosen for extension.

To show that SEE works well in practice, we present Accel-Align–an SEE-based short-
read sequence mapper and aligner that can provide both extension-free mapping and 
base-to-base alignment with CIGAR and MAPQ. In doing so, we show that a naive 
implementation of SEE will result in the embedding step becoming a computational 
bottleneck, and describe several optimizations that Accel-Align uses to implement SEE-
based alignment effectively. Using experimental results from both simulated and real 
datasets, we show that embedding is capable of picking locations that are likely to be the 
correct alignment targets with very high accuracy. Using the SEE-approach to sequence 
alignment, Accel-Align can align 280,000 100bp reads per second on a commodity quad-
core CPU, and is up to 9 × faster than BWA-MEM, 12× faster than Bowtie2, and 3 × faster 
than Minimap2, while providing comparable accuracy without using any special purpose 
hardware. We believe that SEE specifically, and embedding in general, is a robust tech-
nique that opens up new optimization opportunities not only for sequencing alignment, 
but also for several other computational biology problems that rely on edit distance.

Methods
Accel-Align adopts the SEE methodology for sequence alignment. During alignment, 
Accel-Align processes each read by first extracting seeds to find candidate locations. 
After seeding, Accel-Align embeds both the read string and the reference string at 
each candidate location found by seeding. After embedding, Accel-Align calculates 
the Hamming distance between each embedded reference and the read, and selects 
the two best candidate locations with the lowest Hamming distance for extension and 
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scoring. In the rest of this section, we will introduce each of the three stages of SEE, 
and their implementation in Accel-Align in detail.

Building the index and seeding

Building the index

As Accel-Align uses seeding, it requires the reference genome to be indexed before exe-
cution. Similar to other aligners, we construct an index over the reference genome in a 
separate, offline phase. The index is a hash table of key-value pairs, where the key and 
value are both 32-bit unsigned integers. In order to populate the hash table, we extract 
k-mers from each position of the reference genome. As the reference sequence usu-
ally contains only 4 characters, namely A, T, C and G, we convert each character in the 
extracted k-mer into a two-bit equivalent representation. Any k-mer that contains ’N’ 
characters is not added to the index. The k-mer length is a configurable parameter in 
Accel-Align, but we set it to 32 to enable a k-mer to fit in a single 64-bit integer. We hash 
the k-mer to generate the key by using a simple modulo-based hash function that maps 
the 64-bit integer into one of M buckets, where M is a large prime number that fits in a 
32-bit integer. The 32-bit reference location offset from where the k-mer was extracted is 
the value associated with the key.

As the hash table is repeatedly used for looking up candidates during alignment, it 
is important to physically store these key–value pairs efficiently. We do this by using a 
chained hash table implementation based on two flat 32-bit integer arrays. With our 
construction, there are at most M different keys and N − k + 1 different values, where N 
is the length of reference genome. As multiple k-mers can hash to the same key, each key 
can correspond to multiple position values. We gather all position values for each key, 
sort them individually, and store all such sorted values together, in key order, in a single 
position array. We represent the keys implicitly by an offset in a separate 4GB key array, 
and in each key array entry, we store the cumulative count of candidate positions for all 
keys smaller than that key. Thus, as the position array is ordered by key, all the candidate 
locations indexed between the offsets K and K + 1 in position table belong to the key K. 
The process is illustrated in Fig. 1. Thus, the entire index, represented using the key and 
position arrays, is saved in a single file on disk, and loaded in memory whenever align-
ment starts.

Seeding

During seeding phase of alignment, we extract all non-overlapping k-mers of each 
read. For each k-mer, we compute the key, and use the key to extract the list of candi-
date positions. In  situations where the seeds do not produce any candidates, we per-
form non-overlapping seeding after shifting the offset of the first seed by one position 
repeatedly until we find candidate positions. The positions are adjusted using the offset 
of the k-mer in the read to get normalized candidate positions. Then, we merge the can-
didate lists across k-mers to produce the final list of normalized positions that does not 
have any duplicates. One way of performing this merging is to gather all candidates in 
an array, sort it, and then find unique elements. However, such an approach would take 
O(Nl lgNl) time if Nl is the total number of candidates across all k-mers.
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We avoid sorting by exploiting the physical organization of our hash table index. The 
position array of the hash table contains a key-ordered list of candidate positions, where 
each key’s candidates are stored in sorted order. Thus, during seeding, the candidates 
retrieved for each k-mer will also be in sorted order. We maintain a min-priority queue 
of size Nk , where Nk = readlength/k is the number of k-mers in each read, and initialize 
it with the first candidate location of each k-mer. Then, we pop the minimum value from 
the queue and push the next candidate from the same k-mer as the popped one into the 
queue. We repeat the pop–and–push steps until the all candidates have been processed. 
This approach allows us to process all candidates in O(Nl) time without sorting as long 
as the number of k-mers is small enough to keep the overhead of min-priority-queue 
negligible, which we found to be the case for short-read alignment using an empirical 
evaluation.

