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Abstract

Background: mRNA interaction with other mRNAs and other signaling molecules determine different
biological pathways and functions. Gene co-expression network analysis methods have been widely used to
identify correlation patterns between genes in various biological contexts (e.g., cancer, mouse genetics, yeast
genetics). A challenge remains to identify an optimal partition of the networks where the individual modules
(clusters) are neither too small to make any general inferences, nor too large to be biologically interpretable.
Clustering thresholds for identification of modules are not systematically determined and depend on user-
settable parameters requiring optimization. The absence of systematic threshold determination may result in
suboptimal module identification and a large number of unassigned features.

Results: In this study, we propose a new pipeline to perform gene co-expression network analysis. The
proposed pipeline employs WGCNA, a software widely used to perform different aspects of gene co-
expression network analysis, and Modularity Maximization algorithm, to analyze novel RNA-Seq data to
understand the effects of low-dose *°Fe ion irradiation on the formation of hepatocellular carcinoma in mice.
The network results, along with experimental validation, show that using WGCNA combined with Modularity
Maximization, provides a more biologically interpretable network in our dataset, than that obtainable using
WGCNA alone. The proposed pipeline showed better performance than the existing clustering algorithm in
WGCNA, and identified a module that was biologically validated by a mitochondrial complex | assay.

Conclusions: We present a pipeline that can reduce the problem of parameter selection that occurs with the
existing algorithm in WGCNA, for applicable RNA-Seq datasets. This may assist in the future discovery of novel
mMRNA interactions, and elucidation of their potential downstream molecular effects.
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Background

RNA-Seq, an approach to genome profiling that uses deep-
sequencing technologies, has become an increasingly com-
mon technique to understand biological phenomena at the
molecular level. This method generates quantitative count
data on thousands of different mRNAs within each experi-
ment. Comparing the expression of genes between different
experimental conditions identifies hundreds of differentially
expressed genes, but translating these lists into key func-
tional distinctions between conditions has proved challen-
ging. Since there are thousands of genes in each sample,
many researchers filter their gene lists based on different
criteria, in order to extract meaningful biological informa-
tion. One such filtering criteria is based on differential gene
expression analysis. Differential gene expression analysis
has traditionally been used to determine genes that are sta-
tistically significantly differentially expressed between differ-
ent experimental conditions based on different metrics,
such as non-parametric generalized linear models, inde-
pendent sample t-tests, and log, fold changes [1]. Even
though differential gene expression analysis is one of the
most common methods for identifying disease pathways in
various experimental conditions, it does not take into con-
sideration the interactions of genes that work as a system
to coordinate cellular functions. As a result, using only dif-
ferential gene expression analysis would limit mechanistic
interpretations of the data. mRNAs never act in isolation,
but rather in concert with each other and other signaling
molecules to define a particular biological pathway and
function. Interactions of these signaling molecules can be
viewed as networks of interconnected genes and their part-
ners, that are up/down regulated under certain chemical or
environmental conditions.

Many algorithms that utilize network theory have
found applications in identifying and analyzing these
molecular interactions [2—4]. Correlation networks are
an example of such algorithms, and describe the co-
expression of many genes in response to changing con-
ditions, which can ultimately provide information about
the underlying molecular mechanisms or biochemical
pathways [5, 6]. In particular, the Weighted Gene Co-
expression Network Analysis (WGCNA) method, which
is provided as an R software package, has been widely
used for performing different aspects of weighted correl-
ation network analysis [7]. The co-expression networks
used in WGCNA are constructed based on correlations
between the quantitative measurements of each gene,
and can be described by an # x m matrix X = [x;]. Here
the row indices (i = 1,...,n) correspond to different genes,
and the column indices (j = 1,...,m) correspond to differ-
ent sample measurements. While co-expression net-
works integrate systems-level information to provide a
mechanistic interpretation of the dataset, detecting mod-
ules (clusters) of closely related mRNAs within the co-
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expression networks has been a challenging problem.
Significant pathways that are identified by different clus-
tering methods often yield tens or hundreds of genes,
making biological interpretation and validation challen-
ging. Further, many clustering techniques such as Dy-
namic Tree Cut utilized in WGCNA rely on user-
settable parameters, including minimum module size,
and are sensitive to cluster splitting [8, 9]. While many
of these module detection methods perform optimally
on some datasets, they may fail to effectively detect pat-
terns in other datasets. A practical challenge in terms of
discovering modules and determining the total number
of modules is the identification of the optimal number
of modules in the network, such that the individual
modules are neither too large, preventing meaningful in-
terpretation, nor too small, allowing little to no general
inference. In general, characterizing and detecting com-
munity structures within networks has been a challenging
problem in the study of networks [10-12]. One of the
most commonly used metrics to investigate community
structure is a quality index for clustering known as Modu-
larity [13-15]. In spite of its popularity, Modularity does
have drawbacks. The resolution limit (RL) problem is one
of the most significant drawbacks, referring to the prob-
lem of maximizing Modularity while hindering one’s
ability to detect communities that contain fewer links [16].
To address this problem, several approaches have been in-
troduced [17-20]. Of these approaches, Modularity
Maximization, which utilizes modularity density measures,
has been shown to eliminate rather than merely reduce
the RL problem in a wide range of networks [20].

