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Abstract 

Background:  In recent years, to investigate challenging bioinformatics problems, the 
utilization of multiple genomic and proteomic sources has become immensely popular 
among researchers. One such issue is feature or gene selection and identifying relevant 
and non-redundant marker genes from high dimensional gene expression data sets. In 
that context, designing an efficient feature selection algorithm exploiting knowledge 
from multiple potential biological resources may be an effective way to understand the 
spectrum of cancer or other diseases with applications in specific epidemiology for a 
particular population.

Results:  In the current article, we design the feature selection and marker gene detec-
tion as a multi-view multi-objective clustering problem. Regarding that, we propose an 
Unsupervised Multi-View Multi-Objective clustering-based gene selection approach 
called UMVMO-select. Three important resources of biological data (gene ontology, 
protein interaction data, protein sequence) along with gene expression values are 
collectively utilized to design two different views. UMVMO-select aims to reduce gene 
space without/minimally compromising the sample classification efficiency and deter-
mines relevant and non-redundant gene markers from three cancer gene expression 
benchmark data sets.

Conclusion:  A thorough comparative analysis has been performed with five clus-
tering and nine existing feature selection methods with respect to several internal 
and external validity metrics. Obtained results reveal the supremacy of the proposed 
method. Reported results are also validated through a proper biological significance 
test and heatmap plotting.

Keywords:  Gene selection, Sample classification, Gene ontology (GO), Protein–protein 
interaction network (PPIN), Multi-view learning, Multi-objective clustering, Gene 
similarity measures
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Background
The aim of analyzing microarray gene expression data is to expose meaningful bio-
logical information embedded within it, which in turn helps diagnose, prognosis, and 
determine the optimal treatment plan for any disease. Sample classification is one 
such gene expression data analysis technique that lets researchers identify categories 
of unknown diseased samples based on expression levels of genes. However, with the 
ever-increasing newly discovered biological data, handling the high-dimensional gene 
expression data sets has become a genuine problem which seeks a potential solution. 
The gene expression data set consists of expression values of thousands of genes, 
where only a small fraction of them shows a strong correlation with the targeted phe-
notypes. Therefore, as a popular solution of ‘Curse of dimensionality’ [1], in the past 
few years, various gene (or feature) selection methods [2–4] have been invented by 
researchers. Those methods aim to discard redundant genes from expression data sets 
and keep only a smaller subset of relevant genes that effectively participate in sam-
ple classification. These relevant and non-redundant genes are often recognized as 
disease-related genes or gene-markers [5–7], and they have a significant impact on 
genetic studies. Existing research indicates that genetic markers are highly involved in 
different cancer pathways; hence they can be useful for diagnosing and assessing drug 
efficacy and toxicity.

Owing to the nature of the problem, the biological data can be interpreted in differ-
ent ways. In short, biological data are often multi-faceted or have multiple views. For 
example, characteristics of genes for a particular genome can be obtained from—(1) 
gene expression data in the form of expression levels; (2) Gene Ontology (GO) express-
ing semantic functionalities; (3) Protein–Protein-Interaction Network (PPIN) in the 
form of functional interactions between corresponding protein molecules; (4) protein 
sequence data in the form of encoded structural information of corresponding protein 
molecules and, etc. Although in recent years, several clustering-based feature-selection 
strategies [3, 8, 9] have been developed, but most of them follow single-view approaches, 
i.e., consider a single out of several available resources (mostly gene expression data [5] 
or GO [3]). Single-faceted or single-view clustering [10] algorithms refrain from consid-
ering several aspects of data-properties represented by other views. In contrast, consid-
ering multi-faceted biological data and treating them as multiple views while designing 
a clustering-based gene-selection method can reveal deep insights of functional relat-
edness between genes. Hence, multi-view clustering is believed to be more efficient for 
gene selection compared to single-view clustering techniques [11–13]. It is an exciting 
research challenge to combine multiple views or sources of the same set of instances to 
get a better clustering performance.

Recent advances of single-view clustering methods applied to complex biological data 
sets have proven the superiority of their multi-objective versions over single-objective 
counterparts [14, 15]. Hence, this fact must be applicable for multi-view clustering 
techniques as well. Motivated by this, in this current article, we propose an improved 
Unsupervised feature (gene) selection approach through a Multi-View Multi-Objective 
clustering method (called UMVMO-select). As the underlying optimization strategy of 
the proposed algorithm, the Archived Multi-Objective Simulated Annealing (AMOSA) 
[15] optimization technique is utilized.
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Simulated annealing (SA) is a popular optimization algorithm that follows the prin-
ciple of annealing metallurgy—a process involving heating and controlled cooling of a 
material to increase its crystals’ size and reduce their defects. To follow the annealing 
process of a metal, at first, the temperature is increased (up to Tmax ), then decreased 
very slowly up to a very low value ( Tmin ). At each temperature, it ensures that the metal 
spends sufficient time. The searching strategy of SA also imitates this process. In [16], 
authors proved that if SA annealed sufficiently slowly, it converges to the global opti-
mum. Because of the strong theory of SA, it has been applied in diverse areas [17, 18] 
where a single criterion is needed to be optimized. On the other side, there are very 
few works where multi-objective version of SA is proposed to solve the multi-objec-
tive optimization problems [19, 20]. Among the existing multi-objective SA algorithms 
[19, 20], AMOSA has been found to perform better because of its novel characteristics 
like constrained archive size, different forms of acceptance probability of new solution, 
incorporating the novel concept of the amount of domination in acceptance probability. 
According to existing literature [15, 21], the superiority of this optimization technique 
over existing optimization strategies has been proved experimentally. Therefore, in this 
current work, the choice of AMOSA to perform underneath our proposed UMVMO-
select algorithm seems valid to identify optimal clustering solutions.

