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Background
Somatic mutations can occur in the DNA of a single cell in an individual, and with subse-
quent clonal expansion, lead to somatic mosaicism. Moreover, somatic single nucleotide 
variants (SNVs) are the most common form of somatic variants. Due to their association 
with cancer and rare diseases [1, 2], growing interest in the detection of these variants 
has led to the development of case–control matched and unmatched somatic variant 
calling tools [for review, see [3]]. However, the lack of truth datasets to accurately assess 
variant calling has increased the usage of somatic variant simulation to validate and 
benchmark these methods.
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evaluation, where SomatoSim summarizes the simulation results.
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Currently, there are two general approaches to simulating somatic variants in next-
generation sequencing (NGS) data. In the first approach, somatic variants are simulated 
by generating entirely synthetic reads based on a reference genome. The main limitation 
of this approach is that error profiles resulting from real sequencing experiments cannot 
be accurately represented and can only be estimated. In the second approach, experi-
mentally generated reads from BAM files are used to create simulated somatic variants. 
Depending on the specific simulation tool, this second approach can be implemented in 
a variety of ways including creating an admixture of multiple BAM files with known het-
erozygous sites or directly introducing simulated variants into the reads of a BAM file [4, 
5]. Directly introducing variants into experimentally generated reads not only preserves 
error profiles, but also facilitates the study of a large number of variants across a range 
of VAFs and sequencing depths [5]. However, there is still a need for a tool that enables 
precise simulation of somatic SNVs with a greater degree of customizability.

To address this need, we developed SomatoSim, a simple to use tool that provides 
nucleotide-level specification for simulated SNVs in experimentally generated reads and 
provides detailed output reports to document the results. Requiring only a BAM file and 
a BED file, SomatoSim provides the user precise control over where to simulate SNVs, 
which VAF values to simulate, and the desired depths of coverage. Further, SomatoSim 
is the only tool that allows the users to set specific parameters such as a read mapping 
quality (MQ) threshold, a position base quality (BQ) threshold, and a minimum distance 
between randomly simulated SNVs, enabling the generation of highly specific datasets 
that suit individualized user needs. The ability to define a MQ or BQ threshold allows 
the users to avoid simulating variants in positions with low MQ and BQ scores, as such 
scores may indicate systematic errors and bias occurring in sequencing or mapping [6]. 
Additionally, SomatoSim introduces simulated SNVs directly into the BAM file reads, 
preserving the real sequencing environment and experiment specific error. Moreover, 
SomatoSim models the original strand distribution of a position selected for simulation 
and mutates reads to reflect the strand ratio of that position. This is important as local 
mapping can lead to strand bias in a given position [7]. Simulating SNVs with uniform 
or completely random strand distributions may not accurately reflect the true mapping 
bias at a given position. Finally, SomatoSim minimizes pre and post-simulation workload 
for the user, as it requires little set-up, is highly flexible with the input data, and pro-
vides extensive reports on the simulation results. Through these features, SomatoSim 
addresses the need for a user-friendly somatic variant simulation tool that enables pre-
cise, nucleotide-level, simulated SNV customization in experimentally generated reads.

Implementation
SomatoSim works in three main stages: a variant selection stage, a variant simulation 
stage, and a variant evaluation stage (Fig. 1). In the variant selection stage, genomic posi-
tions where variants will be introduced are selected from the input BED file. In the vari-
ant simulation stage, reads associated with the selected positions are mutated and a new 
BAM file is generated. Finally, in the variant evaluation stage, the results of the variant 
simulation stage are analyzed and reported to the user.
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Variant selection

There are two distinct variant selection methods: random variant selection and user-
specified variant selection. For random variant selection, a single genomic position is 
randomly chosen from a genomic range in the input BED file. Following this selection, 
a random variant allele fraction (VAF), whose upper and lower bounds are defined by 
the user, is assigned to that position. The depth of coverage and raw allele counts are 
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Fig. 1  Schematic overview of the SomatoSim workflow
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then computed for that position using SAMtools [8] mpileup with the input MQ and 
BQ settings. From the allele counts, an observed genotype is determined, and the posi-
tion is randomly assigned a variant allele. Finally, the integer number of reads that must 
be mutated to achieve the desired VAF is calculated as the product of the assigned VAF 
and coverage. The limitation of this approach is that the lowest possible simulated VAF 
and the resolution of possible VAFs are dependent on the depth of coverage in the user’s 
input BAM file.