In this study, we propose a pipeline using Modularity
Maximization [20] to effectively detect and evaluate
modules from co-expression networks obtained from the
adjacency matrix, utilizing WGCNA [4, 7]. We employ
the above technique to characterize the effects of *°Fe ir-
radiation on mice livers, in order to study the potential
consequences of deep space travel. In particular, astro-
nauts will be exposed to high-charge, high-energy ions
(HZE) during deep space travel. Even at low doses, ex-
posure to HZE can lead to cancer [21, 22]. However, the
effects of ions found in the deep space environment on
cancer formation is not well understood since very few
people have been exposed to space irradiation. As hu-
man exploration into deep space increases in the future,
characterization of and intervention in irradiation-
induced diseases will become more important. Previous
studies have shown that irradiation of mice with low-
dose HZE, specifically *°Fe ions, significantly increases
the incidences of hepatocellular carcinoma (HCC) [23,
24]. HCC is the most common type of liver cancer, and
its formation has mainly been studied in the context of
terrestrial risk factors such as chronic hepatitis B/C virus
infection, exposure to aflatoxin, obesity, smoking, and
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Table 1 Results of differential gene expression analysis of RNA-Seq data from *®Fe Irradiated and non-Irradiated control mice livers

at various time points analyzed using edgeR package.

Differentially Expressed Genes

Comparison Time Total # of Differentially Expressed Genes Up Regulated Down Regulated
*Fe Iradiated/Non-Irradiated Control 1 month 645 322 323

**Fe Irradiated/Non-Irradiated Control 2 months 914 637 277

*SFe Irradiated/Non-Irradiated Control 4 months 497 259 238

*Fe Irradiated/Non-Irradiated Control 9 months 704 498 206

**Fe Irradiated/Non-Irradiated Control 12 months 285 75 210

*°Fe Irradiated/Non-lrradiated Control Sum 3045 1791 1254

heavy alcohol consumption [25-27]. However, there is
limited knowledge of the effects of low-dose *°Fe ion ir-
radiation on the formation of HCC. To better understand
the molecular mechanisms of low-dose *°Fe induced
HCC, we used RNA-Seq to determine gene expression
changes in the hepatic micro-environment of **Fe ion
irradiated compared to non-irradiated control mice at 5
different time points post-irradiation. We hypothesized
that mitochondrial pathways could be significantly
affected, since mitochondria represent a substantial cel-
lular target volume (4-25% depending on the cell) [28].
In this manuscript, we will describe how WGCNA can
be integrated with Modularity Maximization to con-
struct co-expression correlation networks of differen-
tially expressed genes and detect modules using data
obtained from RNA-Seq.

Results

Differential gene expression analysis

Results of differential gene expression analysis are shown
in Table 1, which includes the total number of differen-
tially expressed genes at each time point, as well as
whether genes are up/down-regulated.

Feature selection

A total of 2273 unique differentially expressed genes were
identified in comparison between *°Fe irradiated and non-
irradiated controls. Genes that were statistically significant
with FDR <10 were used for downstream network ana-
lysis; 487 unique genes met the filtration criteria. The signifi-
cance cut off can be adjusted to a higher value if a researcher
decides to investigate more genes, depending on the study
goals, experimental conditions, and data variability.

WGCNA

We initially used the WGCNA Dynamic Tree Cut
algorithm [7] to identify modules within the selected
differentially expressed genes. Module identification with
this algorithm requires two parameters to be determined
prior to network construction: deepSplit, and minClus-
terSize. deepSplit can be either logical or an integer in

the range O to 4. It controls the sensitivity to cluster
splitting. Higher values result in smaller clusters. min-
ClusterSize represents the minimum number of genes
needed in a module to be considered a separate module.
Table 2 shows the results of WGCNA module identifica-
tion using different minClusterSize values, with a default
deepSplit value of 2. As minClusterSize increases, the
total number of modules decreases. These values produce
different types of networks with differing numbers of un-
assigned genes. If a gene does not belong to a specific
module, it is assigned to the Grey/Unassigned Module.

