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Abstract 

Background:  Manual microscopic examination of Leishman/Giemsa stained thin and 
thick blood smear is still the “gold standard” for malaria diagnosis. One of the draw-
backs of this method is that its accuracy, consistency, and diagnosis speed depend on 
microscopists’ diagnostic and technical skills. It is difficult to get highly skilled micros-
copists in remote areas of developing countries. To alleviate this problem, in this paper, 
we propose to investigate state-of-the-art one-stage and two-stage object detection 
algorithms for automated malaria parasite screening from microscopic image of thick 
blood slides.

Results:  YOLOV3 and YOLOV4 models, which are state-of-the-art object detectors in 
accuracy and speed, are not optimized for detecting small objects such as malaria par-
asites in microscopic images. We modify these models by increasing feature scale and 
adding more detection layers to enhance their capability of detecting small objects 
without notably decreasing detection speed. We propose one modified YOLOV4 
model, called YOLOV4-MOD and two modified models of YOLOV3, which are called 
YOLOV3-MOD1 and YOLOV3-MOD2. Besides, new anchor box sizes are generated using 
K-means clustering algorithm to exploit the potential of these models in small object 
detection. The performance of the modified YOLOV3 and YOLOV4 models were evalu-
ated on a publicly available malaria dataset. These models have achieved state-of-the-
art accuracy by exceeding performance of their original versions, Faster R-CNN, and 
SSD in terms of mean average precision (mAP), recall, precision, F1 score, and average 
IOU. YOLOV4-MOD has achieved the best detection accuracy among all the other mod-
els with a mAP of 96.32%. YOLOV3-MOD2 and YOLOV3-MOD1 have achieved mAP of 
96.14% and 95.46%, respectively.

Conclusions:  The experimental results of this study demonstrate that performance of 
modified YOLOV3 and YOLOV4 models are highly promising for detecting malaria para-
sites from images captured by a smartphone camera over the microscope eyepiece. 
The proposed system is suitable for deployment in low-resource setting areas.
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Background
Malaria is one of the leading public health burdens. Its prevalence is too high in low-
income countries. In 2018 only, an estimated 228 million cases were recorded world-
wide, and most of the cases were in Africa (comprising 93%), followed by South-East 
Asia region (3.4%). Malaria is caused by a unicellular parasite called plasmodium. It is 
transmitted from infected person to healthy through bites of female anopheles mos-
quito. Generally, there are five different species of plasmodium (P. falciparum, P. vivax, 
P. ovale, P. malariae, and P. knowlesi), of which P. falciparum is the most common, fol-
lowed by P. vivax. Depending on the severity of infection, all the species pass through 
four life stages: ring, trophozoite, schizont, and gametocyte [1].

Malaria is a curable disease, but a lack of prompt and correct diagnosis and treatment 
can cause serious health complications, which can even lead to death. Microscopy-
based visual examination of stained thick and thin blood slides is the golden standard 
for malaria diagnosis [2]. However, the accuracy of microscopy-based diagnosis heav-
ily depends on individual’s slide reading experience and attentiveness during diagnosis 
procedure. Besides, shortage of well-trained personnel imposes discrepancies on the 
effectiveness of microscopy-based diagnosis results in malaria-endemic and resource-
constrained areas, especially in rural parts of Africa. Inaccurate diagnosis result leads to 
morbidity, socio-economic problems within society and poor decision making and plan-
ning in malaria prevention programs.

An alternative low cost, fast and accurate computer-aided diagnosis system is required 
to overcome the drawbacks of manual microscopy-based diagnosis. Recent advance-
ments in computer vision, especially in deep learning algorithms, have shown promis-
ing results for detecting malaria parasites and, in general, for detecting abnormalities in 
medical images.

For the past 2 decades, a substantial number of studies have been conducted to detect 
pathogens, including malaria parasites from microscopic images. The three most com-
monly used methods to detect or classify malaria parasites in microscopic images of 
thick and thin blood film are traditional image processing algorithms, classical machine 
learning, and deep learning method. The traditional image processing techniques mainly 
use rule-based classifiers and manually designed low-level features such as texture, color 
and shape using computationally complex image processing methods. The performance 
of these methods is low since manual design of optimal feature extractor and classifier is 
difficult [3–7].

