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Abstract 

Background:  The immune checkpoint receptor programmed cell death protein I 
(PD-1) has been identified as a key target in immunotherapy. PD-1 reduces the risk of 
autoimmunity by inducing apoptosis in antigen-specific T cells upon interaction with 
programmed cell death protein ligand I (PD-L1). Various cancer types overexpress 
PD-L1 to evade the immune system by inducing apoptosis in tumor-specific CD8+ 
T cells. The clinically used blocking antibody nivolumab binds to PD-1 and inhibits 
the immunosuppressive interaction with PD-L1. Even though PD-1 is already used 
as a drug target, the exact mechanism of the receptor is still a matter of debate. For 
instance, it is hypothesized that the signal transduction is based on an active confor-
mation of PD-1.

Results:  Here we present the results of the first molecular dynamics simulations of 
PD-1 with a complete extracellular domain with a focus on the role of the BC-loop of 
PD-1 upon binding PD-L1 or nivolumab. We could demonstrate that the BC-loop can 
form three conformations. Nivolumab binds to the BC-loop according to the conforma-
tional selection model whereas PD-L1 induces allosterically a conformational change 
of the BC-loop.

Conclusion:  Due to the structural differences of the BC-loop, a signal transduction 
based on active conformation cannot be ruled out. These findings will have an impact 
on drug design and will help to refine immunotherapy blocking antibodies.
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Background
Programmed cell death protein I (PD-1) is a type 1 transmembrane protein in 
mainly T and B cells and a so-called immune checkpoint as it promotes self-toler-
ance by inducing apoptosis of antigen-specific T cells, a mechanism which is often 
exploited by cancer cells. Thus, PD-1 has recently emerged as key target in cancer 
immunotherapy.

The regulatory effect of PD-1 is triggered upon binding the cell death protein I ligand 
1 (PD-L1) which is mainly expressed on macrophages, dendritic cells and a variety of 
tissue cells [1]. Naïve T-cells reside in the lymph nodes and become activated upon 
interaction of the T cell receptor (TCR) with antigen-presenting cells (APC) which dis-
play antigens via the major histocompatibility complex (MHC) II. However, secondary 
co-stimulation of PD-1 with APC PD-L1 results in the T cell apoptosis instead [2]. The 
interaction between PD-1 and PD-L1 can take place in all stages of the T cell lifespan. 
Occurrences ranging from the early stage of T cell activation to the operational inflamed 
tissue site manifest the importance of the PD-1/PD-L1 pathway for the tight regulation 
of the immune system [3]. Cancer cells which express PD-L1 evade the host immune 
system by inducing apoptosis in cancer antigen specific T cells [4]. In a new approach, 
blocking antibodies that either target PD-1 or PD-L1 are used to disable the interaction 
between PD-1 and PD-L1. Thus, the T cells stay active and can target the cancer cells. 
Recently the PD-1 blocking antibody nivolumab was approved by the FDA. Nivolumab 
is clinically used for the treatment of melanoma, metastatic renal cell carcinomas, classi-
cal Hodgkin lymphoma (cHl) and non-small-cell lung carcinoma (NSCLC) [5].

Even though PD-1 is already successfully used as an immunotherapy drug target the 
exact mechanism of the receptor is not fully understood yet [6]. For instance, the sig-
nal transduction from the extracellular domain into the intracellular domain is still a 
matter of debate, enriched by modelling approaches [7–9]. Presumably, the binding of 
PD-L1 induces an active conformation in PD-1 which facilitates the PD-1 signaling cas-
cade inside the T cell. Indeed, conformational changes upon ligand binding were discov-
ered [10]. In a molecular dynamics (MD) simulation the switch from the open to closed 
CC’-loop conformation of PD-1 upon PD-L1 binding was described [11]. In other MD 
simulations the influence of mutations on ligand binding was examined [12, 13]. Also 
the conformational dynamics of PD-L1 were studied with MD [14, 15]. We have also 
performed preliminary investigations [16] which are supplemented in the current work.

In a similar approach, we examine the conformational changes of the BC-loop 
upon binding either PD-L1 or nivolumab. MD studies of PD-1 unbound and bound 
to PD-L1 and the clinically used antibody nivolumab were performed. This provided 
insight into flexibility of residues and conformational movements of the BC-loop 
which may be important for the optimization of already existing PD-1 antibodies or 
the design of new antibodies or small molecular compounds.