In the case of single-end reads, we don’t apply any filtering to the merged candidate 
lists. Thus, all candidates are passed to the embedding stage. For paired-end reads, how-
ever, we use a configurable pairwise-distance threshold for identifying candidates from 
one read that have a matching pair within the specified distance in the other read. All 
such candidate pairs are passed to the embedding stage.

Embedding

After candidate locations are identified by seeding, Accel-Align moves to embedding, 
the second stage of SEE. We extract strings of length equal to the read length from the 
reference genome at each candidate location. The goal of embedding is to transform 
these reference strings, and the query string which is the read, into different strings such 
that the edit distance between the original strings can be approximated using the Ham-
ming distance between new strings. We have implemented two randomized embedding 
algorithms in Accel-Align.

3N‑embedding

The first algorithm was proposed by [9] who showed that given two strings x, y of length 
N taken from an alphabet 

∑
 such that dE(x, y) , the edit distance between x and y, is 

less than K, there exists an embedding function f: 
∑N

→

∑3N , such that the distortion 

Fig. 1  An index building example. Xi represents a 32-mer extracted from reference genome. a, b, c, d are the 
keys calculated from Xi . ni represents the number of keys smaller than the corresponding key. For example, n1 
is the number of keys smaller than a. Specifically, X1 , X4 and X7 have the same key a. So there are n1 + 3 keys 
smaller than a+ 1 . Thus, l1 , l2 and l3 indexed with n1 , n1 + 1 , n1 + 2 in value table are the locations for X1 , X4 and 
X7
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D(x, y) = dH (f (x), f (y))/dE(x, y) lies in [1,  O(K)] with at least 0.99 probability, where 
dH (x, y) is the Hamming distance between the embedded strings. In other words,  [9] 
proposed a randomized algorithm that can embed strings of length N into strings of 
length 3N such that Hamming distance of embedded strings is at most square of the edit 
distance between original strings. Recent studies have demonstrated that this algorithm, 
which we henceforth refer to as 3N-embedding (3NE), works well in practice for per-
forming edit similarity joins for even relatively large edit distances [10].

Accel-Align uses 3NE for embedding both reference strings and the read itself. List-
ing 1 shows the pseudo-code for the embedding algorithm. The input string is a DNA 
sequence of length N consisting of four possible characters (A,C,G,T). The output is an 
embedding string of length 3N consisting of the four characters and possibly multiple 
repeats of a pad character (P). In each iteration, the algorithm appends a character from 
the input string, or the pad if it runs out of the input string, to the output string. Then, 
it uses a random binary bit string to decide if the input index should be advanced. The 
net effect of this algorithm is that some input characters appear uniquely in the out-
put string, while others are randomly repeated multiple times. Using the theory of sim-
ple random walks,  [9] established that the randomization in this algorithm will result 
in strings that differ by a small edit distance converging quickly to produce embedded 
strings that have a small Hamming distance.

2N‑embedding

An initial implementation of 3NE in Accel-Align showed us early on that despite the 
simplicity of the algorithm, it was computationally intensive to embed billions of can-
didate locations across millions of reads. We describe several optimizations later in 
Section  2.4 that reduced the overhead of embedding, but one of the first optimiza-
tions we designed was a variant of the embedding proposed by [9], which we refer to as 
2N-Embedding (2NE). Listing  2 shows the pseudocode for 2NE which is conceptually 
similar to 3NE with the exception that each character in the input string is copied to 
the output string at most two times. Thus, 2NE implements a mapping f: 

∑N
→

∑2N 
instead of 

∑N
→

∑3N . After implementing 2NE in Accel-Align, we found that [11] had 
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also developed it in parallel, performed a theoretical analysis of its optimality, and used 
it for the edit similarity join application. As we show in our evaluation, we found 2NE 
to be functionally comparable to 3NE in terms of accuracy, and slightly better in terms 
of performance as it reduces the embedding time due to a reduction in the embedded 
string length from 3N to 2N.

Candidate selection

We use one of the two embedding algorithms described above to embed all reference 
strings and the read. Then, we compute the Hamming distance between each embedded 
reference and the embedded read. We refer to this distance as the embedding distance. 
While doing so, we dynamically keep track of the top two candidate locations with least 
embedding distance and forward them to the third phase for further extension, scoring, 
and mapping quality computation.