Table 2 WGCNA Results with Dynamic Tree Cut Algorithm:
deepSplit provides a rough control over the sensitivity to cluster
splitting. The higher the value (or if TRUE), the more and smaller
clusters will be produced. The Dynamic Tree Cut may identify
modules whose expression profiles are very similar. The
parameter minClusterSize allows one to control the minimum
number of genes in a module, helping to avoid having similar
clusters of few genes. As shown in the table, the lower values
of minClusterSize increase the Total Number of Modules'.
Moreover, as this number increases, the ‘Number of Genes in
Unassigned Module (Grey)" increases as well

WGCNA Results

minClusterSize deepSplit Total Number

Number of Genes in

of Modules Unassigned Module (Grey)
2 2 70 36
3 2 49 37
4 2 37 46
5 2 31 49
6 2 25 57
7 2 20 60
8 2 18 61
9 2 17 65
10 2 15 67
1 2 15 67
12 2 " 69
13 2 Nl 69
14 2 9 73
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The number of unassigned genes varied between 36 and
73 (shown in the last column of Table 2). At the same
time, the total number of modules needs to be within a
reasonable range, in order to be able to meaningfully in-
vestigate the relationship between genes; 70 different
modules each containing a few genes may not provide
meaningful information about these co-expression pat-
terns. In our dataset, networks with a total of 11-18 mod-
ules provided interpretable co-expression patterns for
further investigation, using pathway analysis tools as well
as experimental validation. However, these clustering pa-
rameters resulted in 61-69 unassigned genes, representing
~ 12-14% of the 487 selected highly significant features.

WGCNA with Modularity Maximization
To optimize the number and size of identified mod-
ules as well as reduce the number of unassigned
genes (~ 12-14%), we exploited the concept of Modu-
larity Maximization, to assist in finding community
structures, as an alternative to utilizing the Dynamic
Tree Cut algorithm employed in the standard
WGCNA pipeline. Dynamic Tree Cut relies on hier-
archical clustering, which is based on the relative dis-
tance between genes and samples. Modules are
detected by “cutting” these trees, which can lead to
many different small modules or a few large modules,
depending on the selection of the minClusterSize and
deepSplit parameters. Using Modularity Maximization,
we were able to identify modules without the need to
set these parameters empirically. In particular, the
adjacency matrix with a soft threshold beta of 16
(corresponding to R* =0.9) was first computed using
WGCNA, then a clustering algorithm based on
Modularity Maximization was used to automatically
find community structures in our dataset. We chose
the Modularity Maximization method, since the
metric of Modularity has been widely used to detect
and assess community structures in social and bio-
logical networks since its inception [20, 29-32].
Utilizing the modularity-based clustering algorithm to
identify modules, 14 modules were discovered, and only
14 individual genes were unassigned. The final modular-
ity score was Q =0.696, which is indicative of a strong
modular structure in the network. Figure 1 depicts the
14 modules in the network, and Table 3 shows the num-
ber of genes included in each module along with the
enriched molecular pathways, as discussed below.