Our proposed feature selection approach considers different independent biological 
resources like gene expression data, GO, PPIN, and protein sequence data in a single 
framework, and cleverly develops two views from them. UMVMO-select then utilizes 
these views where, at each step, consensus clustering takes place to satisfy both views. 
Finally, it considers the encoded center genes of obtained optimal consensus gene clus-
ters as the most informative and non-redundant genes. The selected genes further par-
ticipate in the sample classification task. From the acquired reduced gene space, gene 
markers are chosen selectively. Please note that we use the term ‘features’ and ‘genes’ 
alternatively throughout the current manuscript.

Related works and motivation

In the last few years, several efficient feature selection algorithms following different 
strategies have been proposed by researchers. Some existing pieces of literature relevant 
to this paper are discussed here briefly.

A single-objective genetic algorithm-based feature selection algorithm was proposed 
in the article [22]. Further, utilizing the obtained reduced feature space, kNN, and sup-
port vector machine (SVM) classifiers are used for sample classification. Similar to this 
work, in [8] also, the genetic algorithm has been employed for developing a multi-objec-
tive clustering-based feature selection approach. In [3], authors have proposed a single-
objective clustering-based gene-selection algorithm without using expression data but 
utilizing GO’s biological information. However, their proposed method does not con-
sider any other biological source except GO. Similarly, in [9], a gene-selection algorithm 
based on Clustering Large Applications based upon RANdomized Search (CLARANS) 
was proposed utilizing GO’s available biological knowledge. In the feature selection 
algorithms like Ranksum test [23] and T-test [24], the features are sorted according to 
their p values, and then the desired number of features from the list are chosen for vali-
dation. Though these methods successfully identify highly relevant features but fail to 
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select non-redundant features. To overcome this shortcoming, authors of [25] have pro-
posed a feature selection technique, namely MRMR (minimum redundancy–maximum 
relevance) feature selection, where genes are selected in such a way so that they are rel-
evant as well as non-redundant to each other. The relevance of a feature is measured 
using mutual information between features, and redundancy is calculated using mutual 
information among features. With similar motivation, the authors of [5] proposed a fea-
ture selection method following a graph-theoretic approach, where a weighted dissim-
ilarity graph was created based on the input gene expression data. In their developed 
graph, nodes represent genes and edges represent dissimilarity within connected genes. 
More the edge weight signifies more dissimilarity, and higher node weight indicates a 
higher relevance of the corresponding gene. Finally, they modeled the feature selection 
problem as a dense sub-graph finding problem and then solved through multi-objective 
binary particle swarm optimization (bPSO).

One common point among all literature, as mentioned earlier, is, all of them are sin-
gle-view approaches. In recent years several multi-view clustering algorithms have been 
developed, but very few of them have been applied to biological research problems. 
For example, in [26], the authors’ proposed weighted multi-view clustering and feature 
selection technique is applied to real-life text and image data sets. Additionally, their 
proposed method follows a single-objective approach. Again, the authors of [27] pro-
posed an unsupervised online multi-view feature selection algorithm for video or text 
data. A good survey on existing research on the development of multi-view clustering 
algorithms can be found in [13, 28]. On the problem of gene selection, a graph-theoretic 
multi-view clustering on gene expression data was proposed in [29]. Though their pro-
posed algorithm is a multi-view approach, the views are developed based on expression 
data, and no other genomic/proteomic resources have been taken into account.

From the overall literature survey we did, it is clear that most of the existing gene selec-
tion algorithms have followed single-view approaches. Less attention has been provided 
on developing multi-view gene-selection strategies. Observing the above-mentioned 
limitation in the existing works, in the current paper, we propose an unsupervised multi-
view multi-objective gene selection approach called UMVMO-select. The summary of 
our current work is presented as follows.

•	 The primary contribution of this work is to propose a multi-objective clustering-
based gene selection approach utilizing multi-view data that intuitively identifies 
relevant and non-redundant gene markers. The proposed method is unsupervised; 
hence, no labeled data has been utilized during feature-selection and gene-marker 
detection. As the underlying optimization strategy, AMOSA [15] has been used.

•	 An integrated gene dissimilarity measure based on GO, PPIN, and protein sequence 
called IntDis has been proposed before defining views. Afterward, based on the 
correlation distance between gene expression vectors and proposed IntDis , we 
develop two different views in the form of two-dimensional gene-gene distance 
matrices (as shown in Fig. 1).

•	 UMVMO-select detects the number of optimal features or genes automatically.
•	 The concept of consensus partitioning is incorporated in the proposed method to 

satisfy both views.
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•	 As objective functions, average Signal-to-Noise ratio (SNR) [30] (to measure gene 
relevance) and average correlation distance [31] (to measure gene non-redundancy) 
of consensus partitions for each clustering solution and agreement index (AI) [32] 
are optimized simultaneously.

•	 We conduct experiments on three benchmark cancer gene expression data sets; 
Prostate cancer, Diffuse large B-cell lymphomas (DLBCL), and Child ALL.1

•	 Finally, sample classification is carried out through multi-objective clustering for 
both original and reduced gene-spaces. A thorough comparative analysis with other 
existing single-objective/multi-objective single-view/multi-view feature selection 
algorithms has been carried out.