Classical machine learning approaches, which use manually extracted features as 
inputs, were proposed for malaria parasite classification and detection in [8–12]. The 
proposed classifiers include support vector machine (SVM) [8], linear discriminant clas-
sification (LDC), k-nearest neighbor (KNN) and linear regression (LR) [5], Bayesian 
learning and support vector machine (SVM) [13], KNN classifier [9], hybrid machine 
learning classifier [10], modified K-means clustering algorithm [14, 15], feed-forward 
neural networks [6], deep belief network (DBN) [16]. The limitation of classical machine 
learning-based techniques is their inability to cope-up with inherent variability of 
images from different domains since manually designed feature extractor is sub-optimal. 
Machine learning models based on hand-crafted features achieve poor generalization 
capability in classification tasks.
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In recent years, deep learning based object detection and classification techniques 
have gained popularity because of their ability to overcome the limitations of tra-
ditional image processing techniques, including classical machine learning algo-
rithms. Deep learning algorithms can be applied to classify objects by taking image 
patches cropped from an input image using different prepossessing techniques such 
as segmentation or sliding window technique. These techniques are computationally 
expensive due to massive numbers of patches generated and the application of con-
volution operation for all patches to detect or classify malaria-infected cells [17, 18]. 
The methods in [19, 20] used features extracted from patch-based CNN and classi-
fies them using classical machine learning models, such as SVM, for malaria para-
site identification. Patch-based CNN models for the identification of malaria parasites 
from thick blood smear microscopic images were proposed by [21–24]. The studies 
by [25–27] demonstrated the applicability of patch based CNN models to classify 
malaria parasites from segmented thin blood smear images. Sivaramakrishnan et al. 
[28] discussed advantage of visualizing extracted features using deep learning mod-
els to better understand their learning strategy for classification of malaria parasites. 
Delahunt et  al. [29] proposed a patient-level evaluation results using two different 
CNN architectures to detect ring and late-stage malaria parasites.

Lately, state of the art one-stage and two-stage object detection algorithms are 
widely used in diverse applications of medical image analysis including detection of 
cancer [30–33], detection of organs and their abnormalities [34–37], detection of pul-
monary diseases [38–40], detection and segmentation of intracranial hemorrhages 
[41], classification and segmentation of microscopy images [35, 42, 43].

Despite their success in several applications, state-of-the-art deep learning-based 
one-stage and two-stage object detection algorithms have not been extensively stud-
ied to detect malaria parasites in microscopic images. The work reported in [44] uses 
a modified YOLOv3 architecture to detect P. falciparum parasites in thick blood 
smear microscopic images taken with a digital microscope and smartphone camera. 
An automated  P.vivax detection system in microscopic images of thin blood smear 
was reported in [45]. A pre-trained Faster RCNN model was applied to classify red 
blood cells (RBCs) and other non-RBC objects [46].

This study aims to investigate the applicability of state-of-the-art one-stage and 
two-stage object detection algorithms for detecting malaria parasites in microscopic 
images captured using a smartphone camera. We propose malaria parasite detec-
tion in thick blood smear microscopic images using modified YOLOV3 and YOLOV4 
models in this work. The contributions of this study are as follows: 

1.	 We have modified YOLOV3 and YOLOV4 models to improve their capability to 
detect small objects by extending feature scales and adding more detection layers. 
The modified models have higher small object detection capabilities than the original 
models.

2.	 We have conducted comprehensive experiments to evaluate performance of the orig-
inal and modified models of YOLOV3 and YOLOV4 using publicly available malaria 
dataset.
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3.	 We have also carried out a comprehensive comparative study to evaluate the perfor-
mance of state of the art two-stage and one-stage object detection algorithms such 
as Faster RCNN [47], SSD [48], YOLOV3 [49], and YOLOV4 [50] to detect malaria 
parasites.