Methods
The following notation will be used: PD-1 unbound, PD-1 – PD-L1 and PD-1 – 
nivolumab when the whole simulated system is addressed. PD-1Apo, PD-1PD-L1 and 
PD-1Niv refer specifically to PD-1 within the respective simulated system.
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Preprocessing

The crystal structures PD-1 unbound (3RRQ), PD-1 – PD-L1 (4ZQK) and PD-1 – 
nivolumab (5WT9) were used for simulations. With each binding partner different parts 
of PD-1 crystallized and therefore the files had to be manually curated first. Missing atoms 
and single residues were added with Swiss PDB-Viewer. The C’D-loop (residues 65–92) was 
taken from PD-1 – pembrolizumab (5GGS) and added to each system. The N-loop (25–34) 
was taken from 5WT9 and added to 3RRQ and 4ZQK. The PD-1 structures of each PDB 
file were aligned with VMD to orientate them in the same direction. The missing loops 
were copied and pasted into the PDB files. Hence, each PD-1 included the residues from 25 
to 149 which represent the complete extracellular domain.

Simulation

MD simulations were performed on a node of the Vienna Scientific Cluster (VSC) consist-
ing of two processors (Intel Xeon E5-2650v2, 2.6 GHz, 8 cores from Ivy Bridge-EP family) 
and a GPU (NVIDIA Pascal GeForce GTX 1080) with GROMACS 2018.1 software package 
[17]. The 2018.1 version has an improved performance because long-ranged non-bonded 
interactions can be computed on a single GPU. Also, it offers greater control on the usage 
of the GPUs. The GROMOS 54A7 force field was used to generate the topologies [18]. 
The version 54A7 was published in 2011 and includes four main improvements: new φ/ψ 
torsional angle terms were introduced, new atom type for a charged −CH3 in the choline 
moiety was added, to reproduce free energy of hydration Na+ and Cl− ions were modified 
and additional torsional angles were included. Overall, the GROMOS 54A7 force field has 
improved stability of secondary structures [18]. Proteins were solvated in a cubic box with 
SPC water and a minimum distance to the box edge of 1.0 nm [19]. Na+ and Cl− were added 
to neutralize the net charges. For energy minimization the steepest descent minimization 
algorithm with a step size of 0.01 nm and a maximum of 50,000 steps was applied and then 
stopped once the maximum force was smaller than 0.1 kJ mol− 1 nm− 1. For neighbor search, 
the Verlet cut-off scheme of 1.4 nm was used. To calculate the electrostatic forces, the par-
ticle mesh Ewald algorithm with a cut-off of 1.4 nm was applied. For the Van der Waals 
forces a cut-off of 1.4 nm was adopted. The NVT and NPT equilibration runs took 0.1 ns 
with 5 × 104 steps and a step size of 2 fs. The production runs were carried out for 100 ns 
and 10 × 10 ns with 5 × 107 steps with a step size of 2 fs. Temperature and pressure coupling 
were set to 300 K (velocity rescaling) and 1 bar (Berendsen), respectively. All bonds were 
constraint to their optimal length using the LINCS algorithm. Energies and coordinates 
were saved every 10 ps.

Analysis

RMSF

The root-mean-square fluctuation (RMSF) of atomic positions (i.e. standard deviation) 
gives the displacement of an atom at position x with respect to its time-averaged position x̅. 
Cα atoms were used for least-square fitting of the trajectories to the starting structure and 
RMSF calculations:

(1)RMSF(x) =

√

1

T

∑T

i=1
||xi(ti)− x||2
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where T is the total number of time steps within the respective trajectory. To calculate 
the RMSF, the ten 10 ns long trajectories were combined and treated as if they were a 
single 100 ns long trajectory.

RMSD

The root-mean-square deviation (RSMD) of atomic positions with the BC-loop was cal-
culated after a least-square fit of the Cα backbone of the flanking regions. The RMSD is 
calculated at a time t with respect to a given reference structure at time tref:

where xi(t) is the position of atom i at time t and N is the total number of atoms in that 
part of the structure to which the RMSD refers, in that case the BC-loop.

