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article A promising strategy for overcoming these challenges is the incorporation of pre-exist-

ing transcriptomics data in the identification of differentially expressed (DE) genes. This
approach has the potential to improve the quality of selected genes, increase classifica-
tion performance, and enhance biological interpretability. While a number of methods
have been developed that use pre-existing data for differential expression analysis,
existing methods do not leverage the identities of experimental conditions to create a
robust metric for identifying DE genes.

Results: In this study, we propose a novel differential expression and feature selec-
tion method—GEOlimma—which combines pre-existing microarray data from the
Gene Expression Omnibus (GEO) with the widely-applied Limma method for differ-
ential expression analysis. We first quantify differential gene expression across 2481
pairwise comparisons from 602 curated GEO Datasets, and we convert differential
expression frequencies to DE prior probabilities. Genes with high DE prior probabilities
show enrichment in cell growth and death, signal transduction, and cancer-related
biological pathways, while genes with low prior probabilities were enriched in sensory
system pathways. We then applied GEOlimma to four differential expression com-
parisons within two human disease datasets and performed differential expression,
feature selection, and supervised classification analyses. Our results suggest that use
of GEOlimma provides greater experimental power to detect DE genes compared to
Limma, due to its increased effective sample size. Furthermore, in a supervised classifi-
cation analysis using GEOlimma as a feature selection method, we observed similar or
better classification performance than Limma given small, noisy subsets of an asthma
dataset.

Conclusions: Our results demonstrate that GEOlimma is a more effective method for
differential gene expression and feature selection analyses compared to the standard

Limma method. Due to its focus on gene-level differential expression, GEOlimma also
has the potential to be applied to other high-throughput biological datasets.
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Background

DNA microarrays and RNA sequencing (RNA-Seq) have become indispensable experi-
mental tools for characterizing the effects of biological interventions on genome-wide
gene expression (“transcriptomics”) [1, 2]. Applications of these tools have been trans-
formative in many areas of biological research, including cancer biology, biomarker dis-
covery, and drug target identification [3—5]. These applications often involve differential
expression analysis: the isolation of differentially expressed (DE) genes between healthy
and disease conditions. Knowledge of DE genes facilitates the discovery of causative
genes and gene pathways for a disease of interest. For example, many studies of carcino-
genesis focus on identifying the genes directly responsible for promoting cancer occur-
rence (“driver genes”) out of all DE genes [6] . Furthermore, DE gene identification is an
important first step for disease biomarker discovery. The discovery of biomarkers from
transcriptomics data typically involves selecting the most discriminative genes between
a healthy and diseased state or between different disease states [7] . A comprehensive
list of DE genes provides a biologically plausible set of candidates for these discrimina-
tive genes and can greatly streamline the search [8]. Common applications of transcrip-
tomics-derived biomarkers include predicting diagnosis, prognosis, and therapeutic
response for a disease of interest through a process known as supervised classification
[9]. In this context, DE gene identification can be viewed as a means of performing
feature selection for classification. In general, feature selection is a process for dimen-
sionality reduction that removes redundant or irrelevant features (genes), reduces clas-
sification model complexity, and improves classification performance [10].

Despite their widespread use for DE gene identification, transcriptomics data are noto-
rious for their inclusion of technical and biological noise [11]. This noise complicates dif-
ferential expression analysis by reducing the accuracy of DE gene identification relative
to other assays (e.g., real-time or quantitative PCR [12]), lowering the reproducibility of
experiments conducted on different platforms [13], and reducing the statistical power
associated with the detection of DE genes at a particular fold change [14]. A straightfor-
ward strategy for mitigating the effects of noise is to increase the number of replicates
assayed (“sample size”) for each condition of interest. However, this practice can be cost
prohibitive or even impossible for conditions with limited sample availability. Further-
more, even with larger sample sizes, transcriptomics data pose a considerable challenge
to feature selection methods due to the curse of dimensionality. Specifically, it is well
known that optimal fitting of classification models (including the selection of features)
breaks down when the feature dimensionality is substantially larger than the sample size
[15].

One promising solution for the above challenges is to incorporate prior biological
knowledge into differential expression and feature selection analyses [16]. This Bayes-
ian approach can mitigate problems associated with a small sample size [17], while also
improving biological interpretability of the resulting DE genes/features [10]. Prior bio-
logical knowledge for transcriptomics data can take several forms, including pre-existing
transcriptomics data from other studies, data from complementary high-throughput
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assays (e.g., chromatin immunoprecipitation or protein-protein interactions), and gene
functional annotation (e.g., Gene Ontology [18, 19] or KEGG [20, 21] ). For the pur-
poses of this study, we will focus on the first type of knowledge, although we note that
analytical methods are available to incorporate the other types as well [22, 23]. Thanks
to functional genomics repositories like the Gene Expression Omnibus (GEO)[24, 25]
and ArrayExpress [26], transcriptomics data from over 2.5 million samples are publicly
available. Furthermore, the size of this resource is growing exponentially, with numbers
of samples in GEO doubling every 3—4 years.