Results
In this study, we have conducted experiments to evaluate the performance of state-of-
the-art one-stage and two-stage deep learning-based object detectors for detecting P. 
falciparum in thick blood smear microscopic images captured using a smartphone cam-
era. Performance evaluations of the proposed models, using mean average precision 
(mAP), precision, recall, F1 score, average IOU and inference time in frames per second 
(FPS), are done at object-level.

Performance analysis of modified YOLOV3 and YOLOV4 models

For YOLO-based models (YOLOV3, YOLOV4, and their modified versions), we have 
used an IOU threshold value of 0.3, which is selected experimentally by analyzing 
average IOU using validation dataset. As depicted in Fig. 1, YOLO-based models have 
achieved the highest average IOU value at a threshold value of 0.3. When we increase 
the IOU threshold value above 0.3, average IOU of these models decreases since only a 
small number of tight bounding boxes are predicted enclosing malaria parasites. Simi-
larly, when we adjust the threshold value below 0.3, the models’ average IOU decreases 
due to the prediction of many loose bounding boxes that enclose malaria parasites. 
Therefore, we have selected an IOU threshold value of 0.3 to evaluate performance of 
our models during inference time. The proposed models’ performance at different IOU 

Fig. 1  Analysis of IOU threshold values for optimal localization of P. falciparum 
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threshold values during inference is shown in Fig.  2, indicating that malaria parasite 
detection results are sensitive to predefined IOU threshold values.

Our experimental results depicted in Table 1 illustrate that YOLOV4-MOD achieves 
the highest P. falciparum detection accuracy with mAP of 96.32% and 96.20% for input 
image resolutions of 608× 608 and 416× 416 , respectively. The original YOLOV4 
achieves mAP of 95.84% and 95.44% for 608× 608 and 416× 416 input image resolu-
tions respectively. All YOLO-based models have achieved high P. falciparum detection 
performance for an input image resolution of 608× 608 . When the input image reso-
lution is reduced to 416× 416 , the models’ performance slightly decreases and detec-
tion speed increases. YOLOV3-MOD2, with an input image resolution of 608× 608 , has 

Fig. 2  The effect of IOU threshold values on performance of YOLO-based models during inference time

Table 1  Performance comparison of proposed P. falciparum detection models using test dataset

Bold values indicate best performing models

Models mAP@0.3 (%) Precision (%) Recall (%) F1-Score (%) Avg. IOU (%) FPS

YOLOV4-MOD @ 608× 608 96.32 95 94 94 62.12 29.60
YOLOV4-MOD @ 416× 416 96.20 93 93 93 61.84 30.56
YOLOV3-MOD2 @ 608× 608 96.14 92 93 92 61.77 15.30

YOLOV3-MOD2 @ 416× 416 95.80 92 92 92 61.03 17.83

YOLOV3-MOD1 @ 608× 608 95.46 92 92 92 61.03 21.40

YOLOV3-MOD1 @ 416× 416 95.28 92 92 92 60.64 26.75

YOLOV4 @ 608× 608 [50] 95.84 92 92 92 61.15 30.77

YOLOV4 @ 416× 416 [50] 95.44 92 92 92 60.67 33.89

YOLOV3 @ 608× 608 [49] 94.61 91 92 92 59.98 28.67

YOLOV3 @ 416× 416 [49] 94.45 91 91 91 58.85 30.43

Faster R-CNN [47] 71.0 92.7 86.9 89.71 – 8

SSD @ 300× 300 [48] 71.4 91 84 87 – 41
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achieved the third rank, with a mAP of 96.14%, compared to other YOLO-based models, 
and it is best performing model among YOLOV3-based models. It also has a balanced 
precision (92%) and recall (93%) rate indicating that it can discriminate well artifacts 
from malaria parasites. YOLOV3-MOD1 has achieved mAP of 95.46% and 95.28% for 
input image resolution of 608× 608 and 416× 416 , respectively. YOLOV3- MOD1 has 
achieved lower detection performance than YOLOV3-MOD2, but it still has a higher 
performance compared to the original YOLOV3 model to detect malaria parasites. 
Overall, YOLOV4-MOD is the best performing model in terms of mAP, precision (95%), 
recall (94%) and F1-score (94%) on our test dataset.