Clustering

Based on RMSD structures were clustered as described by Daura et al. [20] which con-
sists of the following steps:

1.	 Define each structure as cluster center
2.	 Count number of structures within defined cut-off (here 0.2 nm was set) i.e. neigh-

bors
3.	 Select center with most neighbors, designate it as a cluster and remove set of struc-

tures from matrix
4.	 Repeat until all structures have been assigned to a cluster

Of the biggest 25 clusters the central structures were subjected to non-metric multi-
dimensional scaling to display the structures in a representative two-dimensional space 
[21]:

1.	 Choose a random configuration of points in the two-dimensional space
2.	 Calculate distances between these points
3.	 Arrange points to maximize rank-order correlation between original RMSD matrix 

and new space distance
4.	 Calculate stress and compare to Kruskal’s normalized convergence criterion. If con-

vergence criterion is fulfilled exit, else return to 2.

Hydrogen bonds

The hydrogen bonds were determined with GROMACS 2018.1 software package accord-
ing to the distance and angle of hydrogen donors and acceptors. By default –OH and 
–NH groups were regarded as donors and –O and –N as acceptors. Hydrogen-donor-
acceptor angle and distance cut-offs were set to 30° and 0.35 nm, respectively. Donors 
and acceptors within that threshold were considered to form hydrogen bonds.

(2)RMSD(tref , t) =

√

1

N

∑N

i=1
||xi(t)− xi(tref )||

2
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Non‑bonded interactions

The non-bonded interactions comprise electrostatic and Van der Waals (VdW) inter-
actions. The electrostatic interactions arise from the unequal distribution of charges in 
molecules and are given by the Coulomb potential ECoul. VdW interactions are a combi-
nation of dispersion, repulsion and induction forces and are given by the Lennard-Jones 
(LJ) potential ELJ. To compute ECoul and ELJ with Gromacs 2018.1 a simulation rerun of 
the existing trajectories was invoked. The short-range Coulomb and LJ energies were 
extracted and summed up.

Results and discussion
Three different systems, PD-1 unbound, PD-1 – PD-L1 and PD-1 – nivolumab, were 
each simulated for 100 ns and 10 × 10 ns. Every 10 ps the coordinates of atoms were 
saved. The structures of PD-1 of each system were extracted and timewise concatenated. 
RMSF and RMSD were calculated for the BC-loop and the Daura et al. [20] clustering 
algorithm was performed. Central structures of each cluster, as identified by the Daura 
algorithm, were then subjected to multidimensional scaling to identify common confor-
mations of the BC-loop of PD-1 across different binding states.

The RMSF (Fig.  1) illustrates the influence of the ligands on the flexibility of the 
PD-1 loops. In β-sheet regions the RMSF of PD-1 (independent of the binding part-
ner) is around 0.1 nm, whereas in areas of loops the values differ considerably. In 
the CC’-loop, it has been described that PD-1Apo switches between the open and 
closed conformation whereas PD-L1 shifts the equilibrium towards the closed con-
formation [11]. Our results confirm these finding as, the RMSF of PD-1PD-L1 in the 
CC’-loop is lower than in PD-1Apo. Furthermore, nivolumab binding was found to 
decrease the flexibility of the N-loop. This is plausible, as it is the only ligand that 
directly interacts with the N-loop [22]. The C’D-loop could so far only be crystalized 
when stabilized with pembrolizumab [22]. Here, the C’D-loop was added from the 

Fig. 1  Binding partners influence flexibility of loops. The RMSF of Cαs of PD-1 unbound (black) and bound to 
either PD-L1 (red) or nivolumab (blue), when fitted to its respective first frame are shown. Whereas the impact 
of the binding partners on structured domains is negligible, the RMSF of the loops can change drastically. 
PD-1Apo has the greatest flexibility except for the BC-loop. The fact that PD-L1 seems to induce more flexibility 
in the BC-loop led to detailed examination of the BC-loop
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PD-1 – pembrolizumab system (5GGS) to complete the extracellular domain of PD-1. 
Even though both PD-L1 and nivolumab do not directly interact with the C’D-loop 
they still decrease the flexibility of the C’D-loop. Except for the BC-loop, the RMSF 
is highest in PD-1Apo across all domains. Again, PD-L1 does not directly interact with 
the BC-loop, but whereas PD-L1 still decreases the flexibility in the C’D-loop the 
opposite occurs in the BC-loop. PD-L1 increases the flexibility of the BC-loop signifi-
cantly. Therefore, the BC-loop was further examined.