For user-specified variant selection, the user can specify single genomic positions, a 
desired VAF for every position, and a desired variant allele for every position. Somato-
Sim will automatically detect this information in the BED file and enter the user-speci-
fied variant selection mode. The process for user-specified variant selection is largely the 
same as the process for random variant selection; however, the user-specified VAF value 
and user-specified variant allele are assigned to its corresponding position in the BED 
file.

For both methods, potential positions are checked for several criteria to determine if 
they are suitable for variant simulation. First, positions that already have multiple alleles 
(above the user input BQ and MQ) are not considered for variant simulation. Second, if 
a target coverage and coverage tolerance are specified by the user, only positions within 
the target coverage range are retained. Third, the number of bases between potential 
positions must be greater than or equal to the minimum separation value specified by 
the user. In user-specified variant selection, a specified variant allele must be different 
than the observed genotype. Additionally, SomatoSim checks if the calculated number 
of reads to mutate for a position is greater than zero. This is calculated as the product of 
the coverage and associated VAF, rounded to the nearest whole number. Positions that 
require zero reads to be mutated after rounding are not selected. Positions that pass the 
user input criteria are added to a list of genomic positions where variants will be intro-
duced, while positions that do not pass the criteria are not considered for simulation.

Variant simulation

In the variant simulation stage, SomatoSim builds a bank of reads to mutate, writes vari-
ants to those reads, and generates a new BAM file with the simulated variants. There are 
two main processes in the variant simulation stage: read selection and read mutation.

In the read selection process, reads that will be mutated are selected for every genomic 
position chosen in the variant selection stage. Several criteria are assessed to ensure 
that the read is suitable for mutation (Fig.  1). First, the read must be properly paired 
and mapped and must not be a secondary read. Second, the read MQ and the allele BQ 
in the read must be above the input threshold values. Last, a read can be selected only 
once and cannot be re-selected for variant simulation in another position. This is to min-
imize the generation of low-fidelity reads, as multiple real variants occurring within a 
single short sequencing read (< 150  bp) are expected to be uncommon [9, 10] (Addi-
tional file 1: Table S1). Also during the read selection process, SomatoSim models the 
strand distribution of the real data at a given position so that the strand distribution of 
variant reads reflects the strand distribution of the original reads at that same position.

During the read mutation process, SomatoSim creates a new BAM file containing the 
simulated variants. In this step, a read selected for mutation is replaced with the same 
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read but containing the variant allele. The reads are not realigned, as we observed that 
> 99.5% of the mutated reads correctly re-mapped to the same location (Additional file 1: 
Table S1). With this approach, unexpected changes in coverage and VAF are minimized, 
the total run time is reduced, and the read and the variant allele retain their original read 
MQ and BQ, respectively. However, the < 0.5% of mutated reads that do not correctly 
re-map present a limitation of this method and may be an important consideration for 
researchers, especially when examining regions with high sequence similarity content.

Variant evaluation

The variant evaluation stage of SomatoSim analyzes and summarizes the results of the 
variant simulation stage by providing the user with a suite of metrics to aid the interpre-
tation and validation of those simulation results (Fig. 1). In this stage, SomatoSim will 
count alleles in the new BAM file and check for any failed mutations. A failed mutation 
will occur if there are not enough criteria-passing reads at a given position to achieve a 
VAF that is within the input range of VAF values. If the resulting VAF at a failed muta-
tion position is not zero, then that position will still have some non-zero number of 
mutant reads in the new BAM file. Shortages in criteria-passing reads may occur if the 
target area is already saturated with other simulated variants, if the BAM file has a low 
depth of coverage, or if the MQ of the reads and the BQ of the bases are lower than the 
thresholds.