Results
Data sets and views

In the current work, all three chosen data sets are available in : www.biolab.si/supp/bi-
cancer/projections/info/. The Prostate cancer data set contains gene expression values 
of both cancerous prostate tissues and normal prostate tissues. Originally this data set 
has 12,533 genes and 102 tissue samples. Among 102, the number of prostate tumor tis-
sue samples is 52, and the rest 50 are normal tissue samples. On the other side, Diffuse 

Fig. 1  Generation of two views from 4 biological resources

1  www.biola​b.si/supp/bi-cance​r/proje​ction​s/info/.

http://www.biolab.si/supp/bi-cancer/projections/info/
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large B-cell lymphomas (DLBCL) and follicular lymphomas (FL) are two B-cell lineage 
malignancies with very different clinical presentations, natural histories, and response to 
therapy. A total of 7070 number of genes and 77 number of samples are there. Out of 77 
samples, 58 are of type DLBCL, and rest 19 are of type FL. Child ALL or GSE412 data set 
includes gene expression information on 110 childhood acute lymphoblastic leukemia 
samples over 8,280 genes. The samples are divided into two classes based on changes 
in gene expression before and after treatment, regardless of the type of treatment used. 
Out of 110, 50 samples are taken before any therapy, and rest 60 samples are taken after 
therapy.

First of all, the necessary pre-processing has been carried out on all data sets. The log 
transformation is performed on expression values, and after that, samples are normal-
ized to variance 1 and mean 0. Once the data sets are pre-processed, next, for each of 
them, two views are generated. As mentioned before, views are represented in the form 
of dissimilarity matrix DView1n×n and DView2n×n.

For generating view-2, the proposed IntDis metric is calculated according to Eq. 8, 
and corresponding dissimilarity matrices DView2n×n for all three data sets are gener-
ated. At first, the chosen data sets’ genes are mapped onto their corresponding signifi-
cant GO-terms using a well known GO tool ; Gene Ontology Resource.2 Also, the full 
GO-tree is downloaded from the same source. For, Prostate cancer data set, out of 12,533 
genes, 11,669 genes get mapped to significant GO-terms. The total number of mapped 
significant GO-terms (GO-terms having p value ≤ 0.05) is 2300 (out of 2300, 1846 num-
ber of GO-terms under Biological Process (BP), 182 under Molecular Function(MF), and 
272 under Cellular Component(CC) ontology). Similarly, for the DLBCL data set, out 
of 7070 genes, 5868 number of genes get mapped to corresponding GO-terms, and the 
number of significant GO-terms is 3444 (2821 under BP, 308 under MF, and 315 under 
CC). Also, for Child ALL data set, 6890 number of genes out of 8280 gets mapped to 
their corresponding GO-terms and the number of significant GO-terms is 2118 (1683 
under BP, 162 under MF and 273 under CC). For all data sets, only mapped genes fur-
ther take part in the gene selection process. The obtained annotation data and GO-
tree are utilized for computing GO-based multi-factored similarity according to Eq. 3. 
To calculate the PPIN based similarity (according to Eq. 4) between genes of a data set, 
the full PPIN of Homo Sapiens or H. Sapiens organism is downloaded from HitPredict 
[33]—an open-access resource of experimentally determined protein–protein interac-
tion data over several organisms. The corresponding protein UniProt IDs of mapped 
genes are downloaded from https​://www.unipr​ot.org/. The protein IDs are used to 
retrieve their interacting proteins and associated statistics from downloaded H. Sapiens 
PPIN. For the last factor of the IntDis measure, i.e., protein sequence-based similarity, 
at first bitscore matrix based on BLAST3 tool output is produced (as shown in Eq. 6). 
Please note that, during gene to protein ID mapping, due to alternative splicing [34], a 
single gene may get mapped into multiple protein IDs. In such cases, we choose one of 
these protein isoforms, which is also available in the BLAST tool database. If more than 

2  http://geneo​ntolo​gy.org/.
3  https​://blast​.ncbi.nlm.nih.gov/Blast​.cgi.

https://www.uniprot.org/
http://geneontology.org/
https://blast.ncbi.nlm.nih.gov/Blast.cgi
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one protein isoforms are available in BLAST database, then any one of them is chosen 
arbitrarily.

Next, according to Eq. 7, protein sequence-based similarity between each pair of genes 
is measured. For those genes, which are not available in the BLAST database, the corre-
sponding missing sequence-based similarity is replaced by the average of multi-factored 
similarity and PPI similarity. Finally, combining three measures according to Eq. 8, pair-
wise integrated distance measure between genes is calculated, and corresponding view-
2 or DView2n×n is generated. For Prostate cancer, DLBCL, and Child ALL data sets, 
the dimensions of view-2 or DView2n×n are (11669× 11669) , (5868× 5868) and 
(6890× 6890) , respectively.

For view-1, pairwise correlation distance (according to Eq.  1) between each pair of 
genes for all three preprocessed data sets is calculated. To make the dimension of view-
1 dissimilarity matrix DView1n×n the same with view-2, we do not consider the cho-
sen data sets’ unmapped genes. For Prostate cancer, DLBCL, and Child ALL data sets, 
the dimensions of view-1 or DView1n×n are (11669× 11669) , (5868× 5868) and 
(6890× 6890) , respectively.

Input parameters of UMVMO‑select

As the underlying optimization strategy of the proposed UMVMO-select follows 
AMOSA [15]; therefore, some parameters related to this optimization algorithm are 
needed to be initialized with certain values as follows.
Tmin = 0.0001 , Tmax = 100 , α = 0.9 , HL = 50 , SL = 100 and TotalIter = 100 . Kmin 

or the minimum number of clusters = 2 and Kmax or the maximum number of clusters = 
√
n , where n number of genes/features to be clustered.
The above-mentioned parameter values are determined after conducting a thorough 

sensitivity study. According to [15], the initial value of the temperature or Tmax should 
be chosen high to allow the SA to perform a random walk over the landscape. The geo-
metrical cooling schedule α is chosen in the range between 0.5 and 0.99 accordingly. We 
vary the value of α between this range by keeping other parameters constant. Finally, 
the value of α for which we got the best Silhouette measure [35] for the produced gene 
clustering solution is chosen as the cooling rate. Another important factor, i.e., the num-
ber of iterations per temperature or TotalIter , should be chosen so that the system 
is sufficiently close to the stationary distribution at that temperature. We choose the 
value of TotalIter = 100 . By further increasing the value of TotalIter , the Sil-
houette value of the resulting gene clustering solution did not improve. So we fixed it 
to TotalIter = 100 . To get consistent and standard solutions for all the chosen data 
sets, we consider the above-mentioned parameters setting.