More than 90% of the structures of PD-1Apo distribute between cluster 2 and 7 in 
a ratio of 82.5 to 10%, respectively when clustering is based on the RMSD of the BC-
loop (Fig.  2a). Two point five percent of the PD-1Apo structures fall into cluster 9. 
Cluster 1 consists of structures of both, PD-1PD-L1 and PD-1Niv. Twenty-five and sixty 
percent of the time the BC-loop of PD-1PD-L1 and PD-1Niv exhibit the same conforma-
tion, respectively. Clusters 3 and 5 do not show any overlaps and contains only struc-
tures of PD-1PD-L1. Cluster 4 consists primarily of structures of PD-1Niv,he structures 
of PD-1Apo and PD-1PD-L1 are negligible (< 1%). Cluster 6 and 8 show again overlaps 
and contain structures of PD-1PD-L1 as well as PD-1Niv. The impact of different cut-
offs on clustering is shown in supplementary Figure 1: Larger cut-off allows for more 
overlaps whereas smaller cutoff yields homogenous clusters, containing configura-
tions from one system only.

The distance map (Fig.  2b) generated with multidimensional scaling [21] shows the 
relationship between the clusters found with the Daura et al. [20] clustering algorithm. 
The central frames of each cluster were scaled into the two-dimensional space and clus-
ters of similar structure appear in proximity. Three distinct areas emerged and were 
named meta-cluster I, II and III. Meta-cluster I consists of clusters of all three systems, 
whereas meta-cluster II and III only consist of clusters from PD-1Apo and PD-1PD-L1, 
respectively. Eighty percent of the time, the BC-loop of PD-1Apo resides in the meta-clus-
ter II. PD-1PD-L1 resides 30% of the time in the meta-cluster III. The BC-loop of PD-1Apo, 
PD-1PD-L1 and PD-1Niv reside 20, 70 and 100% of the time in meta-cluster I. The results 
of the distance map suggest that the BC-loop can exhibit three conformations. Indeed, 
visualization with VMD 19.3 of the structures of the central frames of the clusters 1 to 5 
show three distinct conformations (Fig. 2c). The BC-loop of cluster 1, 4 and 5 (all part of 
meta-cluster I) appear as bundle which is oriented towards the N-terminal end of PD-1. 
Cluster 2 (part of meta-cluster II) and cluster 3 (meta-cluster III) show distinct confor-
mations. The BC-loop of the central structure of cluster 3 appears oriented to the center 
of PD-1. The structures of cluster 2 are in between the bundle of clusters 1, 4, and 5 and 
cluster 3. Based on the visualization of the central frames it is concluded that multidi-
mensional scaling is a well-suited method to preselect frames to identify conformations 
with a molecular visualization program.

To investigate convergence behavior, we generated clusters not only for the whole 
100 ns trajectory but for increasing parts of it, i.e. the first 10 ns, 20 ns, 30 ns etc., 
with a constant cut-off of 0.2 nm. As the simulation samples increasing percentage of 
phase space, the numbers of clusters increase (Supplement Figure  2). Around 70 ns 
the number of clusters of the BC-loop of the PD-1Apo simulation seems to level off at 
18 clusters. This indicates sufficient sampling over configuration space and that the 
system reaches convergence within 100 ns.
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Furthermore, the results suggest a complex mechanism of conformational changes of 
the BC-loop. Depending on the binding partner the conformational change of the BC-
loop is based on the conformational selection or the induced fit model [23]. Both con-
cepts assume a conformational change of the unbound (apo-)protein to bind a ligand. 
The fundamental difference is whether the conformational change happens before or 
after ligand binding. In the induced-fit model the partner induces the active binding 
conformation of the protein. On the hand, in the conformational-selection model the 
active and inactive forms coexist even in absence of a ligand, but the ligand shifts the 
equilibrium to the active conformation [24]. The BC-loop exists in PD-1Apo to 20% in 
conformation I and to 80% in conformation II. Upon binding to nivolumab the equilib-
rium is shifted to 100% of conformation I. PD-L1, on the other hand, induces a BC-loop 

