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Abstract 

Background:  Antibodies revolutionized cancer treatment over the past decades. 
Despite their successfully application, there are still challenges to overcome to improve 
efficacy, such as the heterogeneous distribution of antibodies within tumors. Tumor 
microenvironment features, such as the distribution of tumor and other cell types and 
the composition of the extracellular matrix may work together to hinder antibodies 
from reaching the target tumor cells. To understand these interactions, we propose 
a framework combining in vitro and in silico models. We took advantage of in vitro 
cancer models previously developed by our group, consisting of tumor cells and fibro‑
blasts co-cultured in 3D within alginate capsules, for reconstruction of tumor microen‑
vironment features.

Results:  In this work, an experimental-computational framework of antibody trans‑
port within alginate capsules was established, assuming a purely diffusive transport, 
combined with an exponential saturation effect that mimics the saturation of binding 
sites on the cell surface. Our tumor microenvironment in vitro models were challenged 
with a fluorescent antibody and its transport recorded using light sheet fluorescence 
microscopy. Diffusion and saturation parameters of the computational model were 
adjusted to reproduce the experimental antibody distribution, with root mean square 
error under 5%. This computational framework is flexible and can simulate different 
random distributions of tumor microenvironment elements (fibroblasts, cancer cells 
and collagen fibers) within the capsule. The random distribution algorithm can be 
tuned to follow the general patterns observed in the experimental models.

Conclusions:  We present a computational and microscopy framework to track and 
simulate antibody transport within the tumor microenvironment that complements 
the previously established in vitro models platform. This framework paves the way to 
the development of a valuable tool to study the influence of different components of 
the tumor microenvironment on antibody transport.
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Background
The value of antibodies as antitumor therapies has been largely demonstrated over the 
last two decades [1]. Despite the generalized success, there are still challenges to over-
come, such as the largely reported poor tissue penetration and heterogeneous dis-
tribution of antibodies within solid tumors [2]. Efficacy of therapeutic antibodies is 
conditioned by several transport barriers, from systemic administration until reaching 
the target cells [3]. These barriers ultimately cause a reduction of the therapeutic mol-
ecule concentration that reaches the target tumor cells, decreasing its therapeutic effect 
[3–5]. Specifically within the tumor microenvironment (TME), higher heterogeneity 
is found when comparing with healthy tissue: tumors present altered vasculature, des-
moplastic and inflammatory microenvironment and extracellular matrix (ECM) altera-
tions [6]. Within the ECM, collagen fibers and glycosaminoglycans (GAGs) have been 
previously described as influencing the transport of therapeutic molecules [7–9]. So, it 
is crucial to assess antibody transport within this intricate network with high impact on 
therapy efficiency.

Experimental (i.e. in vitro, in vivo and ex vivo) and computational (in silico) models 
have been developed to help understand how tumor heterogeneity influences drug dis-
tribution within the TME [6, 10, 11]. Those two types of models can and should be com-
bined to develop a comprehensive framework to study and try to answer that question.

Several computational models have been developed over the years to describe and 
simulate the transport and interactions of drugs within the tumor by considering the 
main transport mechanisms, such as diffusion and convection, degradation and internal-
ization [10, 12–16]. These models can be used to study the complex interaction between 
several tumor components and drug pharmacokinetics and distribution. They can repre-
sent the tumor with different levels of detail, from a simplistic homogeneous tumor mass 
to complex heterogeneous non-equally distant cancer cells. However, they do not con-
sider the impact on antibody distribution of specific elements of the TME, such as col-
lagen fibers, that have been reported to have a severe influence in this distribution [7–9].

The assessment and tracking of distribution of drugs in  vivo, in tumor tissue or in 
tumor-like structures or complex cell cultures/tissue mimetics is also technically chal-
lenging [13, 17] and typically relies on methods that do not allow real-time tracing of 
antibody distribution [17–20] due to limitations of microscopy techniques and of the 
biological sample [17, 21]. Our group has been developing modular 3D cell models of 
the TME [22, 23]. These in vitro cancer models comprise cancer cells and other cellular 
components of the TME, such as fibroblasts, encapsulated in alginate matrices. We have 
shown that long-term culture led to recapitulation of specific TME, leading to pheno-
typic features of disease progression [22, 23].