Extension and MAPQ computation

Before extension, Accel-Align will rectify the position of the best candidate. As men-
tioned in seeding, the positions are adjusted using the offset of the k-mer in the read 
to get normalized candidate positions. However, this approach can shift the candidate 
position by a few nucleotides when there are INDELs. For example, consider a read with 
an insert in the first seed. If the second seed produces a candidate position p, then the 
expected normalized position is p− k + 1 , not p− k . To fix this problem and identify 
the optimal position, we embed the first seed of the read and the k-mers in reference 
genome at multiple positions from P − l to P + l , where P is the best candidate posi-
tion, l is the INDEL length threshold we set to 5% of the read length (this is conservative 
as the INDEL rate of short-read aligners is much lower). Finally, we take the starting 
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position with the least embedding distance compared to the first seed of read as the final 
position.

Accel-Align can be configured to run in alignment-free mapping mode where only the 
identified candidate location is reported, or full-alignment mode where base-by-base 
extension is performed and the CIGAR string is reported. For the mapping mode, we 
simply pick the best candidate location, which is the one whose reference strings has 
the least embedding distance, and report its normalized location. For the full-alignment 
mode, we perform a global extension at the best candidate location using lib-ksw [12] 
with match(1), mismatch(4), gap-open(6), and gap-extension(1) penalties configured to 
match the settings used by BWA-MEM for computing the alignment score and CIGAR.

In addition to the CIGAR, popular aligners also report a mapping quality (MAPQ) 
that represents the degree of confidence in the alignment for each read. The basic idea 
behind MAPQ is that if multiple candidates align to the read with comparable align-
ment score, the aligner cannot be confident in its final choice. However, if alignment 
scores between the chosen candidate and others are very different, the aligner can be 
reasonably confident in its choice. Thus, MAPQ computation typically requires align-
ers to extend at least two candidate locations so that alignment scores can be compared. 
SEE, in contrast, makes it possible to avoid such extensions as we can exploit embedding 
distance once again to compute MAPQ. If two candidates are spaced apart with respect 
to edit distance from a read, then the embedded reference strings will also be spaced 
apart with respect to Hamming distance from the embedded read. Thus, Accel-Align 
uses Bowtie2’s MAPQ estimation procedure [13] adjusted to use the embedded length, 
instead of the read length, and embedding distance of the top two candidates, instead of 
their alignment scores produced from Smith-Waterman extension, in order to produce a 
MAPQ value between 0 and 42.

Optimizations

A naive SEE implementation would perform seeding, embedding, and extension as 
described so far in sequence. However, during initial experimentation we found that 
while embedding reduced the overhead of extension, the computational task of embed-
ding and Hamming distance computation added non-negligible overhead. Thus, in addi-
tion to the 2NE algorithm described in Sect. 2N-embedding, we implemented three other 
optimizations, namely, pipelining, early-stop, and prioritizing, that reduced the overhead 
of embedding without any change in functionality or accuracy.

Pipelining

Instead of embedding all candidates and then computing the Hamming distance, our 
first optimization is to pipeline these steps. We do this by modifying the embedding 
step so that the read is embedded first. Then each candidate location is embedded one 
by one, and the embedding algorithm simply updates the embedding distance in each 
iteration by comparing the output character of the candidate generated in that iteration 
with the corresponding character in the embedded read. This pipelining of embedding 
and distance computation provides three major benefits. First, as embedded strings are 
no longer generated in their entirety, it reduces memory consumption and associated 
overheads of allocating and freeing memory for storing embedded candidates. Second, 
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it reduces the overhead caused by a needless second loop over the embedded candi-
dates to calculate the Hamming distance. Third, as the output character generated by the 
algorithm is used immediately for distance computation, it improves processor cache 
utilization.

Early‑stop

Using pipelining to produce the embedding distance for each candidate enables us to 
apply the second optimization based on the observation that only the top-two candi-
dates with the least embedding distance are selected for further extension. Thus, if we 
have already encountered a candidate with a very low embedding distance, there is no 
point in continuing the embedding process for another candidate whose distance has 
already exceeded the previously observed minimum. Thus, we parameterize the embed-
ding algorithm with a threshold such that the algorithm stops embedding a candidate 
as soon its embedding distance exceeds the threshold. Instead of storing the embedded 
distance of all candidates, we dynamically track the lowest and second-lowest distances, 
and simply use the latter as the threshold parameter.