Fig. 2  PD-L1 induces a unique BC-loop conformation. The clustering algorithm as described by Daura 
et al. [20] was applied (a). Colors denote the origin of the structures. Only the first 25 clusters are shown. 
PD-1PD-L1 (red) and PD-1Niv (blue) exhibit for 25 and 60% of the time, respectively the same conformation. 
Over 90% of the structures of PD-1Apo (black) are distributed between cluster 2 and 7. Cluster 3 and 5 contain 
only PD-1PD-L1 structures whereas cluster 4 consist primarily PD-1Niv structures. The number of structures is 
equivalent to the time the BC-loop resided in a certain conformation. b The distance map generated with 
multidimensional scaling [21] shows the relationship between the conformations found with the Daura et al. 
[20] clustering algorithm. Clusters with similar structures are in proximity. Three areas are distinguishable 
(circled by hand) which are named meta-cluster I, II and III. Meta-cluster I is occupied by the PD-1Apo, 
PD-1PD-L1 and PD-1Niv. Meta-cluster II consists of clusters formed by PD-1Apo. Meta-cluster III consists only 
of structures of PD-1PD-L1. This demonstrates a clear shift of the BC-loop conformation in the Nivolumab 
complex. The colors represent the origins of the central frames. c Superimposed crystal structures of the 
central frames of the first five clusters visualized with VMD 1.9.3. Structures of clusters 1, 4 and 5 exhibit a 
similar BC-loop conformation. Cluster 2 and 3 exhibit distinct BC-loop conformations. BC-loop is colored; 
other domains are shown in grey. PD-1Apo structure is shown in cyan instead of black
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conformation which is not exhibited in PD-1Apo. Analysis of the PD-1PD-L1 trajectory has 
shown that after 70 ns the BC-loop switches to conformation III (Fig. 3).

Hydrogen bond and non-bonded interaction energy analyses were done to examine 
potential reasons for the conformational change of the BC-loop upon PD-L1 binding 
and are shown as histograms (Figs. 4 and 5). Overall PD-1 forms more hydrogen bonds 

Fig. 3  Binding of PD-L1 and Nivolumab to PD-1. a Central member structure of cluster 3 of the BC-loop, 
binding to PD-L1; PD1- in grey, with the BC-loop in red sticks and PD-L1 in orange. b Central member 
structure of cluster 1 of the BC-loop, binding to Nivolumab; PD-1 in grey, with the BC-loop in blue sticks and 
Nivolumab in light blue. Hydrogen bonds between PD-1 and Nivolumab observed in this structure indicated 
in green. c, d zoomed in views of (a, b), respectively. PD-1 is in the same orientation in all four panels

Fig. 4  The BC-loop does not form any hydrogen bonds with PD-L1. a The frequencies of the number of 
hydrogen bonds formed between PD-1 and PD-L1 (red) and PD-1 and nivolumab (blue) over the course of 
100 ns are shown. The PD-1 – PD-L1 complex has a peak of 17 formed hydrogen bonds which occur in 1400 
frames (which corresponds to 14 ns). The PD-1 – Nivolumab complex formed 10 hydrogen bonds for 1500 
frames. b Between the BC-loop and PD-L1 no hydrogen bonds are formed. The BC-loop and nivolumab form 
2200 times 4 hydrogen bonds over the course of 100 ns. Also, for 2300 frames no hydrogen bond occurs 
between the BC-loop and nivolumab
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with PD-L1 (peak at 17 hydrogen bonds) than nivolumab (10 hydrogen bonds) over the 
course of 100 ns (Fig.  4a). However, no hydrogen bonds are formed between the BC-
loop and PD-L1 (Fig. 4b). Nivolumab on the other hand forms up to 6 hydrogen bonds 
with the BC-loop during 100 ns. Coherently, the non-bonded interaction energies show 
a similar pattern. The BC-loop does not interact with PD-L1 via VdW or electrostatic 
forces. The non-bonded interaction energy between the BC-loop and nivolumab peaks 
at − 120 kJ mol− 1. The results corroborate with the fact that no interactions between the 
BC-loop and PD-L1 have been mentioned in the literature so far. Indeed, visualization of 
the central frame of cluster 3 (Fig. 3a and c) verify that interaction between the BC-loop 
and PD-L1 is spatial not possible. For nivolumab on the hand evidence of such interac-
tion have been reported. Again, visualization of the central frame of cluster 1 shows that 
hydrogen bonds between the BC-loop and nivolumab are formed (Fig. 3b and d).