Over the last 15 years, a number of methods have been developed that use prior
knowledge in the form of transcriptomics data to inform differential expression analy-
ses [27-31]. However, these methods typically either ignore the identities of the many
experimental conditions in the pre-existing data, or they do not leverage these identities
to create a rigorous statistical metric for identifying DE genes. For example, the SVD
Augmented Gene expression Analysis Tool (SAGAT) uses singular value decomposition
(SVD) to extract transcriptional modules from pre-existing DNA microarray data [27].
These modules, which contain no information regarding assayed conditions, are then
incorporated into a statistical analog of the two-sample t-test to improve the accuracy
of DE gene identification. In contrast, a very recent study made direct use of the exper-
imental conditions in pre-existing data to characterize empirical prior probabilities of
differential expression [31]. However, although these prior probabilities were predictive
of differential expression patterns, they were not explicitly utilized in a Bayesian statisti-
cal framework for identifying DE genes. Relatedly, although there have been many stud-
ies contributing novel or adapted feature selection methodologies for classification of
biomedical data [32-36], to our knowledge no method combines an experimental con-
dition-aware analysis of pre-existing data with a statistically principled means of feature
selection.

To address these shortcomings, we propose a novel differential expression and feature
selection approach—GEOlimma—that leverages pre-existing GEO-derived transcrip-
tomics data. As described below, our proposed method modifies the popular Linear
Models for Microarray and RNA-Seq Data (“Limma”) method [37, 38] . Specifically,
GEOlimma incorporates empirical prior probabilities of differential expression (DE
prior probabilities) in a Bayesian statistical test for DE genes. We first describe the com-
putation and biological characterization of DE prior probabilities from a large collec-
tion of pre-existing DNA microarray experiments from GEO. Next, we apply GEOlimma
and Limma to four benchmark differential expression comparisons from two validation
datasets. Our results demonstrate a substantial increase in experimental power for iden-
tifying DE genes due to use of GEOlimma. Finally, we explore GEOlimma’s ability to
improve feature selection for classification across the four benchmark comparisons.

Results

In this study, we developed a gene expression feature selection method, GEOlimma,
in which gene-level differential expression (DE) prior probabilities were derived from
large-scale microarray data freely available from the Gene Expression Omnibus (GEO).
We first explored enriched biological pathways in genes with either high or low DE prior
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probabilities. We then applied GEOlimma to DE analysis and supervised classification
tasks on a collection of four validation datasets.

Biological analysis of DE prior probabilities

The goal of differential expression analysis is to identify differences in gene expression
across biological conditions in order to discover functional genes and pathways involved
in a biological process of interest. The Limma method [39] is an empirical Bayesian
approach for identifying DE genes that has been widely applied. However, an impor-
tant limitation of this method is that the prior probabilities for differential expression
are set to be constant for all genes. This implies that all genes have the same chance of
being expressed differently, which is not biologically realistic [31]. Therefore, we devel-
oped and applied GEOlimma, which uses a large collection of GEO datasets to compute
gene level DE prior probabilities (see “Methods” section). We first downloaded the 602
GEO DataSets (GDS) currently available from the GPL570 platform (Affymetrix Human
Genome U133 Plus 2.0 Array), followed by performing pairwise DE analysis among the
largest possible collection of non-overlapping sample groups (number of samples > 5)
from each GDS experiment. We identified DE genes using a Benjamini—-Hochberg false
discovery rate (FDR) threshold of 0.05. By repeating this procedure for every GDS, we
calculated DE frequencies for 21025 distinct Entrez genes (20,283 genes with unique
gene mappings) across all experiments (2481 pairwise comparisons total) and converted
these to prior probabilities of DE. Given gene-level DE prior probabilities, we can then
compute posterior probabilities of DE for a given biological experiment using Bayes the-
orem. Figure 1 shows distributions of pairwise comparisons across GDS datasets (A) as
well as DE prior probabilities (B), the latter ranging between 0.0048 and 0.1769 with two
apparent modes. We note that the largest number of comparisons afforded by a single
GDS (171) is less than 7% of the 2481 total comparisons, with the vast majority of GDS
datasets providing fewer than 25 comparisons each. The median probability observed
is 0.069, which we note is roughly seven times higher than the default constant prior
probability used by Limma (0.01). Additional file 1: Fig. S1 lists the top most frequently
DE genes, including TUBA1A (tubulin alpha 1a), CD24, and SERPINBI1 (serpin fam-
ily B member 1), with DE prior probabilities of 0.1769, 0.1761, and 0.1693, respectively.
The three least frequently DE genes were LOC102725116, TMCO5A (transmembrane
and coiled-coil domains 5A), and LINC01492 (long intergenic non-protein coding RNA
1492), with DE prior probabilities of 0.0048, 0.0056, and 0.0060, respectively. Generally
speaking, we hypothesize that genes with high prior probabilities of DE are more likely
to be implicated in human disease and thus could function as potential biomarkers,
while those with low DE prior probabilities represent genes either not expressed under
most of the observed conditions or constitutively expressed genes that are required for
the maintenance of basic cellular functions (i.e., housekeeping genes).