SomatoSim produces the following output files: a new BAM file containing the simu-
lated variants, the associated index file, a log file with detailed metrics from each stage 
of SomatoSim, and a BED formatted text file that reports relevant details for each simu-
lated variant. These files allow the user to evaluate the results of the simulation and ver-
ify that the desired mutations were truly introduced. The metrics in the log file include 
the number of positions selected for simulation, the average coverage of these positions, 
the required number of reads to mutate, the actual number of reads mutated, the final 
number of successfully simulated variants, the number of failed mutations, and the VAF 
and variant allele distributions for the final simulated variants. The metrics in the BED 
formatted text file include every position where simulated SNVs were introduced and 
the corresponding VAF, coverage, and variant allele.

Test data

The test BAM file is derived from the National Institute of Standards and Technology 
(NIST) Genome in a Bottle (GIAB) NA12878 HiSeq 300X BAM file [11]. The exon 
regions used in the test BED file were derived from the GENCODE Release 27 (GRCh37) 
comprehensive gene annotation gff3 file [12].

To create the test BED file, 12 exonic regions for each chromosome (including both X 
and Y) were randomly selected from the GENCODE exon annotation, resulting in a total 
of 159,709 positions. We used BEDtools pairToBed [13] to intersect the selected exonic 
regions with the GIAB BAM file and created a sub-sampled BAM file known to contain 
the exonic regions in the test BED file. The BAM file was then re-aligned to the hs37d5 
reference genome using SAMtools fastq and BWA-mem and had duplicate reads marked 
by Picard MarkDuplicates (http://broad​insti​tute.githu​b.io/picar​d).

http://broadinstitute.github.io/picard
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The test_BED_user.bed file contains 190 genomics positions and was created by 
randomly selecting a single genomic position from each genomic range in the BED 
file and assigning it a VAF and variant allele.

Results and discussion
General performance

To understand the general performance of SomatoSim, we simulated varying num-
bers of SNVs, from 10 to 10,000, in the provided test BAM file using the test BED 
file. With SomatoSim, the user can choose to down-sample the input BAM file to a 
desired average coverage value. This can help the user better target a specific depth 
of coverage for the simulated variants. For this case, we used random variant selec-
tion and set the VAF range from 0.01 to 0.10, down-sampled the BAM file to 100X, 
and targeted positions with 100X coverage. To evaluate the results of the simulation, 
we recorded the run time and the mutation yield. The mutation yield was defined as 
the ratio of the number of successfully simulated SNVs (Nsuccess) to the total number 
of SNVs defined for simulation (Nsimulate).

For these simulations, the provided test BED file contained a total of 159,709 
genomic positions. The average coverage of the down-sampled BAM file over the 
BED file positions was 100 (when using the default BQ threshold of 20), and the 
down-sampled BAM file contained a total of 118,795 reads.

Under these conditions, we observed a 100% mutation yield for values of Nsimulate 
between 10 and 1000 (0.006–0.626% of the total BED file positions). The muta-
tion yield first decreased below 100% when Nsimulate > 1000 and fell below 80% when 
Nsimulate = 5000 (3.131% of the total BED file positions) (Fig. 2 and Additional file 1: 
Table S2). Finally, when Nsimulate = 10,000 (6.261% of the total BED file positions), the 
mutation yield approached 60%. This decrease in mutation yield was expected and 

Fig. 2  Evaluation of mutation yield and run time for SomatoSim. Nsimulate is the total number of SNVs defined 
for simulation
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demonstrates a limitation of SomatoSim that results from only allowing a criteria-
passing read to be selected once for mutation. More specifically, as the number of 
simulated SNVs increases, the availability of criteria-passing reads decreases, thus 
limiting the total possible locations for simulating SNVs and increasing the number 
of failed mutations. As a result, the mutation yield is dependent on the percentage of 
positions in the BED file selected for mutation, the distribution of genomic intervals 
in the BED file, the BAM file’s depth of coverage, and the read length. Therefore, 
SomatoSim is not recommended for simulating SNVs in BAM files that were gener-
ated by long-read sequencing platforms.