Module validation and properties

To explore the biological relevance of the modules, each
module was investigated by Ingenuity Pathway Analysis
(IPA). Specifically, module 1 was shown to be significant
(-logio(p-value) = 1.3) in mitochondrial pathways, such as
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the Sirtuin Signaling Pathway, Mitochondrial Dysfunction,
and Oxidative Phosphorylation [31]. All the genes in-
volved in mitochondrial dysfunction in our dataset were
contained in module 1. In particular, Fig. 2 shows that 5
of these genes express different subunits of mitochondrial
complex I and III. To validate these results, we performed
an additional experimental technique to determine
whether complex I activity is reduced in response to *°Fe
irradiation. Complex I activity was observed to be de-
creased in response to exposure to *°Fe HZE ion across all
time points as measured by mitochondrial complex I en-
zyme activity (Fig. 3). The downstream effects of irradi-
ation on mitochondrial functions have been emphasized
[33], as mitochondria have been shown to occupy a sub-
stantial fraction of the cell volume [28]. Therefore, they
may be fairly easily targeted by irradiation as the *°Fe nu-
clei traverse the cell. The electron transport chain in the
mitochondrion is composed of five protein complexes (I-
V) that perform a series of oxidation-reduction reactions,
in which O, is the final electron acceptor and is reduced
to a water molecule. One of the consequences of this
process is the formation of reactive oxygen species (ROS),
which is thought to arise from the leakage of electrons,
specifically from complex I and III, and to a minor extent
complex II [34-36]. Using oxygen as the final electron ac-
ceptor causes mitochondria to consume about 90% of the
body’s oxygen but also become the richest source of ROS
[36—39]. The upregulation of mitochondrial genes shown
in Fig. 2, specifically in complex I and complex III, sug-
gests that leakage of electrons from these two complexes
results in increased Complex I and III enzyme activity.
This leads to further the overexpression of these genes in
response to “°Fe irradiation. Other modules could poten-
tially be validated in future experimental designs, involving
live animals and more fresh tissues. For example, module
2 can be tested for JAK/STAT signaling. STATs are ubi-
quitously expressed and mainly activated after stimulation
of cytokine receptors. STATs function in the nucleus, but
they are first activated in the cytoplasm and have then to
be transported into the nuclear compartment [40]. This
translocation can be assessed by indirect immunofluores-
cence. Additionally, STAT signaling can be experimentally
validated by pharmacologically inhibiting STAT pathways
with specific STAT inhibitors. Similarly, module 9 could
be tested for Endoplasmic Reticulum (ER) stress pathways.
Several molecular indicators of ER stress could be exam-
ined by Western Blots and/or proteomic analysis, which
could demonstrate increased or decreased phosphoryl-
ation of ER stress proteins.

Discussion

One of the current statistical challenges in identifying
co-expression patterns in RNA-Seq data is a robust de-
termination of the number and size of modules
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Fig. 1 Modularity Maximization Network. Modules identified by performing Modularity Maximization on the network obtained from WGCNA. The
module numbers on the network correspond to the modules shown in Table 3. A total of 14 genes were unassigned

appropriate, across a variety of datasets. The choice of
an appropriate clustering algorithm that yields the most
biologically interpretable networks has been studied
using different datasets and methods. For example, a
study has investigated Recursive Indirect-Paths Modular-
ity (RIP-M) for module detection in an RNA-Seq co-
expression network. Using an influenza vaccine response
study, the authors showed that RIP-M had higher cluster
assignment accuracy as compared to Newman Modular-
ity, and similar results to WGCNA [41]. We compared
WGCNA, RIP-M, and the combined WGCNA-M
method based on the Rand Index (RI) [29]. In calculat-
ing the RlIs, we considered every unassigned gene, as a
cluster by itself, since such genes are viewed as not being
similar to each other. The RIs for WGCNA-M versus
WGCNA, WGCNA-M versus RIP-M, and WGCNA ver-
sus RIP-M were 0.909, 0.892, 0.936, respectively. The
numbers of genes unassigned to a cluster for WGCNA-
M, WGCNA, and RIP-M were 14, 108, and 0, respect-
ively. All of the 14 genes which were unassigned in
WGCNA-M were also unassigned in WGCNA. Based
on our observed RIs, RIP-M and WGCNA were the

most similar when applied to our dataset. Like WGCNA,
RIP-M also requires the parameter minModuleSize
(minClusterSize) as well as an additional parameter,
maxModuleSize, which specifies a target range of mod-
ule sizes. All genes assigned to a module below minMo-
duleSize are then grouped together and merged into a
further module. Modules above maxModuleSize are split
in subsequent iterations to arrive at the target range.
RIP-M forces all genes to be assigned to a cluster; the 14
genes unassigned by WGCNA and the WGCNA-M ap-
proach for our dataset were placed into cluster 1 by RIP-
M. Community detection method selection is an import-
ant issue in cluster analysis and may greatly influence
the results of a study and their biological interpretability.
Therefore, it is imperative to select the most suitable
method for each specific experimental design, and for
the nature of the data being investigated. A complete list
of gene cluster-assignments for each method is provided
in Supplemental Table 1.

Utilizing Modularity Maximization to detect commu-
nity structures provides an additional way to construct a
network and explore various RNA-Seq datasets;
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Pathway Analysis

Module Genes Molecular Pathways Identified as Enriched (p-value < 0.05) in Each Module

# #

1 28 Sirtuin Signaling Pathway, Mitochondrial Dysfunction, Oxidative Phosphorylation, LXR/RXR Activation, FXR/RXR Activation, NAD
Biosynthesis IlI, Oleate Biosynthesis Il, Histamine Degradation

2 1 IL-9 Signaling, Transcriptional Network in Embryonic Stem Cells, Mitotic Roles of Polo-Like Kinase, GM-CSF Signaling, Growth Hor-
mone Signaling, JAK/STAT Signaling, STAT3 Pathway