Besides, average IOU values of different models indicate their ability for precise 
localization of malaria parasites during inference time. Table  1 shows that the modi-
fied YOLOV3 and YOLOV4 models have achieved higher average IOU values than their 
original counterparts. The detection speed comparison of different models during infer-
ence time is also shown in Table 1, represented by frames per second (FPS). As shown 
in the table, YOLOV4-MOD has a slightly lower P. falciparum detection speed than 
its original version at inference time. Inference time P. falciparum detection speed of 
YOLOV3-MOD2 is also less than its original version. This is due to high computational 
complexity of convolution operation at shallow feature maps with a large feature scale in 
YOLOV3-MOD2.

Discussion
In general, YOLOV4 models have achieved better P. falciparum detection performance 
than YOLOV3 models in both their original and modified models. YOLOV4-MOD is 
the best model for P. falciparum detection among all YOLO-based models. Our modi-
fied YOLOV3 and YOLOV4 models, with fine-grained features at high-resolution fea-
ture maps, have achieved better detection performance compared with their original 
versions for small object detection, such as P. falciparum. This implies that the modified 
network structures learn more robust geometric and semantic information to discern 
small objects than their original versions.

Comparative analysis of modified YOLOV3 and YOLOV4 models with existing methods

Performance comparison of modified YOLOV3 and YOLOV4 models with recent state-
of-the-art one-stage detector SSD and two-stage detector Faster R-CNN is shown in 
Table  1. As shown in the table, YOLO-based models, both modified and original ver-
sions, have achieved considerably higher P. falciparum detection performance than 
Faster R-CNN and SSD models. Faster R-CNN has achieved 71.0% mAP while SSD has 
achieved a mAP of 71.4%. The SSD model has the highest P. falciparum detection speed, 
in frames per second, among all the other models, but it has worst detection accuracy. 
Faster R-CNN model is the slowest in its detection speed, and its detection accuracy is 
comparable to that of the SSD model.

The performance of our modified YOLO-based malaria parasite detection models is 
also compared with existing related works. Chibuta and Acar [44] proposed a modi-
fied YOLOV3 model to detect malaria parasites using the same dataset as that of this 
work. Their model achieved a mAP of 90.2%, which is lower than the performance of 
all three modified YOLO-based models proposed in this work, where YOLOV4-MOD 
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has achieved a mAP of 96.32 %. Their model detection computation time was measured 
in CPU time, which is 0.42 s per image, whereas our best performing model has a com-
putation time of 0.034 s per image measured in GPU time. Another method proposed 
by authors of [45] used a cascade of YOLOV2 and transferred AlexNet and achieved 
a mAP of 79.22%, which is significantly lower than our models’ performance. Hung 
et al. [46] reported a 98% of accuracy using Faster R-CNN in cascade with AlexNet to 
identify P.vivax. Their model’s reported performance outperforms our best perform-
ing (YOLOV4-MOD) model, which has an accuracy of 94.36%. However, Hung et  al. 
[46] used thin blood sample microscopic images in which parasitic objects are bigger 
than the ones in thick blood samples, and small object detection is more challenging 
than large object detection in images. The cascaded Faster R-CNN with AlexNet model 
is computationally expensive due to its two-stage architecture and additional AlexNet 
component. The datasets used in [45, 46] are not the same as ours.

Visual analysis of test results

To further evaluate P. falciparum detection performance of different models used in this 
study, example detection results for four images taken from our test dataset is presented 
in Fig. 3 for visual analysis. In Fig. 3, we can observe that YOLOV4-MOD has detected 

Fig. 3  Example P. falciparum detection results using YOLOV4-MOD @ 608× 608
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all parasites with only one false positive case in the first image. Similarly, it has correctly 
detected all parasites in the third image except for one false negative and one false posi-
tive predictions. The ground truth and predicted bounding boxes are shown in white 
and violet colors, respectively. For the remaining models, examples are provided as a 
supplementary file (see Additional file 1). For visual analysis of malaria parasite detec-
tion results, we have used 608× 608 input image resolution. In general, from the visual 
analysis of detection results, we can see that the modified YOLOV3 and YOLOV4 mod-
els’ malaria parasite detection performance is better than that of other models with good 
localization accuracy.