In this work, 3D in  vitro cancer models were used as an experimental platform to 
assess antibody distribution within the TME. Light sheet fluorescence microscopy 
(LSFM) was implemented to perform real-time antibody tracking with high resolution 
3D imaging over time, together with low photobleaching of the sample fluorescence 
[24]. An in silico model of antibody diffusion within the TME, developed specifically as 
a complement to the 3D in vitro models, was calibrated based on these data. Assuming 
a purely diffusive antibody transport and considering that binding sites on cell surface 
become saturated over time, Fick’s law was combined with an exponential saturation 



Page 3 of 19Cartaxo et al. BMC Bioinformatics          (2020) 21:529 	

equation. The computational model was able to describe the antibody concentration 
profile observed experimentally with very good agreement. Additionally, we show this 
platform can be used to generate random spatial distributions of the TME elements 
(tumor cell spheroids, fibroblasts and ECM fibers) inside the capsule, following a tunable 
stochastic approach.

Results
Experimental observation of antibody diffusion through 3D capsule

Antibody transport within the alginate capsule was tracked using a custom-made LSFM 
setup. A fluorescent anti-CD44 antibody was used to challenge the encapsulated co-
culture of tumor cells and fibroblasts. Over time, fluorescent signal was increasingly 
detected in cells within the capsules, following a radial trend from the periphery to the 
inside of the capsule (Additional file  2: Movie 1). The central plane of the 3D capsule 
acquisition was selected to allow visualization and model calibration (Fig. 1, Additional 
file 3: Movie 2).

Image processing was used to trace antibody fluorescent signal profiles in defined 
regions of interest (ROIs), corresponding to cell spheroids or clusters of few cells 
(Fig. 2a). Despite signal fluctuations, that can be a consequence of sample drift during 
the LSFM acquisition, cell movement or changes in cell morphology (Additional file 3: 
Movie 2), these profiles follow a general S-shaped curve (Fig. 2b–f). For cell cluster II, 
close to the capsule periphery, we observed a fast increase in fluorescence intensity, 
which stabilized early into a plateau (Fig. 2c). For cell cluster V, further away from the 
periphery, we observed a delay in the increase in fluorescence intensity and the plateau 
was reached at least 30 min later (Fig. 2f ).

The delay time had a positive correlation with the cell cluster distance to the capsule 
periphery, although with a high variability (Fig.  2b-f, Figure S1A). It is reasonable to 
expect the presence of heterogeneous physical and biological barriers in the antibody 
diffusion path which can influence the delay time. For example, cluster III was farther 
away from the periphery than cluster I, but both show a similar delay (Figure S1A).

The experimental fluorescence profiles were fitted with mathematical models for 
S-shaped curves, often used to describe population growth [25]. All selected clusters 
had the best fit, with R2 > 0.98, with the Richards model, given by

in which P is the mean fluorescence and α, β, γ and M are constants [25]. In this study, M 
represents maximum mean fluorescence (upper asymptote), while β (intrinsic growth) 
and γ (asymmetry in relation to the inflection point) describe the binding dynamics of 
the antibody to the antigen on the surface of cells [25, 26].

(1)P(t) =
M

[1+ α exp (−Mβt)]γ

α =

[(
M

P0

) 1
γ

− 1

]
exp (Mβt0)
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Fig. 1  Fluorescence after antibody challenge for a representative capsule section. a 0 min; b 30 min; c 
90 min; d 120 min; e 150 min; f 180 min after the antibody challenge; scale bar: 100 µm
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Fig. 2  Fluorescence profiles for selected cell clusters and fitted curves. a Definition of selected cell clusters 
(scale bar: 100 µm); b–f Experimental fluorescence profiles from LSFM data, averaged over the whole cell 
cluster section (red dots), and fitted curves (blue lines) for the selected cell clusters I through V, respectively. 
Curve parameters for Eqs. (1–2) are shown in the Table 1

Table 1  Properties for selected cell clusters and parameters for the adjusted fluorescence 
profiles

Cell cluster Distance to capsule 
periphery (μm)

Area (μm2) Fitted parameters

M β γ R2

I 83.0 232 54.1 6.42 × 10–4 4.40 0.987

II 88.1 270 80.2 4.88 × 10–4 15.1 0.988

III 115.0 211 55.2 10.1 × 10–4 2.44 0.998

IV 124.7 265 109 4.40 × 10–4 1.87 0.998

V 127.3 439 75.0 7.09 × 10–4 1.78 0.993
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The fitted smoothed curves describe well the overall fluorescence intensity pro-
files (Fig.  2, Table  1). Nonetheless, for some of the cell clusters, when the fluores-
cence intensity becomes detectable, the adjusted curve showed a slight bias towards a 
shorter delay than was seen in the experimental data (Fig. 2c, e). Consistently with the 
previous observations, the curve parameters do not follow a clear trend depending on 
the cluster distance to the capsule periphery or the cluster size.