3 5 No Pathway. 3 genes in this module are not Identified. Specifically, Gm28437, Gm28661, Gm29216. The other two are mir-122
(microRNA 122) and Gm10925 (ATP Synthase FO subunit 6)

4 65 Acyl-CoA Hydrolysis, Stearate Biosynthesis |, Pregnenolone Biosynthesis, Histidine Degradation VI, Ubiquinol-10-Biosynthesis, As-
paragine Biosynthesis |, a-tocopherol Degradation, LSP/IL-1 Mediated Inhibition of RXR Function, FXR/RXR Activation

5 16 Toll-like Receptor Signaling, Heme Degradation, IL-12 Signaling and Production in Macrophages, Acute Phase Response Signaling,
Granulocyte Adhesion and Diapedesis, NF-kB Signaling, Agranulocyte Adhesion and Diapedesis, Production of Nitric oxide and
ROS in Macrophages

6 80 Nicotine Degradation II, Glutathione-mediated Detoxification, Circadian Rhythm Signaling, LPS/IL-1 Mediated Inhibition of RXR
Function, Nicotine Degradation lI, Adipogenesis Pathway, PXR/RXR Activation, Melatonin Degradation |

7 2 No Pathway. Two genes (CYP26A1 and CYP26B1) are both part of cytochrome P450 family 26 subfamily A member 1 and
subfamily B member 1. They are involved in Pregnenolone Biosynthesis, Histidine Degradation VI, Ubiquinol-10 Biosynthesis and
RAR Activation

2 No Pathway. Two genes (ANGPTL8 and HES1). HEST is involved in Notch Signaling, VDR/RXR Activation.

9 21 Unfolded protein response, Protein Ubiquitination Pathway, eNOS Signaling, Glucocorticoid Receptor Signaling, Endoplasmic
Reticulum Stress Pathway (6 genes are heat shock proteins)

10 89 Acute Phase Response Signaling, IL-10 Signaling, IL-6 Signaling, Role of Macrophage, Fibroblasts and Endothelial Cells in Rheuma-
toid Arthritis, LXR/RXR Activation, B Cell Receptor Signaling, Altered T Cell and B Cell Signaling in Rheumatoid Arthritis, Hepatic
Cholestatis

11 8 No Pathway. 4 unidentified genes (Cm23935, Gm24187, Rn 18 s-rs5, Gm155644) and other 4 (Leucyl-tRNA synthetase 2, microRNA
6236, s-IRNA, I-rRNA)

12 14 No Pathway, basic helix-loop-helix family involved in Circadian Rhythm Signaling, Mir17hg, Small nuclear RNA (Snora57, Snora78)
and 10 unidentified genes.

13 69 Estrogen-mediated S-phase Entry, Cell Cycle Regulation, Chronic Myeloid Leukemia Signaling, a-tocopherol Degradation

14 63 NRF2-mediated Oxidative Stress Pathway, Endoplasmic Reticulum Stress Pathway, Unfolded Protein Response, Death Receptor

Signaling, RhoA Signaling, FXR/RXR Activation.

however, WGCNA-M is not limited to this application
domain, and can be applied to detect co-expression pat-
terns amongst other omics studies. Protein or lipids can
be linked together in networks via a defined functional
relationship in a similar fashion. Methodologically, MS-
based proteomics and lipidomics tend to have
consistency, and coverage issues [42—47] as compared to
RNA-based high throughput methods. As a result, some
network analysis methods as applied to proteomic data
may not capture the complexity and nuances underlying
biological processes, and alternative approaches may be
needed to complement the existing analytical tools.
Similar to any other analytical method, the network-
based WGCNA-M analysis method must be applied ap-
propriately based on the inherent quality and nature of
each dataset. This will allow us to gain robust biological
insight and decipher the unique patterns in our data
from which we can further understand the complexity
and coordinated function of the system being investi-
gated. In the current study, utilization of WGCNA with
Modularity Maximization resulted in the identification

of biologically interpretable and relevant modules, with-
out the need for parameter optimization.