To evaluate the speed of SomatoSim, we also examined the run time when using 
1 CPU and 1 GB of memory (Fig. 2). Expectedly, the run time increased as Nsimulate 
increased. This is due to increased time searching for criteria-passing positions dur-
ing the variant selection stage and criteria-passing reads during the variant simu-
lation stage. Other factors that may affect the run time include the quality of the 
BAM file, the size of the BAM file, the sequencing depth, and the distribution of the 
BED file positions across the BAM file. Under these considerations, SomatoSim was 
designed for use with exome or custom capture BAM files.

Comparison to existing variant simulation tools

As previously described, somatic variants are currently being simulated using two gen-
eral approaches. In the first approach, variants are introduced into a reference genome 
and synthetic reads containing the variants are generated using a variety of error mod-
eling techniques. The main limitation of this approach is that it fails to capture the 
instrument- and experiment-specific sequencing error of actual NGS data. Within this 
category are tools such as VarSim [14], SInC [15], DWGSIM (https​://githu​b.com/nh13/
DWGSI​M), and GemSim [16]. Furthermore, while these tools can all simulate somatic 
SNVs, they do not provide the user with the degree of customization that we think is 
important (Table 1). For example, VarSim currently restricts possible somatic variants to 
only those found in the COSMIC database [2], SInC only allows users to control the per-
centage of the reference genome that will contain simulated SNVs, and DWGSIM limits 
users to a single VAF for all simulated somatic SNVs. In this category, GemSim is most 
similar to SomatoSim insofar as GemSim allows users to specify the variant allele and 
VAF for each position in an extra input file.

In the second approach to simulating somatic variants, variants are introduced into 
experimentally generated reads, eliminating the need for artificial error modeling. 
Within this category are tools such as tHapMix [17], Xome-Blender [4], and BAMSur-
geon [5]. Although tHapMix has a great number of features to simulate tumor character-
istics, including clonal evolution simulation, it limits the potential SNV simulation sites 
to those already identified in an input VCF file and does not allow users to specify an 
exact VAF for each simulated SNV.

Xome-Blender, which simulates somatic variants through a method of BAM file sub-
sampling and mixing, allows users to specify the number of SNVs to simulate, but not 
the precise positions. In this category, BAMSurgeon is most similar to SomatoSim, as 
it generates simulated variants by directly modifying reads in an input BAM file and 
allows users to input another file to specify the variant allele and VAF for each position. 

https://github.com/nh13/DWGSIM
https://github.com/nh13/DWGSIM
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The customizability features of SomatoSim extend further and allow the user to define 
not only the precise position, variant allele, VAF, and coverage for SNVs, but also the 
distance between randomly simulated SNVs and the MQ and BQ threshold values for 
SNVs. Additionally, SomatoSim has a built-in down-sampling feature to simplify any 
BAM file pre-processing and streamline the generation of many simulated datasets with 
different depths of coverage. SomatoSim also automatically models the (forward and 
reverse) strand distribution of a given position to ensure that the strand distribution of 
the reads containing the simulated variant reflects the original strand distribution. This 
is especially important because a uniform or random strand distribution may not accu-
rately capture the true sequencing environment and may also affect downstream var-
iant calling tools that account for the strand distribution when making a call. Finally, 
unlike BAMSurgeon, SomatoSim does not re-align reads and is thus able to minimize 
unexpected changes in coverage and VAF while greatly improving run time. When using 
the test_BED_user.bed file, the test BAM file, the default input options for SomatoSim, 
and the similar corresponding options for BAMSurgeon, we found that SomatoSim fin-
ished in approximately 44 s while BAMSurgeon finished in approximately 56 min. This 
improvement in run time facilitates the generation of simulated datasets without sub-
stantial time and resource investment.