Prioritizing

Our third optimization is a policy that drives pipelining and early-stop mechanisms. It 
is based on the intuition that if candidates with low embedding distance are prioritized 
before others, the overall cost of embedding will be low. This is due to the fact that the 
threshold will be set to a relatively low value during the early stages of embedding. As a 
result, early-stop will be applied to most candidates. However, the embedding distance 
of candidates is not known to us in advance. Therefore, we use candidate counting, a 
technique used by SFE aligners for count filtering [8], to prioritize candidates based on 
the assumption that candidates with higher counts or votes are more likely to have lower 
embedding distance, and more likely to be picked as the best candidate. Thus, we modify 
the seeding phase to associate with each candidate location a count of the number of 
k-mers that produced that location during the hash lookup. During embedding, we first 
embed the candidate with the highest count followed by all other candidates. It is impor-
tant to note here that we still embed all candidates, albeit in a different order. Thus, 
unlike SFE aligners, we do not filter out candidates based on k-mer counting.

Results
In this section, we present an evaluation of Accel-Align using both simulated and real 
data to compare its performance and accuracy with respect to four state-of-the-art 
short-read aligners, namely, BWA-MEM (v0.7.17) [14], Bowtie2 (v2.3.5) [13], Minimap2 
(v2.17)  [15], Subread  [16]. These aligners occupy different points on the design spec-
trum with respect to the choice of index (hash table vs. FM index) and candidate filter-
ing strategy (elimination vs. selection) among other aspects. We also tried to evaluate 
SNAP [17], but we do not report the results here as SNAP failed to index the reference 
on our server as it requires more memory than our server capacity. Accel-Align is imple-
mented in C++ and is configured to use 2NE algorithm by default as it was found to 
be faster than 3NE with comparable accuracy as we demonstrate later. Accel-Align uses 
Intel Thread Building Blocks for parallelizing both index generation and alignment.
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All experiments were run on a server equipped with a quad-core Intel(R) Core(TM) 
i5-7500 CPU clocked at 3.40GHz, 32GB RAM, and a 256GB SATA SSD. In an offline 
phase not reported here, we used each aligner to pre-index the reference genome. Then, 
in each alignment experiment, we ran the aligner five times and gathered execution sta-
tistics. As all aligners read the index from secondary storage, the first run is typically 
“cold” as data is not in memory. Table 1 shows the index size of each aligner, and time 
to load the reference and index with such a cold cache. As our index storage device is a 
SATA SSD with limited bandwidth (500 MB/s), aligners with larger indexes take longer 
to load the index. However, in practice, this is never an issue even with our commodity 
SSD, as a single run of any aligner results in the appropriate index being memory resi-
dent. Hence, in all remaining results, we ignore the first run and report performance of 
all aligners under “warm” execution when the index has already been cached in memory. 
As we found the “warm” performance of the last four runs to be stable with all aligners, 
we only report the average of last four execution times.

Benchmark with simulated short reads

For benchmarking, we used hg37 (hs37-1kg) as the reference genome. We used 
Mason2 [18] to generate a VCF file and then simulated reads from the VCF file together 
with an alignment file describing the exact coordinate of each read. We used Accel-Align, 
BWA-MEM, Bowtie2, Minimap2 (short-read mode), and Subread to align the reads and 
measured the end-to-end wall clock time for alignment. Using the Mason2 generated 
alignment file as our ground truth, we also evaluated the accuracy of each aligner with 
respect to two aspects. The first is the fraction of correctly mapped reads out of all input 
reads; we consider a read to be correctly mapped if the reported alignment overlaps with 

Table 1  Time to load index

BWA-MEM Bowtie2 Minimap2 Subread Accel-
Align

Time (s) 9 6 14 26 26

Size (GB) 5.1 3.8 6.7 15 13

Table 2  Evaluation on simulated single-end data

BWA-MEM Bowtie2 Minimap2 Subread Accel-
Align

Exec. time (MM:SS) 06:47 09:35 02:50 05:09 01:01

Correctly mapped 97.36% 97.23% 96.51% 90.1% 96.75%

Not mapped 0.0028% 0.044% 0.73% 9.64% 0%

Table 3  Evaluation on simulated paired-end data

BWA-MEM Bowtie2 Minimap2 Subread Accel-
Align

Exec. time (MM:SS) 14:49 19:37 04:58 06:32 01:40

Correctly mapped 98.54% 98.51% 98.09% 92.39% 98.24%

Not mapped  0.002% 0.0034% 0.035% 5.63% 0.049%
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the Mason-provided one by at least 10% of read length. The second is the fraction of 
unmapped reads out of all input reads.

Aligner comparison

Table  2 reports the performance (wall-clock execution time) and accuracy of the five 
aligners for a 10M, 100bp, single-end simulated read dataset generated by Mason2. In 
terms of performance, it can be seen that Accel-Align clearly outperforms the other 
aligners, as it is 9 × faster than Bowtie2, 6 × faster than BWA-MEM, 2.7× faster than Min-
imap2, and 5 × faster than Subread.