Computational model emulates antibody transport within the capsule

A digitization approach was used to obtain a capsule section equivalent to the one used 
in the experimental study (Figure S2A-C). The initial diffusivities (Figure S2D) were set 
taking into account the range of values for this parameter reported on the literature 
[27–30] and the experimental results over time (Fig. 1). By changing Dmedium the “radi-
ally moving front” of the antibody distribution can be controlled. Based on experimen-
tal observations Dmedium was fixed at 0.15  μm2/s and Dcell was subsequently fixed at 
0.0015 μm2/s.

The computational model combining Fick’s law with exponential saturation, as 
described in the “Methods” section in Eqs. (3) and (4), has antibody distribution profiles 
over time which are very similar to the ones obtained experimentally (Fig. 3, Additional 
file  4: Movie 3). The model diffusivity coefficients decrease over time on the exposed 
surface of the cell spheroids, as imposed by the saturation equation (Figure S3, Addi-
tional file 5: Movie 4).

Antibody concentration profiles in the cell clusters were adjusted to account for bind-
ing and saturation of the antigens. To fit the computational model, the parameters of the 
saturation equation, Eq.  (4), were adjusted by minimizing the root mean square error 
(RMSE) between the normalized experimental and computational profiles, for the 5 
selected cell clusters (Fig. 4a). The proposed model was able to represent the experimen-
tal profiles with an RMSE up to 5% (Fig. 4b–f and Table 2). The best parameters varied 
between cell clusters, even for clusters with similar distance to the capsule periphery 
such as clusters I and II and clusters IV and V.

Even though a 5% RMSE was considered low, the systematic deviation observed con-
sistently in the same direction across cell clusters (lower log phase slope for the com-
putational model) suggests the influence of biological or biophysical mechanisms not 
considered in the model. Consistently, representing signal delay as function of cluster 
distance to capsule periphery showed that the computational delay is smaller than the 
experimental by approximately 10 min (Figure S1A). Comparing the slope against clus-
ter area showed that, with the exception of cluster II, there is an approximately constant 
deviation between the computational and experimental models (Figure S1B).

The computational model was also tested without the saturation equation, Eq. (4). The 
sigmoidal profile observed experimentally cannot be replicated with any combination of 
the adjusted parameters, in this case Dcell and Dmedium (Figure S4 and Table S1), meaning 
that a purely diffusive model is unable to explain the behavior observed in the experi-
mental runs.
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Implementation of a modular framework: tuned random distribution of TME elements 

inside the capsule

The framework used to create the capsules allows us to simulate several distinct 
but equivalent capsules, i.e. with the same number of cancer cell spheroids and 
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Fig. 3  Simulated antibody concentration profile throughout the digitized capsule, over time. Computational 
images for selected timepoints using saturation parameters a = 1, n = 1 and p = 1: a 0 min; b 30 min; c 
90 min; d 120 min; e 150 min; f 180 min; white circumference represents the capsule periphery; scale bar: 
100 µm
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fibroblasts, but with different distribution. It is based on a tunable stochastic algo-
rithm, as detailed in the “Methods” section, which mimics the observed experi-
mental distributions. Along with the cancer cells and fibroblasts, we also included 
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Fig. 4  Computational antibody concentration profiles after fitting of the saturation parameters a, n and p 
to selected cell clusters. a Identification of selected cell clusters within the digitized capsule corresponding 
to the experimental clusters (scale bar: 100 µm); b–f Experimental mean fluorescence profiles smoothed 
from experimental LSFM data (red line) and fitted computational curves (blue line) for selected cell clusters I 
through V, respectively

Table 2  Fitted saturation parameters for the computational model and RMSE

Cell cluster a n p RMSE

I 1.01 1.73 1.33 0.05

II 1.00 1.00 1.00 0.01

III 1.13 0.53 1.34 0.04

IV 0.43 1.91 1.40 0.03

V 0.79 1.57 1.42 0.03



Page 9 of 19Cartaxo et al. BMC Bioinformatics          (2020) 21:529 	

a representation for collagen fibers. Fibril forming collagens are highly abundant in 
solid tumors, becoming increasing crosslinked and linearized along cancer progres-
sion and leading to increased compaction and stiffening of the ECM [31]. Therefore, 
in the two-dimensional representation of the capsule, we defined collagen fibers as a 
linear barrier. Some examples of the versatility of this framework are shown in Figure 
S5.