Case study

To demonstrate usage of SomatoSim, we used the provided test data BAM and BED 
files to simulate 1,000 SNVs from 0.01 to 0.10 VAF at a 100X target coverage. During 
the read selection process, a total of 5,981 positions were checked as potential simula-
tion positions before all 1,000 desired positions that passed the user input criteria were 
selected. The “--verbose” option details positions that did not pass the user input criteria 
and were not selected. For this example, 282 positions already had an existing variant, 
4,255 positions did not meet the position coverage criteria of 100X coverage with the 
selected 10% coverage tolerance option (“--coverage-tolerance”), and 441 positions were 
not separated from a previously selected position by at least one position (Table 2). Since 
SomatoSim checks if the calculated number of reads to mutate for a position is greater 
than zero, three positions that would have required zero reads to be mutated (after 
rounding) were also not selected. Users can use this report to determine the stringency 
of the input parameters. For this case study simulation, the number of positions that 
do not pass the criteria could potentially be decreased by increasing the coverage toler-
ance. For those 1000 selected positions, a total of 5,294 reads were selected and mutated, 
resulting in variants with VAF values between 0.01 and 0.10 in our 100X down-sampled 

Table 2  Number of positions that failed the criteria for position selection

Failed criterion Number 
of positions

No existing variant 282

Within target coverage 4255

Minimum SNV separation distance 441

Number of reads to mutate is greater than zero 3
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output BAM file. The total run time using 1 GB of memory and 1 CPU was approxi-
mately 3.7 min (Additional file 1: Table S2).

We then used this simulated dataset to illustrate how SomatoSim can be used for eval-
uating the performance of variant calling tools. In this case, we examined the sensitiv-
ity of LoFreq [18], a widely used somatic variant caller, across a range of coverages and 
VAFs using several BAM files generated by SomatoSim. We used SAMtools to merge 
the 100X BAM file described above with itself and generate 200X, 400X, 600X, and 
800X BAM files, all containing 1,000 simulated SNVs with VAFs between 0.01 and 0.10. 
Finally, we ran LoFreq with the recommended default settings and computed sensitiv-
ity as the ratio of the number of simulated SNV calls to the total number of simulated 
SNVs.

As expected, we observed a general increase in sensitivity as the coverage and VAF 
increased. However, we found that for simulated SNVs with very low-level VAFs 
(VAF < 0.01), the sensitivity generally did not increase with an increase in coverage, sug-
gesting the limit of detection for LoFreq (Fig. 3a and Additional file 1: Table S3). Under-
standing the limit of detection will enable researchers to choose the most appropriate 
variant calling tool for their NGS projects.

When we examined the change in sensitivity (ΔSEN) due to increasing the depth of 
coverage, we found that for simulated SNVs with VAF ≥ 0.05, increasing the coverage 
from 100 to 200X resulted in a greater improvement in sensitivity than when increas-
ing the coverage from 200 to 400X (Fig.  3b). Additionally, for simulated SNVs with 
VAF < 0.03, increasing the coverage from 200 to 400X resulted in a greater improvement 
in sensitivity than when increasing the coverage from 100 to 200X.

More broadly, we observed the greatest improvements in sensitivity from 100 to 400X 
(Fig.  3b). The sensitivity for simulated SNVs with 0.03 ≤ VAF < 0.04 increased by 0.93 
when the coverage increased from 100 to 400X. We also found that increasing the cov-
erage from 400 to 800X only improved the sensitivity by 0.07. Furthermore, all simu-
lated SNVs between 600 and 800X coverage with a VAF ≥ 0.03 were called by LoFreq. 
This suggests that sequencing above 600X coverage is not necessary for calling SNVs 
with VAF ≥ 0.03 when using LoFreq. Similarly, for all simulated SNVs with VAF ≥ 0.04, 

VAF
ΔSEN 

(100X, 200X)
ΔSEN 

(200X, 400X)
ΔSEN 

(400X, 600X)
ΔSEN 

(600X, 800X)