Conclusions

In this study, we proposed a new pipeline that com-
bines the adjacency matrix notion of WGCNA with
Modularity Maximization to find modules that are in-
volved in specific biological pathways. To show the
validity of the identified modules, we conducted gene
enrichment analysis and experimental validation. Our
results showed that mitochondrial pathways that were
changed in response to irradiation were contained in
the same module. Further, our data indicates that
even after performing stringent feature selection fo-
cusing on significant genes (FDR <107 °), WGCNA-M
was still able to identify biologically relevant modules.
The use of the WGCNA Dynamic Tree Cut clustering
algorithm in our dataset resulted in a high number of
unassigned genes (61-69). On the other hand,
WGCNA-M reduced the number of unassigned genes
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lll/bc which also regulates Complex I. Figure was made using Ingenuity Pathway Analysis (IPA), (QIAGEN Inc,, Hilden, Germany)
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to 14 while maintaining an optimal number of mod-
ules/specific pathways. The proposed pipeline enables
the identification of network and community struc-
tures without requiring optimization of the minClus-

terSize and deepSplit parameters.

The increasing

number of high throughput genomic datasets, to-
gether with the use of appropriate network pipelines,
will enable researchers to efficiently investigate mo-
lecular mechanisms and pathways involved in differ-
ent disease processes.
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Methods

In this section, we describe the WGCNA combined with
Modularity Maximization for community detection pipe-
line used in the RNA-Seq dataset. Our evaluation strategy
was targeted to analyze data from an RNA-Seq experiment
of *°Fe irradiated and non-irradiated control mice liver
lobes, designed to characterize the microenvironmental
changes induced by HZE irradiation (similar to HZE ions
encountered in deep space travel,) and that lead to induc-
tion of HCC. Our aim is to detect modules (clusters of
genes) that are related by correlation across samples, and
differ between experimental conditions. The resulting co-
expression networks were analyzed using functional en-
richment analysis and experimentally validated.

Animal experiments and sample preparation
C57BL/6NCrl mice purchased from Charles River (Wil-
mington, MA) were used in this experiment. Tumor in-
duction studies and studies of molecular changes in the
irradiated tissues can only be conducted in whole animals.
Further, based on an extensive literature search and exam-
ination of studies previously approved by the institutional
animal care and use committees (IACUCs), computer
models or cell culture studies are not possible. The num-
bers of animals used were based on the expected numbers
of irradiation-related tumors that would develop if animals
were allowed to live out their lifespans. Power calculations
for numbers in this study are based on the chi-square test
for comparing two proportions, with a two-sided signifi-
cance level set at 0.05 at 80% power.

The serial sacrifice study included 15 male mice with 3
mice per time point at five time-points (30, 60, 120, 270,
and 360 days) post-exposure to HZE, specifically *°Fe ir-
radiation. Additionally, 15 mice were used as controls, at
the same time points, resulting in a total of 30 mice for
this study. The two groups were: 600 Me V/n *°Fe (0.2
Gy) and non-irradiated/sham-irradiated control. The
mice were shipped from the vendor to Brookhaven Na-
tional Laboratories (BNL) and housed at the BNL animal
facility until the time of irradiation at the NASA Space
Radiation Laboratory (NSRL). Following irradiation, the
animals were shipped to the UTMB Animal Resources
Center (ARC), quarantined for 1 month, and maintained
in the ARC for the duration of the experiment. Animals
were housed in sterile cages with free access to food and
water. Facilities at both BNL and UTMB are fully AAA-
LAC accredited, ensuring adequacy of animal care at
both animal facilities.

At each of the five time-points, 3 animals from each
group were randomly selected and euthanized using CO,
asphyxiation, as per current AVMA guidelines for euthan-
asia. Prior to euthanasia, animals were weighed and
weights recorded. Post euthanasia, tissues of the left lobe
of livers were collected, snap-frozen on either dry ice or
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liquid nitrogen, and stored at —80°C until tissues could
be extracted for RNA analysis. Livers were sampled by
taking two 40-pum thick slices using a cryotome at — 20 °C.

Acquisition of RNA-Seq data

Total RNA was isolated from the liver slices using RNA-
queous™ Total RNA Isolation Kit (ThermoFisher Scien-
tific, Waltham, MA), and rRNA was removed using the
Ribo-Zero™ rRNA Removal Kit (Illumina, San Diego,
CA), prior to library preparation with the Illumina Tru-
Seq RNA Library kit. Samples were sequenced in a
paired-end 50 base format on an Illumina HiSeq 1500.
FastQC was utilized for the quality evaluation of FASTQ
files [48]. All FastQC reports were examined prior to the
analysis of RNA-Seq samples. The total number of reads
used in analysis varied between 23 and 35 million. A
complete list of samples, and related reads information
is available in Table 4. Reads were aligned to the mouse
GRCm38 reference genome using the STAR alignment
program, version 2.5.3a, with the recommended EN-
CODE options [49]. The-quantMode GeneCounts op-
tion was used to obtain read counts per gene based on
the Gencode release M14 annotation file [50].