In order to improve our biological understanding of the calculated DE prior prob-
abilities, we performed gene set enrichment analysis (GSEA) based on KEGG path-
ways with the top 500 most and least frequently DE genes, respectively. Table 1 lists
significantly enriched pathways (BH-adjusted p-value < 0.05), which include 19
pathways from the most frequently DE genes and 4 from the least frequently DE
genes. The most significant pathway in the former category is hsa04110: Cell cycle
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Fig. 1 GEO Dataset comparisons and prior distribution. a Histogram of 2481 pairwise comparisons made
within 602 curated GEO Datasets. b Histogram of DE prior probabilities for 20,283 genes made from the
pairwise comparisons in A

(adjusted p = 7.83E—08); Fig. 2 illustrates the frequently DE genes mapped in this
pathway. Two additional pathways in this category directly related to cell growth
and death include hsa04115: p53 signaling pathway and hsa04210: Apoptosis. We
also identified six cancer-specific frequently DE pathways: hsa05222: Small cell lung
cancer, hsa05206: MicroRNAs in cancer, hsa05218: Melanoma, hsa05202: Transcrip-
tional misregulation in cancer, hsa05205: Proteoglycans in cancer, and hsa05220:
Chronic myeloid leukemia. Finally, the two frequently DE pathways hsa04068: FoxO
signaling pathway and hsa04668: TNF signaling pathway function in Signal trans-
duction. We note that signal transduction pathways are involved in cell death mech-
anisms that function in colorectal carcinogenesis progression [40].

The 4 least frequently DE pathways include two sensory system pathways:
hsa04740: Olfactory transduction and hsa04742: Taste transduction, Signaling mol-
ecules and interaction pathway. The other two significant pathways in this category
were hsa04080: Neuroactive ligand-receptor interaction and hsa05320: Autoimmune
thyroid disease. Our results suggest that genes belonging to these pathways are
either not expressed under most circumstances or show relatively stable expression

across many biological conditions.
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Table 1 KEGG enrichment analysis of top 500 genes with high and low DE prior
probabilities

Pathway IDs Description GeneRatio BgRatio Pvalue Pvalue Count Source
adjustment

hsa04110 Cell cycle 21/242 124/7528 2.94E—10 7.83E—08 21 HighPrior

hsa05222 Small cell lung 13/242 93/7528  747E—06 9.94E—04 13 HighPrior
cancer

hsa04115 p53 signaling 11/242 72/7528 161E—05 143E-03 11 HighPrior
pathway

hsa05169 Epstein-Barr virus 18/242 201/7528 7.63E—05 3.57E—-03 18 HighPrior
infection

hsa05206 MicroRNAs in 23/242 299/7528 8.53E—05 3.57E—03 23 HighPrior
cancer

hsa05218 Melanoma 10/242 72/7528  9.09E—05 3.57E—03 10 HighPrior

hsa05202 Transcriptional 17/242 186/7528 9.40E—05 3.57E—03 17 HighPrior
misregulation in
cancer

hsa04210 Apoptosis 14/242 136/7528 1.12E—04 3.71E—03 14 HighPrior

hsa05205 Proteoglycansin 17/242 201/7528 242E—04 7.15E—-03 17 HighPrior
cancer

hsa04068 FoxO signaling 13/242 132/7528 3.05E—04 8.11E—-03 13 HighPrior
pathway

hsa05418 Fluid shear stress 13/242 139/7528 5.05E—04 1.22E—02 13 HighPrior
and atheroscle-
rosis

hsa05220 Chronic myeloid 9/242 76/7528 6.87E—04 1.52E—02 9 HighPrior
leukemia

hsa03030 DNA replication 6/242 36/7528 898E—04 1.84E—02 6 HighPrior

hsa05130 Pathogenic Escheri- 7/242 55/7528 1.77E—03 3.36E—02 HighPrior
chia coli infection

hsa04540 Gap junction 9/242 88/7528 1.97E—03 3.50E—02 HighPrior

hsa01524 Platinum drug 8/242 73/7528  2.25E—03 3.74E-02 HighPrior
resistance

hsa05167 Kaposi sarcoma- 14/242 186/7528 2.60E—03 3.83E—02 14 HighPrior
associated her-
pesvirus infection

hsa04380 Osteoclast differen-  11/242 128/7528 2.67E—03 3.83E—02 11 HighPrior
tiation

hsa04668 TNF signaling 10/242 110/7528 2.74E—03 3.83E—-02 10 HighPrior
pathway

hsa04740 Olfactory transduc-  17/68 448/7528 291E—07 3.08E—05 17 LowPrior
tion

hsa04742 Taste transduction  8/68 83/7528 6.70E—07 3.55E—05 8 LowPrior

hsa04080 Neuroactive 14/68 338/7528 1.40E—06 4.96E—05 14 LowPrior
ligand-receptor
interaction

hsa05320 Autoimmune 4/68 53/7528 128E—03 3.39E—-02 4 LowPrior

thyroid disease

GEOLimma method application on four validation datasets

We investigated the utility of gene-specific DE prior probabilities by performing DE

analysis with GEOlimma in four evaluation datasets. Specifically, we selected two
GEO series—GSE8052 and GSE15061—from platform GPL570 that enabled four DE
comparisons to be made. Importantly, neither of these datasets was represented by

a GEO GDS, meaning that none of the resulting comparisons were involved in DE
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Fig. 2 Significantly enriched Cell Cycle pathway from genes with high DE prior probabilities. The red shaded
blocks indicate genes with high prior probabilities