Table 3 reports the performance and accuracy for a 10M, 100bp, paired-end dataset 
generated by Mason2. Accel-Align outperforms some aligners by an even larger margin 
here, as it is 11× faster than Bowtie2, 8 × faster than BWA-MEM, 3 × faster than Mini-
map2, and 4 × faster than Subread. In terms of accuracy, Accel-Align is comparable with 
BWA-MEM, Bowtie2, and Minimap2, as a majority of reads are correctly mapped in 
both the single-end and paired-end datasets. Comparing Subread with BWA-MEM and 
Bowtie2, we can clearly see the performance–accuracy trade-off of the voting strategy 
used by Subread for candidate filtering. Accel-Align, in contrast, can provide an order of 
magnitude improvement in performance over state-of-the-art aligners without sacrific-
ing accuracy due to the use of embedding for candidate filtering.

Figure  2 shows the RoC curve for the five aligners by plotting the fraction of reads 
mapped (Y-axis) and their error rate (X-axis) using each MAPQ value as a threshold 
(high to low from left to right). Once again, Subread has lowest accuracy at all MAPQ. 
Accel-Align generally performs better than Minimap2 but under performs BWA-MEM 
and Bowtie2 as it generally assigns fewer reads to higher MAPQ. Recall that Accel-Align, 
by default, uses embedding distance instead of alignment score for MAPQ computation. 
In order to isolate and understand the impact of embedding on MAPQ better, Fig. 2 also 
shows the RoC curve for a modified version of Accel-Align, which we refer to as Accel-
Align-AS, that uses embedding to pick the top two candidate locations and then uses 
alignment score obtained from extension of both candidates instead of the embedding 
distance to calculate the MAPQ.

Fig. 2  Error rate and fraction of reads over each MAPQ of 100bp pair-end reads
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Comparing Accel-Align with the Accel-Align-AS configuration, we see that Accel-
Align-AS assigns a few more alignments (0.7%) to a higher MAPQ. As the only differ-

ence between these two configurations is the use of alignment score in Accel-Align-AS 
versus the embedding distance in the default version for computing MAPQ, we see that 
using embedding distance for MAPQ makes the aligner marginally more conservative 
in estimating MAPQ. Bowtie2’s MAPQ estimation procedure assigns MAPQ by com-
paring the best alignment score with respect to a threshold minimum score, and the 
second best score. We know that embedding distance computed for each candidate loca-
tion is always larger than original edit distance. Thus, when embedding distance is used 
in MAPQ estimation, alignments that are further away from minimum with respect to 
alignment score end up moving closer to the minimum. This intuitively explains why 
MAPQ assignment is more conservative. However, it is important to note that the map-
ping location and difference in the overall error rate is the same for both Accel-Align 
and Accel-Align-AS. Thus, for the rest of this evaluation, we use the default version 
of Accel-Align.

Varying read length

The computational cost of the embedding step is proportional to the read length, as 
each read and at least one candidate are converted from length N into a new string of 
length 2N. To test the sensitivity of performance with respect to read length, we used 
Mason2 to generate three more paired-end datasets with 10M reads, where each dataset 
was configured with a read length of either 125bp, 150bp, or 175bp. Table 4 shows the 
accuracy and Fig.  3 shows the throughput (thousands of reads processed) per second 
per thread of the five aligners under various read lengths. The throughput of Bowtie2, 

Fig. 3  Throughput per second per thread for 100 bp, 125 bp, 150 bp and 175 bp pair-end reads

Table 4  Accuracy (% correctly mapped) on simulated paired-end data of different read length

BWA-MEM (%) Bowtie2 (%) Minimap2 (%) Subread (%) Accel-Align 
(%)

100bp 98.54 98.51 98.09 92.39 98.24

125bp 98.73 98.71 98.53 93.23 98.38

150bp 98.82 98.80 98.72 93.65 98.41

175bp 98.85 98.84 98.78 96.70 98.36
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Accel-Align   and Subread is calculated by removing the reported reference and index 
preparation time from processing time. The throughput of BWA-MEM and Minimap2 
is reported directly from their output log. Clearly, Accel-Align outperforms the other 
aligners at all read lengths as it provides 7–11× improvement over Bowtie2, 5–8× over 
BWA-MEM, 2–3× over Minimap2, 2–4× over Subread across a range of read lengths. 
Accel-Align correctly mapped around 0.2–0.5% less than BWA-MEM, Bowtie2 and 
Minimap2, while 1.6–5.8% more than Subread.