In a crystallization experiment Lee et al. [25] concluded (referring to Zak et al. [10]) 
that nivolumab induces a conformation in the BC-loop which is incompatible with 
PD-L1. Based on the results of the MD simulation we cannot confirm this. Admittedly, 
nivolumab induces a conformational change in the BC-loop however, this conforma-
tion is compatible with PD-L1. In fact, the BC-loop shares this conformation when 
bound to PD-L1 for 25% of the time. In another crystallization experiment it has been 
described that the BC-loop is shifted ~ 5.3 Å away when it binds to nivolumab compared 
to PD-L1 [22]. These findings could be confirmed as indeed, 30% of the time the BC-
loop of PD-1PD-L1 is shifted away from the BC-loop of PD-1Niv. As hydrogen bonds and 
non-bonded interactions are not the driver for the conformational changes, we assume 
entropic causes. To investigate this we suggest free energy calculations [10].

Fig. 5  No non-bonded interactions between the BC-loop and PD-L1. a The non-bonded interaction energies 
between PD-1 and PD-L1 (red) and PD-1 and nivolumab (blue) are shown as a histogram and are grouped in 
packages of 100 kJ mol− 1. The non-bonded interaction energy between PD-1 and PD-L1 ranges from − 1000 
to − 2000 kJ mol− 1 with a peak of 2700 frames at − 1600 kJ mol− 1. The energy distribution between PD-1 and 
nivolumab ranges from − 500 to − 1200 kJ mol− 1. The peak is at − 900 kJ mol− 1 with 3100 occurrences. b The 
non-interaction energies between the BC-loop and two ligands is grouped into packages of 10 kJ mol− 1. The 
energy between the BC-loop and PD-L1 peaks at-10 kJ mol− 1. This peak occurs due to the minor distortions 
(between 0 and − 1 kJ mol− 1). The non-bonded interaction energy between the BC-loop and nivolumab 
ranges from 0 to − 250 kJ mol− 1
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Conclusion
The immune checkpoint receptor PD-1 has been identified as a key target in cancer 
immunotherapy. The PD-1 blocking antibody nivolumab which inhibits the PD-L1 bind-
ing was recently approved by the FDA. Even though PD-1 is already used as a drug tar-
get the exact mechanism of the receptor is still unknown. Here we present the results 
of the first MD simulations of PD-1 with a complete extracellular domain and a focus 
on the role of the BC-loop of PD-1 upon binding PD-L1 or nivolumab. Visualization of 
the structures proofs that the combination of Daura et al. [20] clustering and multidi-
mensional scaling is a valid approach to identify conformations. The BC-loop of PD-1 
can exhibit three conformations and occurrence of the conformations depends on the 
binding partner. Furthermore, we identified that upon nivolumab binding the BC-loop 
changes the conformation as described in the conformational selection model. PD-L1, 
on the other hand, does not even directly interact with the BC-loop but it nonetheless 
induces a conformational change in the BC-loop. This allosteric effect could play a cru-
cial role in the activation of the PD-1 receptor.

In the future we will search for movement patterns of PD-1 based on unsupervised 
numerical methods and evidence from the literature.
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Additional file 1: Supplement Figure 1. Comparison of cut-offs. For the clustering algorithm it is necessary to 
define a cut-off (in nm). Structures within the cutoff are seen as similar and are grouped. On the one hand the cut-off 
must be small enough to distinguish between conformations structurally different. On the other hand, it must not 
bet too small to avoid over-differentiation. (A) When the cut-off is set to 0.3 nm five clusters are found. (B) 25 clusters 
are found when the cut-off is set to 0.2 nm. (C) Over 100 clusters are found with a cut-off of 0.1 nm.

Additional file 2: Supplement Figure 2. Incremental clustering indicates convergence of the simulation. Clustering 
was performed for the PD-1Apo simulation with a constant cut-off of 0.2 nm for sub-trajectories of the first 10 ns, 20 ns 
etc., see horizontal axis (time). With increasing length of sub-trajectory the number of clusters increases (vertical axis) 
until it finally levels off at 70 ns. This indicates sufficient sampling allover configuration space and convergence of the 
simulation.
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