prior probability computation. The four comparisons include Asthma vs Non-asthma
(GSE8052) and three comparisons from GSE15061: Nonleukemia (Nonleuk) vs
Myelodysplastic syndrome (MDS), Nonleuk vs acute myeloid leukemia (AML), and
AML vs MDS. The probes for each of the datasets are represented by 20,283 genes
with unique mappings. Any genes without available DE prior probabilities were
assigned the median value of all prior probabilities. We first identified DE genes using
GEOlimma as well as the standard Limma method. This allowed us to compare the
two methods, as well as characterize the extent of differential expression present in
each comparison. For Limma, we considered genes to be DE if their BH-adjusted p
value < 0.05. In contrast, as GEOlimma enables the calculation of a modified B score
only (see “Methods”), we selected a B score threshold for GEOlimma significance
based on the smallest Limma B score for which the Limma adjusted p value < 0.05.
Using these criteria, we identified DE genes based on all relevant samples for each of
the four comparisons described above. To assess the effect of small sample sizes on
GEOlimma/Limma performance, we also randomly sampled 10 subsets of 40 samples
(20 in each class) for each comparison and calculated the mean and standard devia-
tion of the number of DE genes across these subsets using both methods. Table 2 lists
details of each DE comparison along with summaries of our analysis results using both
Limma and GEOlimma. We note that for the Asthma comparison, there are no signif-
icant DE genes based on all samples (as well as in subsets) using the Limma method.
Therefore, we were not able to quantify the number of DE genes for this comparison
using GEOlimma. In the remaining three comparisons, our results demonstrate that
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Table 2 Differential expression comparison details and Limma and GEOlimma DE gene
counts for all samples and 10 subsets of 40 samples of each comparison

Datasets Source Sample size LimmaDEGs GEOlimma Limma DEGs  GEOlimma
DEGs of DE sample  DEGs of DE
sample
Asthma vs Moffattetal.  268vs136 0 - 0 -
nonasthma 2007
Nonleuk vs Mills et al. 164 vs 69 2619 5823 985+1614 404.3+£600.9
MDS 2009
Nonleuk vs Mills et al. 202 vs 69 8610 13379 2788949015  5879.3+14152
AML 2009
AML vs MDS Mills et al. 164 vs 202 10975 15337 2881.5+£1068.7 6017+£1666.7
2009
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Fig. 3 B score change and sample visualizations of asthma dataset. The top figures are generated from all
samples; the bottom figures are drawn using a random subset with 40 samples. a and d depict Limma and
GEOlimma B score distributions of all genes, b and e show PCA visualizations of samples, and ¢ and f show
t-SNE sample visualizations

GEOlimma identifies more DE genes than Limma when applied to either all samples
or 40-sample subsets. Figure 3a helps illustrate why this is, by examining the dis-
tributions of Limma and GEOlimma B scores for the Asthma comparison. Despite
the lack of significant DE genes in this comparison, use of GEOlimma results in a
wider B score distribution with a marked shift to higher values compared to Limma.
This difference is due to the diverse set of gene-specific DE prior probabilities used
by GEOlimma, the median value of which is substantially higher than the constant
value used by Limma. The potential increase in numbers of DE genes identified by
GEOlimma also suggests that use of a small constant DE prior probability may result
in overly conservative DE gene identification. In our PCA and t-SNE visualizations of
all samples (Fig. 3b, c), we note the lack of clear separation between the Asthma and
Non-asthma groups, which helps explain why no significant DE genes were detected.

Page 8 of 20
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Figure 3d—f show the same information for a randomly selected subset of 40 samples.
We note that the B scores have a similar distribution as that of all samples.

When looking at the top 20 most significantly DE genes for each comparison, we
noted that use of GEOlimma changes the order of these genes compared to Limma,
with an overall higher average B score (Additional file 2: Fig. S2). To further explore this
phenomenon, we counted the genes in common for the top 100—1000 most significantly
DE genes between GEOlimma and Limma across 10 randomly selected 40-sample sub-
sets for each comparison. The average overlap percentages were 67.3% for the Asthma
comparison, 87% for Nonleuk vs MDS, while over 95% for both AML vs MDS (95.2%)
and Nonleuk vs AML (95.5%) (Additional file 3: Fig. S3). These results suggest that
GEOlimma DE prior probabilities have a larger effect on the resulting DE gene list for
datasets showing a more modest overall degree of differential expression (e.g., Asthma
and Nonleuk vs MDS comparisons).

Before assessing the performance of GEOlimma in the four evaluation datasets, we
first performed a simulation study to evaluate the effect of GEOlimma on false posi-
tive and false negative predictions (see “Methods” for details). Specifically, we used the
madsim R package to simulate 50 synthetic datasets with the same distribution as the
Nonleukemia vs AML comparison. We then evaluated the propensities of Limma and
GEOlimma to make false positive and negative predictions in these datasets. Overall,
we found very little difference between the methods, with average false positive rates
(FPR) of 0.0106 and 0.00949 for Limma and GEOlimma, respectively. The average false
negative rates (FNR) for these methods were 0.5002 and 0.5001, respectively. Addi-
tional file 4: Fig. S4 shows the gene-wise FPR and FNR distributions resulting from these
experiments.