Alignment‑free Mapping

Both Accel-Align and Minimap2 can be configured to run in alignment-free mapping 
mode where they report the position without the CIGAR string. The mapping mode 
completely eliminates the overhead of edit-distance computation. Although such map-
ping is useful in several applications that do not require base-by-base alignment, we use 
it in this context to isolate the benefit of embedding. To compare Accel-Align with Mini-
map2 in mapping mode, we used the two aligners to perform alignment-free mapping of 
the four paired-end Mason2 datasets. Figure 4 shows the execution time for various read 
lengths. Comparing Figs. 3 and 4, we can make two observations. First, alignment-free 
mapping provides a further 1.3× improvement in throughput over base-to-base align-
ment. Accel-Align maps 10M, 100bp, paired-end reads in 75 seconds, thus, mapping 
more than 66,000 reads per second per thread without requiring any special hardware. 
These results demonstrate the benefit of using embedding in sequence mapping. Second, 
Accel-Align is 2.7–3.5× faster than Minimap2 at all read lengths (Fig. 4) with alignment-
free mapping while offering compatible accuracy (Table 3). This demonstrates that our 
optimizations have eliminated the computational overheads associated with embedding, 
making Accel-Align a competitive alternate to state-of-the-art sequence mappers.

Fig. 4  Alignment-free mapping throughput per second per thread for 100 bp, 125 bp, 150 bp and 175 bp 
reads

Table 5  Comparison of 2N-embedding and 3N-embedding

No-embedding 2N-embedding 3N-embedding

Exec. time (MM:SS) 25:29 02:59 03:51

Correctly mapped 98.73% 98.41% 98.37%

Not mapped 0.0073% 0.0073% 0.0073%
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Impact of embedding

To further isolate and understand the benefit of embedding in Accel-Align, we modified 
Accel-Align to run in three modes. (i) a no-embed mode where embedding is not used, 
and all candidate locations identified by seeding are directly forwarded for extension, 
(ii) the default mode using 2NE, and (iii) using 3NE instead of 2NE. Table 5 shows the 
performance and accuracy results for these three modes under the 10M, 150bp, Mason2 
pair-end, simulated-read dataset.

Comparing 2NE and 3NE cases, we can see that 2NE provides a 23% improvement 
in performance with no discernible difference in accuracy. Comparing 2NE and the no 
embedding cases, we see that embedding provides a 8 × reduction in execution time as it 
is able to identify the optimal candidate location without relying on edit distance com-
putations at a marginal 0.3% lower accuracy.

Recall that Accel-Align uses lib-ksw for extension. However, embedding is orthogo-
nal to the type of extension technique used. To understand the effectiveness of embed-
ding in the presence of alternate, more efficient extension methods, we incorporated 
the recently published Wavefront Alignment Algorithm (lib-wfa) [19] as an alternative 
to lib-ksw for computing the alignment score and CIGAR. We modified Accel-Align to 
run in four modes. In NO-KSW and NO-WFA modes, we do not use embedding and 
pass all candidates for extension with either lib-ksw or lib-wfa. In 2NE-KSW and 2NE-
WFA modes, we use 2NE for embedding to select top two candidate locations, and pass 
them for extension with lib-ksw or lib-wfa. Table 6 shows the performance for these four 
modes under the 10M, 150bp, Mason2 pair-end, simulated-read dataset.

There are two important observations to be made from Table 6. First, we can see that 
replacing KSW with WFA provides a 2 × reduction in execution time. 2NE-KSW pro-
vides another 4 × reduction over NO-WFA due to the use of embedding. This shows 
that candidate filtering with embedding can provide a substantial improvement in per-
formance even compared to optimized extension methods. Second, comparing 2NE-
KSW and 2NE-WFA, we can see it is possible to achieve a further 1.4× improvement in 
execution time by combining embedding with optimized extension method like WFA. 
To maintain a fair comparison with other aligners which also use lib-ksw, particularly 
BWA-MEM and Minimap2, the rest of the results reported in this paper are based on 
lib-ksw.

Benchmark with real short reads

To evaluate the accuracy of Accel-Align on real data, we used the human whole-exome 
sequencing dataset NA12878 (accession No.: SRR098401). We built a pipeline similar to 
prior work [20] to detect variants using GATK HaplotypeCaller (v4.1.0)  [21]. We used 
all aligners to align 85M paired-end reads in NA12878 to the hg37 reference genome. 
Then, we used the SureSelect Human All Exon v2 target captured kit bed file (ELID: 

Table 6  Comparison of optimized extension

NO-KSW NO-WFA 2NE-KSW 2NE-WFA

Exec. time (MM:SS) 25:29 10:46 02:59 02:02

Correctly mapped 98.73% 98.73% 98.41% 98.41%
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S0293689) for capturing variant locations, and took high confidence variant calls (v2.19) 
from Genome in a Bottle (GiaB) consortium for validation.