External and internal validity measures

The comparative analysis has been performed during different stages of the current 
experiment. For that purpose, three widely used internal cluster validity measures 
viz. Silhouette index [35], DB index [36], and Dunn index [37] have been utilized, 
and comparative results for them are reported in this article. Higher values of the 
Silhouette and Dunn index represent a better clustering solution. On the other side, 
a lower value of the DB index indicates a better clustering solution. Also, to compare 
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sample classification outcomes with true sample classes, four well-known external 
validity indices: F-score, Sensitivity, Specificity, and Classification accuracy (CA) are 
reported. Higher values of these chosen external indices represent better classifica-
tion outcomes.

Discussion
We execute UMVMO-select ‘ t ’ times to perform gene clustering for gene selection 
and sample clustering with reduced/original gene space for each of the chosen data 
sets. The different ‘ t ’ values for different data sets are mainly decided based on the 
saturation level in the identified set of gene-markers. The details are discussed in a 
later section. All seven validity measures (three of them internal and rests four are 
external indices) are computed for each run. Finally, the average of obtained ‘ t ’ sets 
of validity measures is reported in Tables 1, 2, and 3.

We compare the performance of our proposed method for gene clustering with 
five other alternative clustering techniques, which are single-view versions of the 
proposed algorithm (unsupervised multi-objective clustering (UMC) with view-
1 and view-2), the single-view single-objective clustering method developed in our 
previous work on gene selection [3], and PAM clustering utilizing our developed 
views.

Also, the efficiency of selected genes by our algorithm UMVMO-select in sample 
classification is compared with nine other existing gene selection and sample classi-
fication methods. These are the approach of Acharya et al. [3], Wilcoxom RankSum 
test [23], T-test [24], graph-theoretic multi-objective PSO [5] and it’s two single-
objective versions, MRMR feature selection [25], the approach of Acharya et al. [15], 
and feature weighing based approach of Saha et al. [14].

Table 1  Comparative Silhouette index values for  obtained gene-clusters by  proposed 
as well as other single-view clustering methods

Data sets # of clusters UMVMO-
select

UMC-view-1 UMC-view-2 PAM-view-1 PAM-view-2 Acharya 
et al. [3]

Prostate 45 0.427 0.403 0.414 0.392 0.399 0.397

DLBCL 37 0.432 0.427 0.429 0.409 0.421 0.412

Child ALL 33 0.443 0.405 0.418 0.384 0.399 0.39

Table 2  Comparative analysis of  obtained sample classification outputs applied 
on original and reduced gene space

Data sets # of genes (features) # of samples Silhouette DB Dunn

Prostate 12,555 (original) 102 0.352 0.835 0.779

45 (reduced) 0.3921 0.8243 0.791

DLBCL 7070 (original) 77 0.357 0.776 0.716

37 (reduced) 0.3772 0.779 0.725

Child ALL 8280 (original) 110 0.322 0.723 0.713

33 (reduced) 0.339 0.721 0.7131
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Results for Prostate cancer data set

After performing our proposed multi-view multi-objective clustering on the Prostate 
cancer data set, before selecting candidate genes, the ensembled clustering solution’s 
quality is measured through the Silhouette index and compared with other single-objec-
tive/single-view clustering techniques. We execute our algorithm 5 times, so for this data 
set t=5 and hence, 5 ensembled clustering solutions are obtained. The average Silhouette 
index values for all 5 solutions are reported in Table 1. The number of clusters in the best 
clustering solution (among 5 runs) with respect to Silhouette value is reported in the 
table. From the reported results, it is evident that our proposed algorithm outperforms 
reported single-view clustering algorithms with respect to obtained Silhouette meas-
ure. It supports the superiority of multi-view clustering over single-view approaches. To 
verify the biological significance of all five ensembled clusters by UMVMO-select, we 
perform GO enrichment analysis on their gene-clusters using the GO tool. The outcome 
of the biological significance test on random two clusters of the best ensembled solution 
(the solution with best Silhouette value) has been tabulated in Table 4. In the table for 
each of the significant GO-terms, the percentage of genes from the obtained cluster and 
full genome set in GO tool sharing that term is reported. It is quite evident from Table 4 
that a higher percentage of genes from the obtained ensembled clusters mapped into the 
corresponding GO-term compared to the full genome set. This indicates that genes of 
the same obtained clusters are more involved in similar biological processes compared 
to remaining genes in the genome. We validate all of 5 ensembled clustering solutions 
through the GO enrichment test.

Next, the centers of the best ensembled solution (with respect to Silhouette index) are 
extracted. Hence, the reduced set of most relevant and non-redundant genes ( Cand ) 
is formed. Afterward, we perform the single-view AMOSA-based clustering proposed 
by Acharya et  al. [3] on samples for classification utilizing both original and reduced 

Table 4  Biological significance test outcome for  two obtained random clusters 
by UMVMO-select on Prostate cancer data set (out of 45 clusters)

Cluster GO term Genome % Cluster %

Cluster 1 GO:0051716 31.9 43.7

289 Cellular response to stimulus

GO:0019222 31.8 43.4

Regulation of metabolic process

GO:0031323 29.6 40

Regulation of cellular metabolic process

GO:0060255 29.3 39.8

Regulation of macromolecule metabolic process

Cluster 2 GO:0031326 20 26.5

242 Regulation of cellular biosynthetic process

GO:0051674 27.4 37.5

Localization of cell

GO:0048519 25.4 36.9

Negative regulation of biological process

GO:0051234 22.3 31.2

Establishment of localization
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gene-space. The obtained results on sample clustering for the Prostate cancer data set 
are reported in Table 2. We can see, compared to the original dimension (12555 genes), 
our proposed algorithm has reduced the number of genes to a great extent (45 genes). If 
we compare the quality of obtained sample clusters, it is clear from Table 2 that, sample 
clustering solution with reduced gene space is better in quality according to reported 
Silhouette, DB, and Dunn index (0.3921, 0.8243, 0.791).