This framework was tested in silico by creating two identical capsules, one with and 
one without collagen fibers (Fig. 5a, scenarios i and ii respectively). The diffusivity coef-
ficient for the collagen fiber was set as zero (total barrier), as it has been reported that 
this ECM component hinders antibody diffusion [7–9], while the remaining TME ele-
ments maintained the previously described diffusivity parameters (Fig.  5b). Antibody 
concentration distributions were compared for both capsules for the second and last 

a b a b

c d c

e e

d

Fig. 5  Example of a tuned stochastic computational capsule with and without fibers. Simulation with 
Dmedium = 0.15 μm2/s, Dcell = 0.0015 μm2/s, a = 1, n = 1, and p = 1, for two scenarious: i without fibers and 
ii with fibers. a Graphical representation of one random tuned capsule, with the indication of the selected 
clusters; b Initial diffusivity coefficients throughout the capsule; c–d Antibody concentration for two different 
time points (30 and 180 min, respectively); e Antibody concentration profile for the three cell clusters 
identified in a (blue—cluster 1, orange—cluster 2, green—cluster 3); scale bar: 100 µm
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time frames (Fig. 5c, d). For the capsule without fibers, the antibody diffuses radially and 
homogeneously to the interior of the capsule (Fig.  5c, d, scenario i). When fibers are 
added, antibody distribution throughout the capsule is highly heterogeneous as fibers 
perpendicularly aligned to the diffusion direction retain the antibody (Fig.  5c, d, sce-
nario ii). This difference is also clear in the antibody concentration profiles for the three 
selected clusters in each scenario (Fig. 5e). Cluster 1 is near the periphery and the anti-
body diffusion profile is very similar for both settings. Cluster 2 is in the internal portion 
of the capsule and is surrounded by fibers that impede diffusion, which in turn virtually 
nullifies the antibody concentration. Finally, cluster 3 displays an intermediate situation, 
the antibody concentration profile in the presence of fibers follows a similar trend than 
in the absence of fibers but with lower maximum.

This theoretical simulation shows the impact of heterogeneous antibody retention 
within the ECM in antibody transport to the cell. Additional experimental data from 
capsules containing co-cultures with distinct collagen ECM contents is necessary to vali-
date the representation of collagen and other ECM components.

Discussion
In the present work, we developed a computational model that reproduces in silico anti-
body transport within a 3D in vitro cancer model. The in silico model was trained with 
live tracking data of a fluorescent antibody, generated by LSFM. This microscopic tech-
nique allowed us to assess which cells within the alginate capsules, were binding to the 
antibody and to what extent. LSFM overcomes the limitations of classical fluorescent 
microscopy techniques, as it provides a good optical sectioning for volumetric render-
ing, being less aggressive to fluorophores and sample, reducing photo-bleaching and 
phototoxicity [24].

Experimental results show that the time delay until a detectable fluorescence intensity 
was attained for each cell cluster has a weak linear correlation with cell cluster distance 
to the capsule periphery. This hints at the capsule interior being an anisotropic medium 
with some degree of heterogeneity. Molecules secreted by the cells, such as collagens 
and glycosaminoglycans, cannot be detected under the microscope and cause antibody 
retention [7–9], being likely responsible by some of the observed gaps between the com-
putational and experimental models. Additionally, it may be associated with heterogene-
ous antibody presentation, in particular because there are two cell types being analyzed 
together.

We assumed a purely diffusive mechanism of antibody transport, i.e. antibody trans-
port is controlled exclusively by concentration gradients. Convection was considered 
negligible since no significant flow of culture medium was imposed on the experimental 
setup. The lack of significant flow implies a near zero Péclet number [32] and, therefore, 
corresponds to a diffusion-driven transport. However, convection could be incorporated 
in the model for different experimental conditions. The antibody diffusion coefficient 
in the capsule (Dmedium) is lower than reference values found in the literature, which 
range from 0.6 μm2/s [28] to 13 μm2/s [29]. Both works used tumors models implanted 
or grown in mice to estimate the diffusivity of a fluorescent antibody, the first across 
the blood vessel walls and in the interstitium, the second within the vessels around the 
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tumor region. The lower diffusivity should be the result of combined resistance by the 
alginate network and the ECM deposition within the capsule [22, 23].