In order to explore the practical benefits of using GEOlimma, we then compared
the accuracy of DE gene identification between GEOlimma and Limma for each of the
four DE comparisons. For each comparison, we first performed DE analysis on all sam-
ples using Limma, with the resulting significant DE genes (n = 1241 [FDR < 0.4], 2619
[FDR < 0.05], 8610 [FDR < 0.05], and 10975 [FDR < 0.05] for the Asthma, Nonleuk vs
MDS, Nonleuk vs AML, and AML vs MDS comparisons) being treated as the ground
truth. We note that we relaxed the significance thresholds for the Asthma comparison
in order to include a sufficient number of DE genes for subsequent evaluation. Next,
we randomly generated non-overlapping sample subsets for each comparison based
on the minimum sample size at which the group proportions of the dataset could be
maintained. For example, as GSE8052 contains 66% Asthma and 34% Non-asthma sam-
ples, the smallest sample size considered was 6 (4 Asthma, 2 Non-asthma) in order to
ensure > 2 samples per group. We then increased this sample size in increments of 3 to
also consider subsets of 9, 12, and 15 samples. We then applied both GEOlimma and
Limma on each of the sample subsets to determine which method best recovered the
ground truth. Specifically, we used the R package ROCR [41] to compute areas under
the receiver operating characteristic curve (AUCs) given the GEOlimma/Limma B
scores and the ground truth. Figure 4 depicts the AUC improvement of GEOlimma over
Limma for all four comparisons. Notably, GEOlimma consistently increases the average
AUC for each of the subset sizes, with an overall average AUC improvement of 0.04. Fur-
thermore, in the three comparisons made within GSE15061, GEOlimma increases AUC
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Fig. 4 Area under the ROC curve (AUC) improvement of GEOlimma over Limma for identifying DE genes
from a range of data subset sizes: a Asthma vs Non-asthma comparison, b Nonleukemia vs AML comparison,
¢ Nonleukemia vs MDS comparison, d AML vs MDS comparison

for every subset tested. Interestingly, the AUC improvement is largest for the smallest
sample sizes evaluated and decreases slightly as sample size increases. This further sup-
ports the assertion that GEOlimma has a bigger impact on datasets with more modest
expression differences (as would result from a small sample size). To confirm that these
improvements result specifically from the DE prior probabilities learned using publicly
available GPL570 data, we randomly shuffled the prior probabilities and repeated the
above analysis. As seen in Additional file 5: Fig. S5, GEOlimma using randomized prior
probabilities consistently decreases AUC compared to Limma.

To quantify the experimental power gained by using GEOlimma, we converted
AUC values into effective sample size. Specifically, for each of the evaluation data-
sets, we first calculated AUCs resulting from applying Limma to all non-overlapping
sample subsets ranging in size from the minimum number needed to maintain group
proportions (described above) to the total number of replicates. For example, in the
Asthma comparison we considered all subsets of size 6—402 in increments of 3. These
AUC:s enabled us to fit a “standard curve” for each comparison, from which we could
interpolate the mean number of samples gained by using GEOlimma given initial
numbers of 6, 9, 12, and 15 (Asthma) samples. Additional file 6: Fig. S6 presents the
AUC standard curves and Table 3 summarizes the distribution of GEOlimma effec-
tive sample sizes for each comparison. Overall, GEOlimma leads to a substantial
increase in mean effective sample sizes, particularly when applied to smaller subsets,
where we observed gains of 157-288% for the smallest sample sizes evaluated for
each comparison. The Asthma comparison shows the largest relative increases across
all subsets, with the mean GEOlimma effective sample size more than doubling that

Page 10 of 20
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Table 3 Distribution of effective sample sizes from applying GEOlimma to a range of data
subsets (size denoted by N) for four differential expression comparisons

Asthma AML-Nonleuk Nonleuk.-MDS AML-MDS

N 25% Mean 75% N 25% Mean 75% N 25% Mean 75% N 25% Mean 75%

1439 233 3483 8 1914 2055 2228 9 221 2432 2653 10 2226 2644 3059

2173 3198 4501 12 2098 2275 2503 18 273 2954 319 20 2967 3495 3825
122172 2907 422 16 2341 2564 2674 27 3335 356 3572 30 3871 4513 4854
15 1669 3357 497 20 2603 2798 3017 36 4148 4253 4246 40 4795 5026 515

of Limma even for the largest subset tested (m = 15). These results demonstrate the
gains in experimental power for DE gene discovery that are possible with the use of
GEOlimma.