We also compare obtained classes of samples with their original class levels, and the 
performance has been evaluated through four external validity measures, which are 
reported in Table 3. For Prostate cancer data set, it can be observed that, with respect to 
Specificity, F-score, and Classification accuracy, our proposed UMVMO-select performs 
best (0.92, 0.9125, 0.91176) among all nine feature selection techniques. Regarding sen-
sitivity, our algorithm outperforms all other reported methods except MRMR [25].

Results for DLBCL data set

Similar to Prostate cancer, the obtained results for the DLBCL data set are also analyzed 
thoroughly. Here also we choose t=5 . From the reported values of the Silhouette index 
in Table 1, it is evident that here also our method outperforms other single-view clus-
tering algorithms to identify quality clusters of functionally similar genes. The obtained 
gene clusters are validated biologically through GO enrichment analysis, and the 
obtained test outcome is reported in Table 5 for random two clusters from best ensem-
bled solution. Like previous data set here also we observe the reported clusters are bio-
logically significant.

In Table 2, the reported results show that according to the obtained Silhouette and 
Dunn index, our method with reduced gene space (37 genes) produces better sam-
ple clusters than the original gene space (0.3772, 0.725). However, with respect to 
the DB index, sample clusters’ quality slightly degrades for reduced (0.779) than the 

Table 5  Biological significance test outcome for  two obtained random clusters 
by UMVMO-select on DLBCL data set (out of 37 clusters)

Cluster GO term Genome % Cluster %

Cluster 1 GO:0050896 40.4 61.2

211 Response to stimulus

GO:0044260 24.2 50

Cellular macromolecule metabolic process

GO:0016043 26.8 63.2

Cellular component organization

GO:0048518 29.5 50.9

Positive regulation of biological process

Cluster 2 GO:0044238 35.7 58.2

177 Primary metabolic process

GO:1901564 25.3 37.9

Organonitrogen compound metabolic process

GO:0071704 37.5 55.8

Organic substance metabolic process

GO:0048856 25.8 40.8

Anatomical structure development
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original gene space. Also, if we compare the reported results of Table  3, it is clear 
that with respect to Sensitivity, F-score, and Classification accuracy, our method 
performs much better than other existing nine feature selection techniques (0.948, 
0.948, 0.922). However, with respect to Specificity, we observe that the existing 
graph-theoretic MPSO based feature selection technique [5] performs best among 
all.

Results for Child ALL data set

The outcome of the comparative study for Child ALL is also reported in the cur-
rent manuscript. Here we choose the value of ‘ t ’ as t=6 . Table 1 shows that, like the 
other two chosen data sets, the quality of the obtained gene clusters by the proposed 
approach has been proven to be better compared to other single-view approaches. 
The obtained 6 ensembled gene clustering solutions are also biologically validated 
through GO enrichment analysis. The significance test outcome for random two 
clusters from the best solution for this data set is shown in Table 6.

From the results reported in Table 2, it can be observed that the number of genes 
in the reduced set is 33, which is much lesser than the original dimension (8280 
genes) of the Child ALL data set. Also, with the reduced gene space, the Silhou-
ette and DB index values corresponding to the sample clustering solution are better 
(0.339, 0.721) than the original gene space. The Dunn index value is found almost 
the same (0.7131) for both original and reduced gene space. The comparative sample 
classification outcome of this data set is also shown in Table 3. Similar to the DLBCL 
data set, here also with respect to Sensitivity, F-score, and Classification accuracy, 
our method performs better than other existing nine feature selection techniques 
(0.8, 0.8, 0.8181). For Specificity, we observed MRMR [25] performed best among 
all.

Table 6  Biological significance test outcome for  two obtained random clusters 
by UMVMO-select on Child ALL data set (out of 33 clusters)

Cluster GO term Genome % Cluster %

Cluster 1 GO:0007399 11.4 19.27

187 Nervous system development

GO:0071840 21.68 40.66

Cellular component organization or biogenesis

GO:0007165 24.62 36.44

Signal transduction

GO:1901564 25.41 39.45

Organonitrogen compound metabolic process

Cluster 2 GO:0048856 26.14 35.9

209 Anatomical structure development

GO:0071840 27.68 42.5

Cellular component organization or biogenesis

GO:0006139 13.49 27.34

Nucleobase-containing compound metabolic process

GO:0051239 15.28 34.58

Regulation of multicellular organismal process
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Effect of different ‘omic’ data sources and objective functions on sample classification 

accuracy

To investigate the effect of different ‘omic’ data sources and objective measures on 
proposed UMVMO-select, we perform experiments with different sets of views and 
objective functions. Table 7 reports results about the effect of different combinations 
of objective functions on our proposed method. Note that we kept the views selec-
tion as same as our original algorithm. Only objective functions are varied. The last 
row (marked as bold) of the table is the sample classification accuracy while consid-
ered all three objective functions as the original algorithm does. It is evident from the 
reported results that the combination of three objective functions in UMVMO-select 
made it performing best compared to lesser objectives selection.

Similarly, in Table 8, we vary the chosen ‘omic’ data sources in produced views and 
reported the obtained sample classification accuracy. As view-1, we always select gene 
expression (GE) data. For view-2, we choose different combinations of data sources. 
Please note, here we have choose all three objective functions as our original algo-
rithm does. The last row (marked as bold) of the table reports the results considering 
all data sources. According to reported results in this table, the proposed approach’s 
superiority proves the importance of considering multiple ‘omic’ sources to design 
views.