Kinetic equations for antibody binding described in the literature [33, 34] require a 
priori knowledge of kinetic parameters, such as binding and dissociation constants. 
Because these values are not always available, we opted for a simpler approach, where 
a generic exponential equation was used to describe the saturation of binding sites as 
the antibody concentration increases and less antigens become available. This generic 
approach means the computational model can also be applied directly to study drugs 
other than antibodies. Our simulated antibody distribution profiles showed that binding 
site saturation can be correctly represented using this approach. The saturation param-
eters a, n and p control the shape of the sigmoidal curve (Figure S6). Parameters n and 
p change the sigmoidal curve by controlling its slope. So, n and p can be biologically 
correlated with ease of antibody binding to the cell cluster. As n increases, a longer time 
is needed to observe any reduction in the diffusivity coefficient. As such, n can be cor-
related with the initial contact of the antibody to the cell cluster, when the antibody con-
centration is very small. Conversely, p controls the stages closer to saturation, when a 
much higher antibody concentration is present on the cell clusters. Parameter a controls 
mainly the time required to reach the plateau. Thus, a can be correlated with the amount 
of available binding sites on the cell cluster or with binding velocity. Ergo, cell clusters 
with smaller a value require a higher antibody concentration to bind to all the available 
binding sites.

Computational model parameters were optimized to fit each selected cell cluster. This 
means that, for each fitted model, all clusters were given the same a, n and p parameters 
as the selected cluster. Following this procedure, we observed that different parameters 
fit different clusters. It was not possible to find a combination of a, n and p that provided 
a good fit (RMSE < 5%) for all the cell clusters simultaneously. A modest but systematic 
deviation was observed in the simulated fluorescence profiles for all cell clusters, which 
suggests mechanisms that are not being considered are interfering with the antibody 
transport. Parameters for the saturation equation should be consistent across cell clus-
ters, which suggests ECM components should be assessed experimentally together with 
antibody distribution so their impact in antibody transport can be included in the com-
putational model. Expanding the 2D in silico model into a 3D representation of the full 
capsule is also likely to reduce inconsistencies among cell clusters by considering diffu-
sive transport through space and objects in adjacent planes.

The combined experimental and computational framework here presented can be used 
as basis for future work, exploring experimental models composed of distinct tumor cell 
lines and additional tumor microenvironment cellular components, resulting in differ-
ent ECM compositions. This will allow to study antibody transport throughout specific 
TME features, and give a relevant measure its heterogeneity and defining factors.

Conclusions
We describe a computational model that reproduces antibody transport within an 
in  vitro tumor microenvironment model, containing different cellular components. 
Moreover, we showed that the combination of 3D in vitro cell models and light sheet 
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fluorescence microscopy enables the experimental assessment of therapeutic antibody 
distribution within the tumor microenvironment. Drug molecules with different prop-
erties (different sizes and charges), ranging from small molecules such as chemothera-
peutic drugs, to larger molecules such as antibodies, can be studied using the same 
approach.

Ultimately, the combined experimental and computational framework can be 
employed not only to decipher how different elements within the TME can influence 
drug transport, but also, once that influence is understood, to work as a predictive tool. 
This would help reducing experimental burden and costs by performing a computational 
screening of specific conditions prior to experimental testing.

Methods
Experimental setup, data collection and processing

Cell lines and 2D cell culture

NCI-H157 (#CRL-5802; from now on referred as H157) Non-Small Cell Lung Carci-
noma (NSCLC) cell line was obtained from American Type Culture Collection (ATCC). 
Human Dermal Fibroblasts (hDFs) isolated from human skin were obtained from Inno-
prot. Cell were routinely screened for mycoplasma contamination by PCR (Eurofins 
Genomics Europe Applied Genomics GmbH, Germany). Cells were cultured under 2D 
static conditions, maintained at 37 ºC in an incubator with humidified atmosphere con-
taining 5% CO2 and 21% of O2.

Tumor cells were sub-cultured twice a week with a seeding density of 1 × 104 cell/cm2 
and maintained in Tumor Cell Culture Medium, composed of Dulbecco’s Modified Eagle 
Medium (DMEM) supplemented with 1 mM sodium pyruvate (Life Technologies), 12 mM 
HEPES (Life Technologies) and 0.1  mM non-essential amino acids (Life Technologies). 
hDFs were split once a week, at a seeding density of 0.5 × 104  cell/cm2 and cultured in 
Iscove’s Modified Dulbecco’s Medium (IMDM, Life Technologies) supplemented with 10% 
(v/v) fetal bovine serum (Gibco) and 100 U/mL penicillin–streptomycin (Gibco).