Conclusions
In this paper, performances of state-of-the-art deep learning based object detection 
algorithms are thoroughly investigated for malaria parasite detection in thick blood 
smear microscopic images. We have modified YOLOV3 and YOLOV4 network architec-
tures to enhance their performance for small object detection task. Several experiments 
are conducted to compare performance of our modified YOLOV3 and YOLOV4 based 
models with existing models such as SSD and Faster R-CNN. YOLOV4-MOD has out-
performed all the other models with a mAP of 96.32% for 608× 608 input image resolu-
tion. Similarly, YOLOV3-MOD2 and YOLOV3-MOD1 have achieved a mAP of 96.14% 
and 95.46% for the same input image resolution, respectively. The proposed models 
outperform their original versions, Faster R-CNN and SSD models in terms of mean 
average precision (mAP), recall, precision, F1 score, average IOU and speed of object 
detection. We have demonstrated the feasibility and effectiveness of proposed YOLOV-
based architectures for P. falciparum detection in microscopic images captured using 
a smartphone camera. Our future work will investigate the applicability of these algo-
rithms for detection of various plasmodium species and stages both in thin and thick 
blood smear microscopic images. The reliability of these algorithms will also be studied 
in our future work.

Methods
To improve small object detection accuracy of YOLOV3 and YOLOV4 models, we have 
modified these network architectures by including more fine-grained features from low-
resolution feature maps. The performance of proposed algorithms, in terms of detection 
speed and accuracy, have been investigated for detection of P. falciparum using micro-
scopic images taken using a smartphone camera.

Dataset

We used publicly available malaria dataset [23]1 for the analysis presented in this study. 
It was collected using a smartphone camera attached to a microscope’s eyepiece using a 
special attachment device developed for this purpose. The dataset contains 1182 color 
microscopic images of thick blood smear malaria slides, which were stained with Field 
stain at x1000 magnification level, and all the images have a resolution of 750× 750 
pixels. It contains 948 malaria-infected images with 7628 P. falciparum parasites and 

1  http://air.ug/downl​oads/plasm​odium​-phone​camer​a.zip.

http://air.ug/downloads/plasmodium-phonecamera.zip
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234 normal images with artifacts due to impurities. Since the dataset consists of only 
P. falciparum, our models were trained only to detect this malaria parasite species. All 
malaria parasite detection models in this study were trained using 90% of the dataset, 
among which we took 10% of it for validation. The remaining 10% of the dataset was 
used to test performance of P. falciparum detection models. Figure 4 shows examples of 
malaria-infected (positive) and normal (negative) microscopic images from our dataset 
and corresponding bounding box locations of P. falciparum. Detail description of images 
in training, validation and testing data sets is listed in Table 2. The images were anno-
tated by expert laboratory technicians. No additional patient-level information is given 
in the dataset, such as the number field of views taken for a single patient. Thus, we have 
evaluated performance of proposed models at parasite level.

Malaria parasite detection architectures

YOLOV3 [49] is one of the most potent single-stage object detection algorithms used 
in various application areas. It remarkably improves object detection accuracy, object 
bounding box localization and speed of detection compared with its previous versions; 
YOLOV1 [51] and YOLOV2 [52]. The network structure of YOLOV3 is modeled as a 
single regression problem having one backbone CNN and three object detection heads 
known as yolo layers. These three detection heads divide an input image into three dif-
ferent grids of size S ×  S. Each grid cell is responsible for detecting objects whose center 
falls on that grid cell. In YOLOV3 model with an input image resolution of 416× 416 , 
the feature map size is 13× 13, 26× 26 , and 52× 52 for the first, second and third detec-
tion layers, respectively.