Table 7  Comparative analysis of  proposed gene selection algorithm UMVMO-select 
over different combination of objective functions

Objective function CA

Prostate DLBCL Child ALL

SNR 0.8333 0.792 0.727

Corr. dist. 0.754 0.7532 0.68

AI 0.784 0.779 0.709

SNR+Corr. dist. 0.901 0.8701 0.79

Corr. dist. + AI 0.872 0.831 0.763

SNR + AI 0.892 0.8441 0.781

SNR + Corr. dist. + AI 0.91176 0.922 0.8181

Table 8  Comparative analysis of  proposed gene selection algorithm UMVMO-select 
over different combination of views

View-1 View-2 CA

Prostate DLBCL Child ALL

GE GO 0.7941 0.7922 0.736

PPIN 0.8039 0.8051 0.745

BLAST 0.6862 0.7532 0.7

GO+PPIN 0.8725 0.8971 0.809

PPIN+BLAST 0.8333 0.8571 0.781

GO+BLAST 0.8235 0.8181 0.772

GO+PPIN+BLAST 0.91176 0.922 0.8181
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Retrieved marker genes

As we have seen before, for each of the chosen data sets, ‘ t ’ sets of features/reduced 
gene-space (by selecting gene-centers) are obtained. The common centers over ‘ t ’ num-
ber of runs for all chosen data sets are tagged as marker genes. For the Prostate cancer 
data set, the reason behind choosing t=5 is after further increasing the ‘ t ’ (runs), we did 
not notice any change in the set of the obtained gene markers. For the DLBCL data set, 
we observe the set of gene markers saturates after t=4 . However, for t=5 , the average 
Silhouette, DB, and Dunn indices values corresponding to the obtained sample cluster-
ing are found better compared to t=4 . Therefore, for this data set, we report all experi-
mental results for t=5 . For Child ALL data set, we choose t=6 for reporting comparative 
results in Tables 1, 2, and 3 and for gene marker identification for the same reason. The 
symbol, ID, description, and regulation status of identified gene markers for all data sets 
are provided in Table 9. To study the biological relevance of the obtained gene markers, 
many of those have been validated to be associated with the respective cancer classes in 
the different existing literature. For example, in the Prostate cancer data set, gene 41288_
at (CALM1) and 32243_g_at (CRYAB) have been also reported in [38].

Again, gene 40435_at (SLC25A6) and 33614_at (RPL18A, RPL18AP3) in [5], and 
37639_at (HPN) and 41504_s_at (MAF) have been reported in [39]. Similarly, for the 
DLBCL data set we observe, X02152_at (LDHA) and M25753_at (CCNB1) have been 
identified by [40], U59309_at (FH) has been reported in [5]. For the Child ALL data 
set, 41117_s_at (SLC9A3R2) and 33069_f_at (UGT2B15) have been reported in [41]. 
Also, 37226_at (BNIP1) and 34757_at (PARP2) were identified by [5]. In Figs.  2, 3, 
and 4, we have plotted the heat maps for obtained gene markers for all three data sets. 

Table 9  Identified cancer gene markers by proposed method for all three data sets

Data set Gene ID Gene name Description Regulation mode

Prostate 32243_g_at CRYAB Crystallin, alpha B Up

cancer 41288_at CALM1 Calmodulin 1 Up

37639_at HPN Hepsin Up

41504_s_at MAF v-maf musculoaponeurotic fibrosarcoma 
oncogene homolog

Up

40435_at SLC25A6 Solute carrier family 25, member 6 Down

33614_at RPL18A, RPL18AP3 Ribosomal protein L18a, L18a pseudogene 3 Down

1657_at PTPRR Protein tyrosine phosphatase receptor type R Down

DLBCL X02152_at LDHA Lactate dehydrogenase Up

M25753_at CCNB1 Cyclin B1 Up

U59309_at FH Fumarate hydratase, mitochondrial precursor Up

M16336_s_at ENO1 Enolase 1 Down

Child ALL 32659_at EIF2B4 Translation initiation factor eIF-2B subunit 
delta

Up

39221_at LILRB2 Leukocyte immunoglobulin-like receptor 
subfamily B member 2

Up

41117_s_at SLC9A3R2 Solute carrier family 9, isoform 3 regulator 2 Down

33069_f_at UGT2B15 UDP glucuronosy1transferase 2 family, 
polypeptide B15

Down

37226_at BNIP1 BCL2/adenovirus E1B 19 KDa interacting 
protein 1

Down

34757_at PARP2 Poly (ADP-ribose) polymerase 2 Down
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Fig. 2  Heatmap for obtained gene markers for Prostate cancer data set

Fig. 3  Heatmap for obtained gene markers for DLBCL data set

Fig. 4  Heatmap for obtained gene markers for Child ALL data set
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The heat map is used to visually illustrate that the identified gene-markers are differ-
entially expressed, i.e., actually contain the essential property of an ideal gene-marker.