Cell microencapsulation and stirred suspension culture

H157 cell spheroids were generated in all-baffled spinner-flasks with a straight blade 
paddle impeller (Corning Life Sciences), according to the aggregation protocol previ-
ously established in-house [35]. Spheroids were collected 3 days after spinner inocula-
tion for the establishment of co-cultures, as described previously [23]. Briefly, 2 × 104 
spheroids were mixed with a single cell suspension of hDFs and the mixture was dis-
persed in 1.1% (w/v) of Ultrapure Ca2+ MVG alginate (UP MVG NovaMatrix, Pro-
nova Biomedical), dissolved in 0.9% (w/v) NaCl solution [22, 23]. Microencapsulation 
was performed using an electrostatic bead generator (Nisco Encapsulator) with an air 
flow rate of 10 mL/h, at 5.3 V with air pressure of 1 bar, to generate capsules of approxi-
mately 700 μm; alginate droplets were cross-linked in a 20 mM BaCl2 bath. Encapsulated 
co-cultures were maintained for 2  weeks under agitation (shake flasks, 80  rpm), with 
medium exchange twice a week (half of the volume replaced by fresh Tumor Cell Culture 
Medium), to allow time for the build up of TME features [23].
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Light sheet fluorescence microscopy setup

All the images were acquired with a custom-made LSFM system, an improved version 
of the SPIM-fluid system [36]. The illumination path consists in three CW lasers with 
excitation wavelengths of 488, 561 and 637  nm (Cobolt; MLD 50 mW, DPL 100 mW 
and MLD 150 mW, respectively). Laser beams are expanded using a telescope system, 
composed of two achromatic doublets [Thorlabs, AC254-050-A-ML (f = 50  mm) and 
AC254-200-A-ML (f = 200  mm)], creating a flat top Gaussian beam profile. The light 
sheet is created by a pair of galvanometric mirrors (Thorlabs, GVSM002), which piv-
oting planes are properly conjugated with the back focal aperture of the objective lens 
(Nikon, 4x PlanFluor NA 0.13). Double side illumination is achieved by duplicating these 
elements and adding a 50/50 beamsplitter cube (Thorlabs, CCM1-BS013). A relay lens 
set, with two achromatic lenses [Thorlabs, AC254-075-A-ML (f = 75 mm)] is used as a 
bridge, so optical planes are properly conjugated in the right arm. In the detection path, 
a water dipping objective (Nikon 10x 0.3) is used to collect the generated fluorescence 
from the top of the incubation chamber, as in an up-right microscope configuration. An 
achromatic doublet with focal distance of 200 mm (AC254-200-A-ML) is used to form 
the image onto the sCMOS camera chip (Hamamatsu Orca Flash4.0). Different emis-
sions are selected using a motorized filter wheel (Thorlabs, FW102C), equipped with 
three filters (Chroma and Semrock: 520/15 (GFP), 590/50, 638LP (Cell tracker deep 
red)). The scanning of the sample is performed by translation of the whole physiologi-
cal chamber with a motor (PI M-501.1DG) through a fixed horizontal light sheet plane 
(Figure S7). The Flexi-SPIM microscope features a custom developed software based on 
LabVIEW (National Instruments). This software allows the user to access settings of the 
various devices on a single graphical user interface. An Arduino UNO board, connected 
via USB to our workstation, is integrated in the LabVIEW software providing control 
of the shutters, bright-field illumination and sample rotation. The custom-made LSFM 
allows for different possibilities for the sample mounting. In order to provide flexible, 
fast and easy-to-use sample loading capabilities, an imaging chamber was designed and 
3D printed using fluorinated ethylene propylene (FEP). FEP presents a refractive index 
similar to water (1.33) and is CO2 permeable. So, it allows for live imaging on speci-
mens using water-dipping objectives. Prior to imaging acquisition, samples were loaded 
into FEP tubes and transported towards the detection objective field of view using a pro-
grammable syringe pump (Tecan, Cavro Centris). Once here, the two motors can rotate 
the sample, in order to choose the view of interest. This mounting system offers the pos-
sibility to easily insert, aspirate and discard the specimens without the need of agarose, 
enabling the possibility for high-throughput studies with relatively big samples (up to 
1 mm diameter).