Differential gene expression analysis

Raw RNA-Seq data of 51,826 genes from 15 non-
irradiated control and 15 *°Fe irradiated C57 mice
liver tissue samples were subjected to differential gene
expression analysis. All calculations and statistics were
performed using statistical software R (R Foundation
for Statistical Computing, Vienna, Austria) (version
3.5.1) [51]. Differential gene expression analysis was
conducted using R software package edgeR [52, 53].
First, normalization factors were calculated to scale
the raw library sizes. In addition, dispersion parame-
ters based on generalized linear models (GLM) were
estimated; in particular, the common dispersion for
negative binomial GLMs, trended dispersion for nega-
tive binomial GLMs using the power method, and
empirical Bayes tagwise dispersions for negative bino-
mial GLMs [53, 54]. Statistical tests were then con-
ducted for every time point, to compare between *Fe
irradiated and non-irradiated control samples, using a
quasi-likelihood negative binomial generalized log-
linear model for count data [55-57]. The Benjamini-
Hochberg correction was applied, and genes with
FDR £0.05 & fold change >1.5 (|(logy(Fold Change)| =
0.59—up/down regulated) were extracted.

Feature selection (FS)

Final differential gene expression analyses for all time
points were combined. For genes differentially expressed at
multiple time points, the lowest FDR was kept. The list
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Table 4 Sample List and Total Reads
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Sample Information

Number Sample Treatment Type Time Biological Replicate Total Sequences
1. H2 Non-Irradiated Control 1 month 1 32,905,344
2. H3 Non-Irradiated Control 1 month 2 28,318,081
3. H4 Non-lIrradiated Control 1 month 3 27,220,319
4, H7 Non-Irradiated Control 2 months 1 31,264,466
5. H8 Non-Irradiated Control 2 months 2 31,375,164
6. H9 Non-Irradiated Control 2 months 3 34,782,071
7. H11 Non-Irradiated Control 4 months 1 24,449,063
8. H12 Non-Irradiated Control 4 months 2 27,944,559
9. H13 Non-Irradiated Control 4 months 3 23,137,137
10. H16 Non-Irradiated Control 9 months 1 34216914
1. H17 Non-Irradiated Control 9 months 2 30,149,494
12. H18 Non-lIrradiated Control 9 months 3 29,855,702
13. H21 Non-Irradiated Control 12 months 1 26,910,777
14. H22 Non-Irradiated Control 12 months 2 31,877,754
15. H23 Non-lIrradiated Control 12 months 3 33,432,277
16 K2 *Fe Irradiated 1 month 1 31,868,688
17 K3 *Fe Irradiated 1 month 2 37,890,611
18 K4 *Fe Irradiated 1 month 3 25953453
19 K6 *SFe Irradiated 2 months 1 47,994,834
20 K7 °Fe |rradiated 2 months 2 34,603,257
21 K8 *Fe Irradiated 2 months 3 32,128,695
22 K12 *Fe Irradiated 4 months 1 27,386,313
23 K13 °Fe |rradiated 4 months 2 29,914,981
24 K14 *Fe Irradiated 4 months 3 28,626,258
25 K16 *Fe Irradiated 9 months 1 24,669,187
26 K17 °Fe |rradiated 9 months 2 24.014,552
27 K18 *Fe Irradiated 9 months 3 28,179,114
28 K23 *Fe Irradiated 12 months 1 28,350,658
29. K24 °Fe |rradiated 12 months 2 31,439,904
30. K25 *Fe Irradiated 12 months 3 25,132,399

was further filtered to keep only genes with FDR<10"°.
For the final selected gene list, raw variance stabilized nor-
malized count data were retrieved from every RNA-Seq
sample (n =30) using the R package DESeq2 [58] This
variance stabilized normalization method was specifically
selected because it has proven useful for network construc-
tion using WGCNA methodology (The WGCNA FAQ).

WGCNA

The gene expression profiles were comprised of 51,826
genes from 30 samples. Constructing a co-expression
network on this original list without filtering could
not meet a power threshold that corresponded to
(R? =0.9) as recommended by WGCNA, and did not

yield any biologically interpretable network. As a re-
sult, we first performed the feature selection based on
differential gene expression analysis and FDR rank list
(step 1-2 in Fig. 4, and described above) and then
constructed the WGCNA network on genes given by
this feature selection (step 3 in Fig. 4). WGCNA was
performed on differentially expressed genes with
FDR<10"° & fold change >1.5 (up/down-regulated).
WGCNA analysis was performed per the methodology
publication (step 4-7 in Fig. 4) [7].