Every row of a heat map represents each of the chosen gene-markers from the cor-
responding data set. Each cell of the heat map represents the expression level of a 
gene for the corresponding sample. The red cell indicates a high expression value, 
whereas the green cell represents a lower value of an expression. The black cell indi-
cates an average expression value. To be differentially expressed, a marker gene is 
needed to be either up-regulated (high expression value) or down-regulated (low 
expression value) for each tissue sample of the respective tumor class. In Fig. 2, we 
can see for the Prostate cancer data set, the obtained marker genes are either up-regu-
lated or down-regulated for most of the samples over both classes. For example, gene 
32243_g_at (CRYAB), 41288_at (CALM1), 37639_at (HPN), and 41504_s_at (MAF) 
are up-regulated (high expression values in tumor class and low expression values in 
normal sample class). On the counterpart, 40435_at (SLC25A6), 33614_at (RPL18A, 
RPL18AP3), and 1657_at (PTPRR) are down-regulated (high expression values in 
normal class and low expression values in tumor class). Similarly, if we study the heat-
map of DLBCL data set in Fig.  3, we can see gene X02152_at (LDHA), M25753_at 
(CCNB1), and M16336_s_at (ENO1) are up-regulated (high expression in DLBCL 
and low expression in FL) and U59309_at (FH) is down-regulated (high expression for 
FL and low expression for DLBCL). For Child ALL data set, as we can observe from 
Fig. 4 that, gene marker 41117_s_at, 33069_f_at, 37226_at, 34757_at are down-regu-
lated (high expression values in ‘before therapy’ (before Th) class and low expression 
values in ‘after therapy’ (after Th) class). On the other side, gene marker 32659_at and 
39221_at are up-regulated (low expression values in ‘before therapy’ (before Th) class 
and high expression values in ‘after therapy’ (after Th) class).

Conclusion
In the current article, we propose an unsupervised multi-view multi-objective gene 
selection approach called UMVMO-select, which intuitively identifies gene mark-
ers from the chosen cancer gene expression data sets. Multiple ‘omic’ data sources 
like gene expression, GO, PPIN, and protein sequence are amalgamated to build two 
views. Experiments are carried out on three cancer gene expression data sets; Pros-
tate cancer, DLBCL, and Child ALL. From the thorough comparative analysis with 
existing feature selection algorithms and several validation tests, we observe that 
our proposed method reduces the original gene space significantly and improves the 
sample classification accuracy. From the obtained experimental outcomes, we also 
observed that incorporating more relevant data sources in designing views increases 
the overall efficiency of the multi-view clustering approach. Therefore, in the future, 
more views can be identified based on other genomic/proteomic resources [42–44], 
and comparative experiments can be performed to observe the effect of increased 
views on sample classification accuracy. Also, apart from gene selection, our pro-
posed multi-view based clustering approach can be applied to solve other interesting 
bio-informatics problem like hub-protein detection [45], essential protein identifica-
tion, etc. The authors are currently working in that direction.
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Methods
In this section, at first, we describe the development mechanism of both views in detail. 
Next, we elaborate on different steps of the proposed UMVMO-select.

Two views for UMVMO‑select

Two gene-gene dissimilarity networks developed utilizing multiple ‘omic’ data sources 
are treated as two different views. The first view is the gene dissimilarity network based 
on pair-wise correlation distance [31] between expression vectors of genes. For the sec-
ond view, gene dissimilarity network is created utilizing our newly proposed integrated 
gene-gene dissimilarity measure IntDis . The proposed measure incorporates biologi-
cal properties of GO, corresponding organism’s PPIN, and protein sequence structure. 
Figure 1 illustrates the formation steps of both views. Both developed views are essen-
tial. The first view represents dissimilarity between genes based on their sample-specific 
expression levels. In contrast, the other view signifies the semantic and functional dis-
similarity between genes according to GO, PPIN, and protein sequence cumulatively, 
which is not specific to samples but captures a global functional relatedness among 
genes.

Mathematically, suppose n = # of genes and d = # of samples in a given gene expres-
sion data set. The original expression data is represented as Gorg[n][d] . gi represents ith 
gene of data set where i ∈ n . The dissimilarity network for view-1 is represented as two-
dimensional distance matrix DView1n×n of dimension n× n . The dissimilarity between 
expression vectors of each pair of genes is calculated using the correlation coefficient. 
The correlation coefficient ϕ and correlation distance between two random variables a 
and b can be defined as follows [31].

Here cov() denotes the covariance between variables and var() denotes the variance 
of a variable. If variables a and b are correlated to each other, i.e., exact linear depend-
ency exists, then ϕ(a, b) = 1 or −1 and if uncorrelated, then ϕ(a, b) = 0 . Therefore, 
( 1− |ϕ(a, b)| ) represents the dissimilarity between variables a and b or correlation dis-
tance. All entries of the DView1n×n matrix are calculated according to Eq. 1.

For building the second view, at first, we propose an integrated gene-gene dissimilarity 
measure IntDis combining biological knowledge obtained from GO, PPIN, and protein 
sequence.

To design IntDis , three key similarity measures based on chosen genomic/proteomic 
resources are, 

1.	 Multi-factored protein–protein similarity based on GO annotation data ([21])
2.	 Functional similarity between proteins based on the confidence of association in 

PPIN ([46])
3.	 Protein sequence-based similarity utilizing Basic Local Alignment Search Tool 

(BLAST) based bitscore ([47])

(1)
ϕ(a, b) =

cov(a, b)√
var(a)var(b)

Correlation distance =(1− |ϕ(a, b)|)
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The multi-factored gene similarity measure [21] captures functional and semantic relat-
edness between genes based on different information-theoretic, topological and struc-
tural properties of GO-terms and GO-tree.

Let Ai and Aj represent sets of annotated GO-terms by genes gi and gj respectively 
from the set of genes of original data set Gorg[][] . According to [21], the multi-factored 
semantic similarity between two GO-terms goti and gotj is as follows.

Here Y = simLin(goti, gotj)+ simShen(goti, gotj)+ simnorm-structdepth(goti, gotj).
simLin(goti, gotj) , simShen(goti, gotj) and simnorm-structdepth(goti, gotj) represents 

GO-terms similarity based on Lin’s semantic similarity measure [48], Shen’s similarity 
measure [49], and normalized structure-based semantic similarity [21] respectively.

Utilizing Eq.  2, the multi-factored semantic similarity between gene gi and gj is as 
follows.