Classification performance using GEOLimma feature selection method

Feature selection is a critical step in supervised classification for diagnosis, prognosis
and treatment. Here we compare the abilities of GEOlimma and Limma as feature
selection methods to perform accurate classification on the four evaluation data-
sets. To focus on the most challenging classification tasks for each comparison, we
randomly sampled subsets of size 20 from each of the two groups. Specifically, we
generated 10 pairs of subsets for training, with each pair containing 40 total samples
(20 per group). In the same manner, we also generated an additional 10 pairs of sam-
ples for testing. During training, we performed tenfold cross-validation to estimate
model performance. Given the large numbers of genes present in these datasets, we
focused on the 1000 genes with the highest variance across all samples within each
comparison. Within these 1000 genes, we selected the top 100—1000, in increments of
100, using either Limma or GEOlimma and performed classification using a logistic
regression (LR) classifier. For each sampled subset, we applied a one-sided (hypoth-
esis: GEOlimma AUC > Limma AUC) paired Wilcoxon test to compare the AUC dif-
ferences between GEOlimma and Limma at each feature size (10 total). Because of
the near perfect AUC observed for subsets of the AML vs MDS and Nonleuk vs AML
comparisons, we only evaluated AUC differences for the Asthma and Nonleuk vs MDS
comparisons using the Wilcoxon test. Table 4 shows the mean AUC differences of
Asthma for each of the 10 pairs of subsets.Although many of the subsets do not show
a significantly higher GEOlimma AUC, we note that the average GEOlimma - Limma
AUC difference for both training and testing subsets is positive. Furthermore, sub-
set pairs 7 and 9 show a significant GEOlimma AUC improvement in both training
and testing subsets, while none of the negative AUC differences observed were sig-
nificantly less than 0 (hypothesis: Limma AUC > GEOlimma AUC) in training sets.
Figure 5 shows the GEOlimma and Limma AUC values at each number of features for
subset pairs 7 (A) and 9 (B). For the Nonleuk vs MDS comparison, we find no signifi-
cant differences between GEOlimma and Limma AUCs in training or testing subset
pairs. Figure 5¢ shows one example of a training pair for this comparison. Overall,
our results suggest that use of GEOlimma for feature selection can provide moderate
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Fig. 5 Classification performance of data subsets using a logistic regression classifier with GEOlimma and
Limma feature selection methods. The x-axis indicates the number of selected features; y-axis indicates
classification AUC. The top three plots display training AUC values; the bottom three plots depict validation
AUCs. a Asthma vs Non-asthma subset 7 AUCs, b Asthma vs Non-asthma subset 9 AUCs, ¢ Nonleukemia vs

Table 4 Differences in classification performance (GEOlimma AUC-Limma AUC) for 10
data subsets of the Asthma comparison. Italic p values (Wilcoxon signed-rank test) denote
statistically significant AUC improvements of GEOlimma over Limma

Sample order AUCdiff Wilcox p value VadAUCdiff Wilcox p value
1 0.0075 2.36E—01 —0.01425 9.78E—01
2 —0.0275 8.53E—01 0.01375 143E-01
3 —0.0075 6.07E—01 —0.025 9.97E-01
4 —0.0075 7.79E—-01 0.00525 2.39E-01
5 —0.0175 931E-01 0.0105 3.12E-01
6 —0.03 8.97E-01 —0.0085 7.23E-01
7 0.0675 3.98E—02 0.06025 9.77E—04
8 0.025 1.04E—01 —0.007 7.54E-01
9 0.0525 1.23E—-02 0.0385 1.95E-03
10 —0.0075 7.36E-01 —0.001 7.93E-01

*Asthma dataset on LR classification

improvements in classification performance for datasets with a modest overall degree
of differential expression (e.g., Asthma comparison). For datasets with more pro-
nounced degrees of differential expression, use of GEOlimma resulted in very similar
classification performance compared to Limma.

Discussion

In this study, we developed a differential expression feature selection method,
GEOlimma, in which we calculated gene-level differential expression (DE) prior
probabilities from large-scale GEO transcriptomics data and incorporated them
into a Bayesian framework. In a DE analysis, GEOlimma detected a larger number of
DE genes in four comparisons within two evaluation datasets, compared to Limma.
By analyzing small sample subsets of each dataset, we showed that knowledge-

driven GEOlimma substantially improved experimental power in terms of effective

Page 12 of 20
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sample size. Furthermore, in a supervised classification analysis, GEOlimma used as
a feature selection technique led to similar or better classification performance than
standard Limma given noisy, small sample subsets from the Asthma comparison.

We also biologically characterized genes with especially high or low DE prior
probabilities using KEGG pathway enrichment analysis. The strongest signal came
from genes with high DE prior probabilities, where we detected enrichment in cell
growth and death, signal transduction and cancer-related pathways. Cell growth
and death are fundamental biological processes; however, deregulation of these pro-
cesses is often involved in carcinosis. Specifically, resisting cell death and sustaining
proliferative signaling were reported to be hallmarks of cancer [42]. This prevalence
of enriched cancer-specific pathways may be indicative of an over-representation of
cancer-related studies in data repositories such as GEO, which has been previously
reported [28, 43]. However, while we saw excellent improvements in experimental
power in differential expression analysis of three cancer-related comparisons, we
note that the largest relative increases in effective sample size were observed in the
Asthma comparison. This suggests that GEOlimma can also provide a substantial
benefit to datasets that are unrelated to cancer.

We closely modeled GEOlimma after the widely-used differential expression anal-
ysis method Limma. Since its first publication nearly 15 years ago, papers describing
the Limma method [38, 39, 44] have been cited over 10,000 times for applications
in differential expression analysis of DNA microarray or RNA-Seq transcriptom-
ics data. For the latter application, the more recently-developed voom method [44]
adapts the Limma empirical Bayesian framework to read count data, which enables
computation of posterior DE probabilities for RNA-Seq experiments. Although we
only applied GEOlimma to DNA microarray data in this study, our approach is read-
ily transferable to RNA-Seq data through the use of the voom methodology.