Fig. 4  Sample negative (right) and positive (left) microscopic images with ground truth bounding box P. 
falciparum locations

Table 2  Detail descriptions of malaria dataset used in this study

Training Validation Testing Total

Number of images 966 109 107 1182

Negative samples 191 23 20 234

Positive samples 775 86 87 948

Number of parasites 5695 924 1009 7628
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YOLOV4 model [50] is a state-of-the-art deep learning-based object detection tech-
nique with superior performance compared to other recent models such as EfficientDet 
[53] and YOLOV3 [49]. Authors of [50] combined different features from other studies, 
which has enhanced performance of YOLOV4 with a low computation cost during infer-
ence. The features added in YOLOV4 architecture are categorized into two methods 
called Bag of Freebies(BOF) and Bag of Specials(BOS). The BOF and BOS are applied 
both in the backbone and detector modules of YOLOV4 architecture. In the BOS part, 
spatial pyramid pooling (SPP) is tightly coupled with the backbone network to improve 
receptive field sizes of detection layer feature maps. BOF mostly comes from data aug-
mentation techniques such as Mosaic, CutMix, and self-adversarial training (SAT). The 
detection heads of YOLOV4 are similar to YOLOV3 with three detection feature maps, 
which are generated through a concatenation of feature maps at different levels of con-
volution operation. Figure 5 shows the detailed network architecture of YOLOV4.

Modified YOLOV3 and YOLOV4 architectures

The original models of YOLOV3 and YOLOV4 were trained and evaluated using Ima-
genet, Pascal VOC [54], and MS COCO [55] datasets. These datasets contain natural 
images with objects far bigger than malaria parasites in microscopic images. The orig-
inal models of YOLOV3 and YOLOV4, without modifying network architectures and 
hyperparameter optimization, achieve low performance in detecting small objects such 
as malaria parasites.

In this study, we have modified the original YOLOV3 network architecture to obtain 
two different architectures, which we call YOLOV3-MOD1 and YOLOV3-MOD2. In 
YOLOV3-MOD1, we have changed the shallow feature map scale to 104 × 104 , which 
improves the detection of P. falciparum compared with the original YOLOV3 model, 
which has bigger receptive fields than the P. falciparum size. Figure 6 shows the network 
structure of YOLOV3-MOD1. As shown in the figure, the modified YOLOV3-MOD1 
has detection layer feature maps of size 13× 13, 26× 26 , and 104 × 104 . This modified 
multi-scale feature map extracts more robust features for P. falciparum detection with a 
minimal added computational cost.

In YOLOV3-MOD2, we have added a fourth detection layer into the existing three 
detection layers of the original YOLOV3 model. The added layer increases the perfor-
mance of YOLOV3 for small object detection since a short connection of deeper fea-
tures with shallow features enhances the fine-grained feature discerning ability of the 
detection layers. The proposed YOLOV3-MOD2 model is shown in Fig. 7. It has four 
detection feature maps with size 13× 13, 26× 26, 52× 52 , and 104 × 104 . We have 
also added three additional anchor box sizes for the newly added detection layer. We 
have used K-means clustering algorithm to generate nine new anchor box sizes for 
YOLOV3-MOD1, and 12 new anchor box sizes for YOLOV3-MOD2 based on ground 
truth bounding box sizes from our malaria dataset. These two modified YOLOV3 
models improve the performance of P. falciparum detection compared to the original 
YOLOV3 model. Performance analysis of these models is given in detail in “Results” 
section. YOLOV3-MOD2 has better detection accuracy than YOLOV3-MOD1 but at 
the cost of reduced detection speed during inference time.
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Similarly, a modified YOLOV4 model, which is called YOLOV4-MOD hereafter, is 
obtained by adding a fourth detection layer into the existing YOLOV4 network archi-
tecture. The added layer enables the YOLOV4-MOD model to obtain robust geomet-
ric features concatenated with deeper level features using PANet architecture [56]. By 

Fig. 5  Network architecture of YOLOV4
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adding this layer, we can obtain more comprehensive features that enhance the per-
formance of YOLOV4-MOD for small object detection. For this network architecture, 
we have generated 12 new anchor box sizes, which are evenly distributed to the four 
detection layers based on their size. YOLOV4-MOD is found to be the best perform-
ing model for P. falciparum detection in our experiments.

Training and hyper‑parameter optimization

In the training phase of the proposed malaria parasite detection models, we have used 
a pre-trained weight for each detection model by experimentally selecting the best pre-
trained weight using our malaria dataset. We have then re-trained the models to adapt 
to our malaria parasite detection task by fine-tuning these weights.