Antibody challenge, image acquisition and processing

The fluorescent antibody (anti-CD44 Monoclonal Antibody (IM7), PE, eBioscience) was 
diluted in Tumor Cell Culture Medium, to a final concentration of 13 µg/mL, close to the 
range of therapeutic antibody concentration found in patient serum [37, 38].

Individual capsules were harvested from culture and loaded into the microscope tube 
in order to obtain a control image of the intrinsic autofluorescence and to assess general 
capsule features (in the bright-field). The capsule was then removed from the FEP tube, 
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immersed in the antibody solution and reloaded in the microscope. Fluorescence was 
acquired in the 561 nm laser line. A 3D stack of the capsule containing 235 planes sepa-
rated by 3 µm, covering 705 µm, was acquired every 2 min. Acquisition was performed 
over a total of 3 h. Images were acquired with a pixel size of 0.65 µm.

The fluorescence intensity profiles for selected cell clusters were obtained from the 
central plane of the capsule. Each cluster was marked using a ROI defined by a circu-
lar domain. The fluorescence intensity over time was integrated and converted to a 
profile. All image processing was performed using Image J (Rasband, W.S., ImageJ, U. 
S. National Institutes of Health, Bethesda, Maryland, USA, https​://image​j.nih.gov/ij/, 
1997–2018), version 1.52i. Further details on image processing are described in the Sup-
plementary Methods (Additional file 1).

To smooth the experimental data noise, the five cluster profiles were fitted to growth 
curve models [25] and the model type showing the best fit (highest R2) was selected. For 
comparison between the profiles of the selected clusters, the delay time and the slope 
of log phase of the curve were calculated. The first of these parameters can be seen as a 
measurement of the time required for the antibody to reach that cell cluster in sufficient 
concentration to be detected. It was calculated as the time interval from the beginning 
of the experiment until the mean fluorescence value became larger than 5% of the total 
achieved fluorescence for that selected cluster. The slope of the log phase was obtained 
by calculating the slope of a linear fit, adjusted for this phase alone. For consistency, we 
assumed log phase of the curve to correspond to the portion of the model that takes 
place when the measured value (i.e. fluorescence and antibody concentration) corre-
sponds to 15–85% of its maximum observed value.

Antibody diffusion model within the alginate capsule

Antibody transport within the alginate capsule was assumed to be purely diffusional. In 
fact, assuming the capsule is immersed in a static fluid, no relevant convective transport 
is expected to occur [39]. This diffusive behavior is modelled by Fick’s second law, which 
in bidimensional space is defined by

in which D is the diffusion coefficient (Dmedium for the medium and Dcell for the cells), 
C is the concentration of the antibody, t is the time, and x and y are the Cartesian 
coordinates.

Cells detain a limited number of antigens where antibodies can bind. So, as the anti-
body binds, the number of available binding sites on the cell surface is reduced until 
reaching saturation, in which all or the vast majority of the binding sites are bound to an 
antibody molecule. This biological effect can be translated in terms of variation of dif-
fusivity of the antibody in the cells and was assumed to follow an exponential saturation 
curve described by

(3)
∂C

∂t
= D

(
∂2C

∂x2
+

∂2C

∂y2

)

(4)Dt+�t
cell = Dt

cell × exp

(
−a×

Cn
norm

(1− Cnorm)
p

)

https://imagej.nih.gov/ij/
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in which a, n and p are adjustable parameters, Dcell is the diffusivity coefficient in the 
cells and Cnorm is a normalized concentration. The latter takes into account the fact that 
the concentration at which the cells get saturated is much smaller than the antibody con-
centration in the medium and is given by

in which Cinj is the antibody concentration of injection and Ct
i,j is the concentration of 

antibody in a cell localized in the position i, j.
The model proposed here works under the following assumptions: (i) no significant 

antibody degradation occurs; (ii) the initial antibody concentration inside the capsule 
is zero; (iii) cell growth and death are not relevant; (iv) cell movement is neglected; (v) 
ECM formation, degradation or re-structure is negligible within the time interval of the 
experiment; (vi) initial Dcell was set as being 100 smaller than initial Dmedium for all cells 
(single cells, cancer cell spheroids and fibroblasts) and (vi) Dmedium is constant over time 
and through the extracellular space inside the capsule.