In this study, we made use of all available GPL570 GEO datasets (GDS), which we
acknowledge represent a relatively small subset of all available GPL570 data at GEO.
We made this selection in large part due to the high-quality curation of GDS datasets
compared to the more abundant GSEs, which allowed us to easily perform multiple
differential expression comparisons within each dataset. Given recent advances in
natural language processing and the extraction of experimental metadata (e.g., [45]
), an exciting future direction is the automatic annotation and inclusion of the larger
number of GSEs (5154 for GPL570 as of June 2019) in the DE prior probability calcu-
lations. Such an expansion of a pre-existing data collection would enable subdivision
and calculation of condition-specific DE prior probabilities (e.g., stem cell-related or
viral infection-related), which could further improve GEOlimma performance when
applied to the analysis of related datasets. One final future direction is the gener-
alization of GEOlimma DE prior probabilities from individual values to probability
distributions. In this case, DE hyperprior parameters could be calculated from pre-
existing data rather than explicit prior probabilities. This modification would enable
a more nuanced adjustment of DE posterior probabilities by GEOlimma given the
biological characteristics of the dataset of interest.
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Conclusions

Overall, our results demonstrate that GEOlimma effectively utilized pre-existing tran-
scriptomics data for improved differential expression and feature selection analyses. Due
to its focus on gene-level differential expression, GEOlimma also has the potential to be
applied to other high-throughput biological datasets.

Methods

GEOlimma method formulation

We developed the GEOlimma method by combining the widely-used differential expres-
sion (DE) analysis method Limma, which is typically used to analyze gene expression
microarray and RNA-seq data and assess differential expression between biological
conditions. Limma uses empirical Bayesian methods to provide stable DE predictions,
which is particularly useful when the number of sample replicates is small. However, one
simplifying assumption made by Limma is that the DE prior probabilities for each gene
are identical (set 0.01 by default). GEOlimma combines the Bayesian nature of Limma
with gene-level DE prior probabilities calculated from large-scale microarray datasets to
better select genes that are biologically relevant to a comparison of interest.

The Gene Expression Omnibus (GEO) is a public data repository for high-throughput
gene expression data including microarray and RNA-seq data [25]. GEO DataSets (GDS)
are a subset of the repository that store curated gene expression datasets, along with
the original data (GEO Series) and experimental platform information. GPL570, also
known as the HG-U133 Plus_2 Affymetrix Human Genome U133 Plus 2.0 Array, is
one of the best-represented human genome microarray platforms in GEO, with 149,049
samples available (as of June 7, 2019). GPL570 measures over 47,000 human transcripts,
which consist of the Human Genome U133 Set plus 6500 additional genes. In this study,
we downloaded all 602 GPL570 GEO DataSets (GDS) (current as of June 7, 2019). Spe-
cifically, for each dataset we obtained normalized, log-transformed expression values at
the probeset level. We then mapped these probesets to the non-redundant Entrez Gene
IDs (provided by the Bioconductor R package hgul33plus2.db) and obtained gene-
level expression values by computing medians across any probe sets mapping to the
same gene. With the minimum requirement of 5 samples in each group, we performed
pairwise DE analysis among the largest possible collection of non-overlapping sample
groups from each GDS experiment. As an example, GDS4281 measures expression in
29 tumor samples from the intraocular cancer uveal melanoma. The samples are divided
into male (17) and female (12), as well as right eye (16) and left eye (13). By merging
these two groupings, we obtained a total of four non-overlapping groups—male-right
eye (10), male-left eye (7), female-right eye (6), and female-left eye (6)—between which
we could make the maximum number of (3) = 6 pairwise DE comparisons. For each
DE comparison, we applied the Limma moderated t-test [39] (using the “ImFit” and
“eBayes” functions) to calculate differential expression p-values for each gene. Given a
list of p-values for a particular comparison, we adjusted for multiple hypothesis testing
using the Benjamini-Hochberg (BH) procedure [46]. Genes with adjusted p-values (false
discovery rates or FDRs) < 0.05 for a given pairwise comparison were considered DE for
that comparison. We calculated the DE frequencies across all comparisons for each gene
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and converted these frequencies to DE prior probabilities (P(DE;) for the ith gene) as

follows:
M
— 1 I(FDR;; < 0.05)
P(DE;) = 21 4 (1)
M
where i € {1,...,N} indexes each gene, j € {1,..., M} indexes each comparison, FDR;;

represents the FDR for the ith gene in the jth comparison, and I(-) is the indicator
function.

We chose human asthma and cancer validation datasets present as GEO Series (GSE)
but not as GEO DataSets (GDS), in order to avoid double counting data. The asthma
dataset [47] consists of 404 total samples (transformed lymphoblastoid cell lines) taken
from 268 children afflicted with asthma and 136 healthy children. The cancer dataset
[48] consists of 870 total bone marrow samples, of which 202, 164, and 69 are from indi-
viduals with acute myeloid leukemia (AML), myelodysplastic syndrome (MDS), and
neither AML nor MDS, respectively. We considered the three possible comparisons
between these three groups. In total, we evaluated four comparisons: Asthma vs Non-
asthma, Nonleukemia vs AML, Nonleukemia vs MDS, and AML vs MDS.

For a given comparison, we compute GEOlimma DE posterior probabilities using
Bayes’ theorem:

P(Data | DE;) P(DE;)

P(DE; | Data) = P (Data) (2)

where Data represents the samples making up the given comparison, P(Data | DE;)
denotes the likelihood of the Data, as calculated by Limma [37], P(DE;) is the previously
calculated DE prior probability, and P(Data) is a normalization constant [37]. Given
these posterior probabilities, we then calculate B scores (log odds of DE) for each gene
as follows:

P(DE; | Data)

Bi=1
= %8\ 1" P(DE; | Data) ©)

We implemented GEOlimma as modified R functions based on code from the Limma

package.