We compare the aligners with respect to several metrics as shown in Table  7. The 
results for Accel-Align using the default parameters is shown in the column AA-32-mer. 
The execution time reports the wall-clock time taken by various aligners for aligning 
85M paired-end reads (or 170M reads in total). Accel-Align provides a speedup of 9 × 
over Bowtie2, 7.8× over BWA-MEM, 2.6× over Minimap2, and 4.8× over Subread, simi-
lar to the Mason2 dataset. The second metric is transition-to-transversion ratio (Ti/Tv), 
which is a key metric in detecting SNVs and should fall between 2.7–3.3 for this dataset, 
which is the case with all aligners. The following three metrics report precision, recall, 
and F-score values based on the GiaB truth set contains 23,686 SNVs and 1,258 INDELs 

Table 7  Evaluation on real data

BWA-MEM Bowtie2 Minimap2 Subread AA-32-mer AA-25-mer

Exec. time 1:32:02 1:48:09 00:31:24 00:56:24 00:11:46 00:19:20

Ti/Tv 2.71 2.73 2.73 2.85 2.78 2.76

Precision 0.961 0.967 0.967 0.980 0.972 0.968

Recall 0.952 0.948 0.952 0.901 0.942 0.946

F-score 0.956 0.957 0.959 0.939 0.957 0.958

F-score (SNP) 0.959 0.960 0.961 0.940 0.959 0.960

F-score (INDELs) 0.920 0.915 0.927 0.914 0.912 0.915

% Mapped 99.86% 99.16% 99.55% 91.43% 96.92% 98.67%

Fig. 5  Venn diagram of variants detected by various aligners. a Accel-align (32-mer), b BWA-MEM, c 
Minimap2, d Bowtie2, e Subread
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contributing to a total of 24,944 variants for the NA12878 exome. The overall F-score 
of all four aligners are comparable except Subread. Accel-Align offers a slightly higher 
precision than the other aligners as most variants detected with Accel-Align are true 
variants. However, Accel-Align provides slightly lower recall, as it fails to detect some 
variants in the truth set.

To better understand the difference between detected variants, we show a Venn dia-
gram of variants detected by various aligners in Fig. 5. Clearly, 90.7% of variants are 
captured by all aligners. We found that there are 147 variants detected by the other 
four alignment tools, but not by Accel-Align. Upon further inspection, we found this 
to be due to two reasons. First, although embedding identifies the correct candidate 
location in most cases, there are reads for which it chooses the wrong candidate loca-
tion. We found this to be particularly problematic for reads that map with a low edit 
distance to multiple locations in the reference. In such cases, we found that the ham-
ming distance of embedded candidates is not spaced apart for embedding to identify 
a clear target. The second reason is the use of large k-mer length (32) in Accel-Align 
compared to the very short read length in NA12878 (76bp) which resulted in reads 
with two erroneous k-mers being unmapped. Table  7 shows the percent of mapped 
reads, and as can be seen, Accel-Align aligns 2.2–2.9% fewer reads comparing to 
BWA-MEM, Bowtie2 and Minimap2.

To understand the impact of k-mer size on overall accuracy, we modified Accel-
Align to use 25-mers instead of 32-mers. Table  7 shows the results obtained using 
the 25-mer setting under column AA-25-mer. Comparing it with AA-32-mer, we have 
two important observations. First, the overall execution time increases by 39% com-
pared to AA-32-mer case. Figure 6 shows a breakdown of execution time across the 
three stages when 25-mers or 32-mers are used. Clearly, this increment in time can 
be attributed almost entirely to seeding as 25-mers produce 4 × more candidates than 
32-mers. As SEE does not filter out any candidates, the overhead of candidate nor-
malization, counting, and duplicate elimination performed during seeding increases. 
Despite this, embedding is able to identify the candidates, avoid needless extension, 
and still provide 2–6× reduction in execution time over other aligners. Second, the 
fraction of mapped reads increases by 1.7% by using 25-mers instead of 32-mers. 
Comparing Figs. 5 and 7, we can see that this translates to an increase in the number 
of variants detected by Accel-Align. However, while the 25-mer case has better recall 
rate than the 32-mer case, it has a slightly lower precision as shown in Table 7. As a 

Fig. 6  The percent of seeding, embedding and extension over the total processing time
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Fig. 7  Venn diagram of variants detected by various aligners. a Accel-align (25-mer), b BWA-MEM, c 
Minimap2, d Bowtie2, e Subread

Fig. 8  Venn diagram of SNP/INDEL variants detected by various aligners. a Accel-align (32-mer), b BWA-MEM, 
c Minimap2, d Bowtie2, e Subread.