0-0.01 0.00 0.00 0.05 0.00

0.01-0.02 0.01 0.13 0.14 0.11

0.02-0.03 0.03 0.45 0.24 0.14

0.03-0.04 0.29 0.64 0.07 0.00

0.04-0.05 0.63 0.32 0.01 0.00

0.05-0.06 0.62 0.08 0.00 0.00

0.06-0.07 0.43 0.00 0.00 0.00

0.07-0.08 0.07 0.00 0.00 0.00

0.08-0.09 0.04 0.00 0.00 0.00

0.09-0.10 0.01 0.00 0.00 0.00

0.10-0.11 0.00 0.00 0.00 0.00

a b

Fig. 3  Evaluation of sensitivity in LoFreq using simulated SNVs generated by SomatoSim. a Sensitivity curve 
for different depths of coverage and VAFs tested. b Heatmap of the change in sensitivity (ΔSEN) across depth 
of coverage. Green indicates substantial improvement in sensitivity and red indicates no improvement
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the sensitivity increased only by 0.01 when the coverage increased from 400 to 800X 
(Fig. 3b). This indicates that increasing coverage above 400X is most beneficial for call-
ing SNVs with 0.01 ≤ VAF < 0.03 when using LoFreq.

In this case study, we used LoFreq to call simulated SNVs from a dataset generated 
by SomatoSim and analyzed how sequencing depth and VAF affect the variant calling 
performance. In doing so, we have also demonstrated how simulated datasets generated 
by SomatoSim can be used to examine the strengths and weaknesses of a variant calling 
tool and provide a means for benchmarking the performance of variant calling tools, 
algorithms, and pipelines.

Conclusion
In this paper, we report SomatoSim, a tool for simulating somatic SNVs in experimen-
tally generated NGS data. With SomatoSim, we have addressed the need for a user-
friendly tool that can provide users with the customizability and flexibility to fine-tune 
various somatic SNV properties, allowing for the precise simulation of SNVs for down-
stream analyses.

Using SomatoSim to generate a dataset with simulated SNVs enables researchers to 
evaluate the strengths and weaknesses of variant calling tools and benchmark variant 
calling performance. By doing so, researchers developing novel somatic variant call-
ing methods can understand how their new method compares with existing methods. 
Additionally, researchers implementing somatic variant calling pipelines can determine 
which tools would be most appropriate for their studies. Finally, by understanding how 
factors like VAF and sequencing depth affect variant calling, researchers can better tailor 
their sequencing experiments for their somatic variant calling pipelines.

Through an example simulation and detailed case study, we demonstrated how Soma-
toSim can be used to generate simulated SNVs in experimentally generated NGS data 
to evaluate the performance of a variant calling tool. The flexibility, precision, and ease 
of use provided by SomatoSim enables the efficient generation of simulated datasets for 
studying somatic SNVs and improving somatic SNV calling methods.

Availability and requirements
• Project name SomatoSim.

• Project home page https​://githu​b.com/Biese​ckerL​ab/Somat​oSim
• Operating system Platform independent.
• Programming language Python 3.
• Other requirements Python v3.6.8, NumPy v1.16.2, Pandas v0.25.1, Matplotlib v3.1.1, 

Pysam v0.15.0, SAMtools v1.9
• License This software is a United States Government Work. Anyone may use the 

software on a worldwide and royalty-free basis for any purpose and anyone may repro-
duce and prepare derivative works without restriction. Although all reasonable efforts 
have been taken to ensure the accuracy and reliability of the software, the National 
Human Genome Research Institute (NHGRI), National Institutes of Health (NIH) and 
the U.S. Government do not and cannot warrant the performance or any results that 
may be obtained by using this software. NHGRI, NIH and the U.S. Government disclaim 

https://github.com/BieseckerLab/SomatoSim
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all warranties as to performance, merchantability or fitness for any particular purpose. 
No indemnification is intended or provided by the US government.

This is software was developed by Marwan A. Hawari, Celine S. Hong, and Leslie G. 
Biesecker at the National Human Genome Research Institute (NHGRI), National Insti-
tutes of Health (NIH). Please include proper attribution of NHGRI as the developer 
of this program and include a link to the following [https​://githu​b.com/Biese​ckerL​ab/
Somat​oSim] in all publications and other public disclosures that reference the program 
and/or include data or research results that were generated using the program.

• Any restrictions to use by non-academics: None.

Supplementary Information
The online version contains supplementary material available at https​://doi.org/10.1186/s1285​9-021-04024​-8.

Additional file 1: Table S1. Evaluation of variant read re-alignment. Table S2. General performance metrics of 
SomatoSim. Table S3. Sensitivity values from the case study.
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