Additionally, we also consider that antibody diffusivity within the spheroid varied with 
the spheroid radius according with

in which Dcell
d is the diffusivity coefficient of a cell in the spheroid whose distance to the 

cancer spheroid center is d, Dcell
max is the diffusivity coefficient of the cells located in the 

outer layer of the spheroid and rsph is the spheroid radius.

Computational model fitting and simulation

Definition of the initial setup: capsule domain

The computational model and all simulations were implemented and run in Python (ver-
sion 3.7). To numerically solve Fick’s second law in Eq. (3), the finite differences method 
was applied. This method to solve differential equations requires a discretized domain. 
So, a two-dimensional square grid (mesh) with 200 × 200 equally spaced nodes and a 
1000 µm side was created. Method convergence was evaluated as described in Supple-
mentary Methods section and Figure S8 (Additional file  1). Each element (node) was 
assigned a range of intrinsic attributes (coordinates: x and y; type: cancer cell, fibroblast 
or ECM; diffusivity; and concentration). This grid is further split between two major 
domains: a central circular domain, representing the alginate capsule (centered in the 
mesh and with a radius of 350 µm) and its surrounding medium, representing the culture 
medium outside the alginate capsule. For the distribution of the TME elements within 
the digital capsule, two alternative approaches were used (Fig. 6). In one approach, the 
distribution was obtained by digitization of an experimental capsule slice. The alterna-
tive approach entailed the random distribution of TME elements by the application of a 
tuned algorithm based on theoretical assumptions.

(5)Cnorm =

Ct
i,j

Cinj × 0.01

(6)Dd
cell = Dmax

cell ×

(
d

rsph

)
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Capsule digitization from experimental capsule images

Digitization of the capsule allowed to reproduce the experimental capsule in silico, with 
cancer cell spheroids and fibroblasts localized in the same positions. Based on the last 
frame of the experimental antibody diffusion video for a specific capsule slice (Addi-
tional file 3: Movie 2), Python Imaging Library (PIL) was used to convert the figure into 
a binary input (Fig. 6a). The cancer cell spheroid was added manually, according with the 
contrast phase images acquired experimentally.

Tunable random distribution of TME elements

A stochastic framework, in which the TME elements are randomly distributed inside 
the capsule was also implemented. This process is tunable by the user who can set the 
total number and preferential distribution of each TME element to include in the cap-
sule (Fig. 6b). To exemplify this modular nature, two capsules were created, both with 
the same cancer cell and fibroblast distribution but only one included collagen fibers. 
Cancer cells were allocated on a single circular cell cluster, which was randomly placed 
within the capsule. Fibroblasts were randomly distributed, with a preference towards the 
outer ring (comprising 20% of the capsule radius), both as single cells and as small clus-
ters. They were defined with a radius of 11.5 µm [40] and 17.5 µm (from experimental 
LSFM images) for single cells and clusters, respectively. The cell number and distribution 
were based on theoretical assumptions from the observation of several capsule slices and 
previous data [23]. Collagen fibers were randomly distributed, within the unallocated 

a b

Fig. 6  Experimental and computational workflow. a Methodology applied in the digitized capsule approach 
(LSFM: light sheet fluorescence microscopy). b Methodology applied in the tunable stochastic approach on 
an example
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capsule space and were assumed to have 30 μm length [41], 4 possible orientations (0°, 
45°, 90°, 135°) and zero diffusivity. The overall process of model development is schema-
tized in the workflow in Figure S9 and Fig. 6b.

Benchmark of the computational model with experimental data

Experimental fluorescence profiles and computational antibody concentration pro-
files were normalized so as to vary between 0 and 1 and thus allow their comparison 
(Fig. 6a). The benchmarking of the computational model by the experimental data was 
performed by implementing the Broyden-Fletcher-Goldfarb-Shanno (BFGS) optimiza-
tion algorithm to find the saturation parameters a, n and p of Eq. (4) which minimize the 
root mean square error (RMSE) for a set of selected cell clusters. The RMSE between the 
experimental and computational normalized profiles is given by

in which n is the number of points in which computational and experimental values are 
compared, ŷi is the predicted value from the computational model and yi is the observed 
values in the experiments.

All cells were assumed to be target cells of the antibody, since CD44 is detected in both 
hDFs [42] and H157 cells [43].

Boundary conditions

The capsule external domain was defined as having a fixed antibody concentration of 
13 μg/mL, as in the experimental setup. We assume that, for the modelled timeframe, 
the depletion of the medium is not significant since the volume of antibody solution is 
two orders of magnitude higher than the capsule volume.
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