Fig. 9  F-scores of INDELs against the base pair length of the INDELs
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result, in terms of the overall F-score, the 25-mer case provides similar accuracy to 
the 32-mer case.

In order to isolate and understand the behavior of Accel-Align in the presence of SNP 
and INDEL variants, we show the F-score for SNP and INDELs separately in Table  7 
and show two Venn diagrams for the two types of variants separately in Fig. 8. Clearly, 
Accel-Align is able to capture a majority of SNP and INDEL variants. In order to under-
stand the impact of INDEL length on Accel-Align’s accuracy, we show the F-score of 
various aligners at each INDEL length in Fig. 9. From these results we see that Accel-
Align has the capability to detect even very long indels as evidenced by an F-score of 1 at 
the extremities in Fig. 9. On investigation, we found that majority of INDELs missed by 
Accel-Align were short in length, and the main reason for lower accuracy was the inabil-
ity of the non-overlapping seeding used by Accel-Align to produce the correct candidate 
location for embedding due to short 76nt read length of the NA12878 dataset. Our use 
of non-overlapping, sequential k-mers as seeds, and hash table as an index, was moti-
vated by similar design choices made by other aligners [17, 22] based on the assumption 
that with increasing read length and accuracy of short-read sequencers, it will be possi-
ble to draw enough, independent, long seeds with a high probability of at least one being 
error free. While researchers have demonstrated the benefit of other seed design strate-
gies (like spaced-seeds  [23], adaptive seeds  [24] and minimizers  [25]) and seed selec-
tion strategies (like cheap k-mer selection [3], or dynamic programming [26]), they are 
orthogonal to the problem of candidate filtering which is the focus of this paper. Simi-
larly, in contrast to our fixed, but configurable, pair-wise filtering criteria, aligners also 
automatically learn the pair-filtering-distance dynamically, and use it to rescue paired 
reads where one of the pairs does not produce a mapping, or disambiguate otherwise 
equivalent mappings  [1]. We leave open the task of combining embedding with better 
seeding and pair selection strategies to future work.

Discussion
In this work, we presented Accel-Align-a fast sequence mapper and aligner that uses the 
SEE method for quickly identifying optimal candidates based on randomized embed-
ding. Using an extensive evaluation, we showed that Accel-Align specifically, and SEE 
more generally, can provide an order of magnitude improvement over some state-of-the-
art aligners on commodity CPUs. We are pursing several avenues of future work. First, 
we are working on extending Accel-Align to support additional functionalities like soft 
clipping and local alignment. Currently we do not support this as neither our current 
embedding approach, nor lib-ksw, support local extension. In order to support soft clip-
ping, Accel-Align cannot embed the entire read, as a position with a high embedding 
distance can still be the original mapping position chosen by local extension after soft 
clipping. Instead, we are investigating the use sub-sequences of a read between exactly-
matched seeds as the embedding target.

Another natural extension of this work that we are pursuing is investigating the effec-
tiveness of SEE for long-read alignment. Research on string-similarity join has demon-
strated that these randomized embeddings excel when applied to long strings with even 
up to 20% mismatch  [10]. This suggests that SEE can also be used for aligning error-
prone long reads generated by Nanopore or PacBio sequencers. Another line of work 
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that we are exploring involves exploiting hardware-acceleration techniques for imple-
menting SEE across CPUs and GPUs. Looking at Fig. 6, we can see that seeding domi-
nates overall execution time at low k-mer sizes and accounts for a substantial portion 
of time with large k-mers. In a recent microarchitectural study [27] of various sequence 
aligners, we demonstrated that the seeding stage is a prime candidate for acceleration 
by GPUs due to its data-parallel nature, unlike the extension stage which is difficult to 
parallelize due to data dependencies in dynamic programming. Thus, we are develop-
ing a parallel version of Accel-Align which can work across CPUs and GPUs and pro-
vide better accuracy, and a 10× further improvement in performance over the purely 
CPU-based Accel-Align.

Conclusions
As sequencing technologies continue to increase read length while improving through-
put and accuracy, we believe that randomized embeddings open up new avenues for 
optimization that cannot be achieved by using edit distance. Accel-Align clearly demon-
strates the potential of using embedding for short-read sequence alignment. We believe 
that the benefit of SEE methodology and low-distortion embedding are not limited to 
short-read alignment; any computational biology problem that is limited by the over-
head of edit distance can benefit from embedding. As embedding transforms strings 
from edit to Hamming regime, computational tools like Locality Sensitive Hashing can 
also be applied on the resulting strings. Thus, the techniques presented in this paper 
have a much broader scope as they can be used for other applications like spliced RNA-
seq and bi-sulfite alignment, multiple sequence alignment, and even sequence assembly.
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