WGCNA with Modularity Maximization
To evaluate the effect of feature selection on the median
cluster size, we performed Modularity Maximization
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WGCNA

WGCNA with Modularity Maximization (WGCNA-M)

1) Identify differentially expressed genes based on FDR and fold change (FDR < 0.05
& Fold Change 2 1.5)

1) Identify differentially expressed genes based on FDR and fold change (FDR <
0.05 & Fold Change 2 1.5)

L 4

¥

2) Rank genes based on FDR and filter genes by setting a threshold of FDR (e.g., FDR
<10%)

2) Rank genes based on FDR and filter genes by setting a threshold of FDR (e.g., FDR
<10%)

¥

¥

3) Construct a gene co-expression network using WGCNA

3) Construct a gene co-expression network using WGCNA

$

4) Filter the network by removing edges with Pearson Correlation < 0.7

) 4

4) Identify modules using the WGCNA Dynamic Tree Cut Algorithm

5) Identify modules using the Modularity Maximization Algorithm

¥

¥

5) Visualize modules by relating modules to external information using WGCNA

6) Visualize modules using the ExplodeLayout Algorithm

¥

¥

6) Study modules and their relationships using pathway analysis tools and
experimental validation

7) Study modules and their relationships using pathway analysis tools and
experimental validation

¥

¥

7) Find the key drivers in interesting modules, with key driver given as the first
principle component of the corresponding module

Fig. 4 An overview of the WGCNA and WGCNA with Modularity Maximization (WGCNA-M) workflows

8) Find the key drivers in interesting modules, with key driver given as the first
principle component of the corresponding module

analysis on co-expression data derived by WGCNA ap-
plied to gene lists filtered over a range of FDR values. As
shown in Fig. 5, the FDR value of 10™° led to the largest
median cluster size, in this particular dataset. The fea-
tures’ significance threshold can be optimized by plot-
ting median cluster sizes at different FDR values. To
derive clusters, the following steps were used. An adja-
cency matrix based on the Pearson correlation with the

soft threshold was calculated by WGCNA [7]. The
power threshold parameter was set to 16, corresponding
to an R? value of 0.9, which reflects a scale-free topology
in which adjacency between all differential genes was
calculated by a power function (step 3 in Fig. 4). The
adjacency matrix was then filtered to only keep pairs
of genes with a Pearson correlation of >0.7 (step 4 in
Fig. 4). Then, module identification was performed

20

473, 14
8 o
N
(7]
5 15+ (325, 17)
..g. (120‘11) (.237,15) ° . (.634,15)
79, 17
o 10- g42,13) (187, 16) (270.17) ®(885, 12)
5 ° e o o °
c (114, 10) (165,15)  (210,17)
S 59
el
g (# of genes, # of clusters)
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Fig. 5 Plot to visualize different FDR thresholds using the Modularity Maximization Algorithm. The plot shows the change in the median number
of clusters detected using Modularity Maximization, as the FDR cutoff is varied. The numbers next to each point designate the number of genes
and the number of modules in the corresponding network. The module with the largest median size was chosen for further analysis, since small
clusters are difficult to interpret
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using the Modularity Maximization clustering method
(step 5 in Fig. 4) [20, 59]. Final modules were visualized
using the ExplodeLayout algorithm (step 6 in Fig. 4) [60].

Module statistical analysis

To determine whether the modules were observed by
chance, the significance of the results was evaluated by
comparing them to the average modularity of 1000 per-
mutations of the weighted and thresholded co-
expression network adjacency matrix. Each permutation
of the network would preserve the number and weight
of all the links but randomly shuffle them; thus it should
still meet the scale-free network distribution criteria.
Based on the 1000 permutations, we obtained a z-score
of 86.8 for our modularity, indicating a strongly signifi-
cant modular structure in the co-expression network as
compared to random.

Mitochondrial complex | enzyme activity assay
The mitochondria isolation kit for tissue (Abcam,
ab110168) was used to isolate mitochondria from mice
liver lobes. Complex 1 enzyme activity was monitored
with a colorimetric microplate assay (Abcam, ab110168)
using the isolated mitochondria from the liver.

Functional Enrichment Analysis

To determine whether the co-expression modules were
biologically meaningful, functional enrichment analysis
was performed separately on every module. Significant
functional pathways (-logo(p-value)>1.3) for each
module were evaluated using Ingenuity Pathway Analysis
(IPA) (QIAGEN Inc., Hilden, Germany) [31].
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