We have used Darknet Framework to train YOLO-based models (YOLOV3, 
YOLOV4, YOLOV3- MOD1, YOLOV3-MOD2, and YOLOV4-MOD). The training 
of these models was performed for 4000 iterations using stochastic gradient descent 
(SGD) method with Adam optimization algorithm. We have used an initial learning 
rate of 0.001, a batch size of 64 with subdivision 32, and a momentum of 0.9 with a 
weight decay of 0.0005. The learning rate was reduced by multiplying it by 0.1 at 3200 

Fig. 6  Architecture of YOLOV3-MOD1
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and 3600 training iterations. Pre-trained weight files using ImageNet and MS COCO 
[55] data sets were fine-tuned using our malaria dataset for YOLOV3 and YOLOV4 
based models, respectively. We have trained YOLO-based models using input image 
sizes of 416× 416 and 608× 608 . During the training phase of these models, multi-
scale training was enabled by changing the input resolution in the range (320× 320) 
to ( 896× 896) every ten training iterations on the fly. This enables YOLO-based mod-
els to detect objects at different image resolutions. We have used modified anchor 
box sizes generated using K-means clustering algorithms based on ground truth 
bounding box sizes obtained from our malaria dataset. For YOLOV3, YOLOV4, and 
YOLOV3-MOD1 models, we have used nine new anchor box sizes. Similarly, for 

Fig. 7  Architecture of YOLOV3-MOD2
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YOLOV3-MOD2 and YOLOV4-MOD models, we have generated 12 new anchor box 
sizes which are evenly distributed to detection layers as per their size.

Another hyper-parameter that has been optimized is a threshold value for intersection 
over union (IOU), which is object detection model evaluation metrics. The IOU quan-
tifies how much the ground truth annotation of an object overlaps with its predicted 
bounding box by a model. It is given by the following equation.

where A is the ground truth box of an object, and B is predicted bounding box by object 
detection model. The IOU value is compared with a pre-defined hyper-parameter called 
IOU threshold to determine whether the predicted bounding box is a true positive class 
(i.e., in our study P. falciparum) or a false positive. If the IOU value is greater than the 
threshold value, the predicted bounding box is classified as true positive (P. falciparum); 
otherwise, it is classified as false positive. The selection of IOU threshold value affects 
the mean average precision value of all the studied models. Therefore, selecting an opti-
mal IOU threshold value for P. falciparum detection is necessary to obtain the best 
possible results in terms of true positives and false positives. We have experimentally 
selected an optimal IOU threshold value of 0.3 in this study.

We have also tuned different hyper-parameters of Faster R-CNN and SSD models 
empirically based on their default configuration in Tensorflow Object detection API. We 
have experimentally selected Inception-v2 as a feature extractor for both Faster R-CNN 
and SSD models, which is pre-trained on MS COCO dataset. For Faster R-CNN, we 
have selected aspect ratios of 1:1, 1:2 and 2:1, and scales of [0.1, 0.15, 0.2, 0.25] since the 
default anchor box sizes are much bigger than the size of malaria parasite in microscopic 
images. We fine-tuned a pre-trained Faster R-CNN model using our malaria dataset 
with an initial learning rate of 0.001, which is reduced by 0.1 factor at training iterations 
of 65,000 and 85,000 and optimized using momentum SGD. We trained Faster R-CNN 
model for a total of 100K iterations. For SSD model, we have used a modified minimum 
scale of 0.1 and a maximum scale of 0.9 to generate suitable anchor box sizes for our 
malaria dataset. We trained SSD with 300× 300 input image size. We have carried out 
additional experiments to select optimal initial learning rate of 0.001 with a batch size 
of 24, and RMSProp optimizer to train the SSD model for 100K iterations. For both SSD 
and Faster R-CNN models, we adopted a drop out unit with a value of 0.5 to overcome 
the problem of over-fitting. The experiments were conducted on Google Colab cloud 
service with Tesla T4 GPU and 12  GB GDDR5 VRAM for all P. falciparum detection 
models.
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