Enrichment analysis for gene sets

To explore the DE prior probabilities biologically, we conducted KEGG Enrichment
Analysis using the R package ClusterProfiler [49]. Specifically, we identified enriched
KEGG pathways using the hypergeometric test in both the top and bottom 500 most/
least frequently DE genes, separately. Pathways with BH-adjusted p-values less than 0.05
were considered significantly enriched. We used the Pathview R package [50] to visualize
the location of DE genes in particular KEGG pathways.
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Differential expression analysis

Evaluation datasets

As described above, we downloaded the GSEs for two evaluation datasets from GEO.
As with the GDS data, we mapped normalized, log-transformed expression values at the
probeset level to non-redundant Entrez Gene IDs and consolidated expression values
by computing medians across probe sets mapping to the same gene. We included all
genes with unique probe mappings (20,283 total) for subsequent analyses. For each of
the four evaluation comparisons, we performed DE analysis on all samples using both
GEOlimma and Limma. Genes were considered DE if their BH-adjusted p-value < 0.05
(Limma) or their B score exceeded the smallest Limma B score for genes with adjusted
p-value <0.05 (GEOlimma).

Sample visualization

To visualize samples, we first used Principal Component Analysis (PCA) to reduce the
dimensionality of genes as features. We visualized the first two components of PCA. We
further applied the t-Distributed Stochastic Neighbor Embedding (t-SNE) method to
visualize the first 10 PCA components in 2 dimensions. t-SNE can reduce the dimen-
sionality of data based on conditional probabilities that preserve local similarity. We
used a t-SNE implementation that makes Barnes-Hut approximations, allowing it to be
applied on large real-world datasets [51]. We set the perplexity to 15, and sample points
were colored using the group information.

Simulation study

We performed a simulation study to evaluate the effect of GEOlimma on false positive
and false negative predictions. Specifically, we used the madsim R package to simulate
data with the same distribution as the Nonleukemia vs AML comparison, from which
we identified 8610 DE genes using Limma as described above and below. We simulated
30 samples for each of the two conditions and generated a total of 50 synthetic datasets.
We then performed differential expression analysis in each dataset using both Limma
and GEOlimma and considered the highest-scoring 8610 genes in each method as DE.
Next, we computed the probabilities that each of the original 8610 DE genes was incor-
rectly predicted to be non-DE across the simulated datasets as the false negative rates
(FNRs). We also computed the probabilities that each of the original 11,673 non-DE
genes was incorrectly predicted to be DE across the simulated datasets as the false posi-
tive rates (FPRs).

Experimental power

To quantify the performance improvement achieved by GEOlimma vs Limma, we per-
formed DE analysis on small sample size subsets for each comparison. As detailed below,
we started with the minimum subset size at which the group proportions for a given
comparison could be maintained and generated all non-overlapping sample subsets of
this size. We then increased this subset size by the smallest possible sample increment
and repeated the generation of subsets. For each sample subset, we first applied both
GEOlimma and Limma and ranked genes by their corresponding B scores. Next, using
the Limma DE genes previously identified from all samples as the ground truth (see
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“Results” section for specific numbers), we applied the R package ROCR [41] to calculate
Area under the ROC curves (AUCs) for the B score-ranked genes of each subset. We
calculated the performance improvement of GEOlimma over Limma for each subset as
the difference in AUC between the two methods. In addition, we converted these AUC
improvements into gains in effective sample size by constructing and interpolating from
a “standard curve” of mean Limma AUC values calculated across the full range of pos-
sible sample sizes. As an example, if GEOlimma delivered an AUC improvement of 0.1
over Limma for a subset of size 10, the GEOlimma effective sample size is simply the
sample size of the standard curve corresponding to an AUC value 0.1 higher than the
mean Limma AUC value for 10-sample subsets.

Supervised classification

We performed supervised classification for each comparison in the evaluation datasets
using both GEOlimma and Limma as feature selection methods. Scikit-learn (sklearn)
[52] is a Python module implementing machine learning algorithms. It enables various
tasks such as dimensionality reduction, classification, regression and model selection.
The sklearn classification pipeline involves sequentially applying feature selection, classi-
fication, parameter optimization and model selection to yield final classification results.
We first used the Python rpy2 module to build a connection between sklearn and the
R language, followed by creating customized feature selection methods for Limma and
GEOlimma which we compiled into the sklearn pipeline function. For classification
training, we first sampled 10 subsets of 40 samples (20 from each of the two groups) at
random and selected the 1000 genes with largest variance across these samples. Next, we
fed data from each subset to the sklearn pipeline function and performed either Limma
or GEOlimma-based feature selection by selecting subsets of 100—1000 genes (in incre-
ments of 100) with the highest B scores. We selected the Logistic Regression [53] clas-
sifier for classification. We also included L1 and L2 penalties as hyperparameters and
applied tenfold cross validation to train the model and optimize the hyperparameters.
We used classification AUC as the criterion to evaluate classification performance. A
high AUC represents both high recall and high precision, which translate to low false
positive and false negative rates. For classification testing, we sampled an additional 40
samples to evaluate the training models. We used a Wilcoxon signed-rank test to iden-
tify significant AUC differences between performing feature selection using Limma or
GEOlimma.
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