Here simNTO(gi, gj) is normalized term overlap-based similarity measure [21] and 
m = |Ai| and n = |Aj| . Also, Multi-SIM(gi, gj) ∈ [0, 1].

Again let, the corresponding gene-product or protein of gene gi is denoted by pi . Ni 
denotes the set of interactive proteins of pi in its corresponding PPIN. wij indicates the 
confidence score or weight of the edge between interacting protein pj ∈ Nj and pi . Let 
Nij is the set of proteins that are interactive neighbors of both protein pi and pj , i.e., Nij 
= Ni ∩ Nj . Ñi = Ni\Nij indicates the set of proteins, which are interactive neighbors of 
protein pi but not of protein pj . Hence, based on the confidence (here weight) of associa-
tion within PPIN, the functional similarity between gene gi and gj in PPIN [46] is defined 
as follows.

Also, PPI-SIM(gi, gj) ∈ [0, 1].
Apart from GO and PPIN, the proposed IntDis measures protein similarity based on 

protein sequence structure. For this purpose, BLAST4 is utilized to measure sequence 
alignment similarity between two protein molecules. The bit score represents a normal-
ized raw sequence alignment score, which is expressed in bits. It represents how proper 
the alignment is; the higher the score, the better the alignment. As the BLAST output 
is not symmetric, the sequence similarity between gene gi and gj is obtained by taking 
average [47] of two BLAST results as follows.

(2)Multi-sim(goti, gotj) =
arctan[Y]

π/2

(3)
Multi-SIM(gi, gj) =

1
m×n

∑
gotk∈Ai ,gotp∈Aj

Multi-sim(gotk , gotp)+ simNTO(gi, gj)

2

(4)PPI-SIM(gi, gj) =

∑
gk∈Nij

min{wik ,wjk}
∑

gk∈Ñi

wik +
∑

gk∈Nij

max{wik ,wjk} +
∑

gk∈Ñj

wjk

4  https​://blast​.ncbi.nlm.nih.gov/Blast​.cgi.

https://blast.ncbi.nlm.nih.gov/Blast.cgi
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According to Eq. 5, between each pair of protein molecules, we calculate the sequence 
similarity score, and hence sequence alignment based similarity matrix bit-matrix[][] 
is formed. Next, the entries of the matrix are normalized within 0 and 1 as follows.

For a chosen data set, suppose q represents the total number of mapped proteins in 
BLAST. Hence the obtained normalized bitscore matrix called bit-matrix[q][q] is of 
size ( q× q).

The protein sequence alignment-based similarity between protein pi and pj can be 
obtained from the generated bitscore matrix. The similarity between their correspond-
ing genes gi and gj can be retrieved as follows.

The proposed integrated dissimilarity measure IntDis(gi, gj) is formulated after com-
bining Eqs. 3, 4, and 7 and then subtracting from 1 as follows.

where IntDis(gi, gj) ∈ [0, 1].
For view-2, dissimilarity matrix DView2n×n is created by calculating pairwise func-

tional dissimilarity between genes according to Eq. 8. Once both views, i.e., DView1n×n 
and DView2n×n are ready, they are next utilized by the proposed UMVMO-select algo-
rithm for gene selection.

Working methodology of UMVMO‑select

The UMVMO-select algorithm comprises of nine essential steps, which are described 
with details in this section. The flowchart of the overall technique is shown in Fig.  6. 
Each step described below is also illustrated in the flowchart (Fig. 6) to make easy back-
and-forth reference between the figure and the text.

Step 1: Encoding scheme and initializing solutions

1.	 Structure of encoded solution Our proposed algorithm starts with initializing ‘ P ’ 
number of random multi-view clustering solutions. Each clustering solution is repre-
sented as a structure of integer-encoded arrays and pointer to membership matrices. 
For better illustration, the structure of a complete multi-view clustering solution is 
shown in Fig.  5. We can see from the figure that both for view-1 and view-2, two 
separate vectors of centers ( Arrview1 [] and Arrview2[]) within a multi-view solu-
tion are created. Each array/vector stores IDs of center genes of encoded clusters 
for the particular view. If we aim to perform clustering on n genes of a chosen data 
set, then their positional indexes (like 1, 2, ...,n ) are treated as their ID. Each vector 
has a pointer to a two-dimensional membership matrix (details later) to represent all 

(5)simBLAST = log10
Bitscore(gi, gj)+ Bitscore(gj , gi)

2

(6)Bitscorenorm = Bitscore−minimum(Bitscore)

maximum(Bitscore)−minimum(Bitscore)

(7)Seq-SIM(gi, gj) = bit-matrix[gi][gj]

(8)IntDis(gi, gj) = 1−
Multi-SIM(gi, gj)+ PPI-SIM(gi, gj)+ Seq-SIM(gi, gj)

3
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non-center genes’ membership status in the corresponding clustering solution. The 
third vector, Arrcons[], represents the array of centers from the consensus clustering 
solution (by combining Arrview1 and Arrview1 ). For simplification, throughout this 
article, we address Arrview1[], Arrview2[], and Arrcons [] as vectors of cluster cent-
ers; and Arrview1 , Arrview2 , and Arrcons as clustering solutions correspond to the 
first view, the second view, and consensus of both views respectively (also mentioned 
in Fig. 5).

2.	 Cluster center initialization Let us assume, Ki denotes the number of clusters/cent-
ers in Arrview1 , Arrview2 , and Arrcons of ith multi-view clustering solution. It can 
vary between the range of 2 to 

√
n [50] ( n is the number of data points participates in 

clustering). For ith solution, the values of Ki in Arrview1 , Arrview2 , and Arrcons are 
the same, but it may be different for different solutions, i.e., Ki  = Kj . For ith solution, 
Ki is initialized as follows. 

 Here i ∈ [ 1, 2 . . . ,P ]. The execution of UMVMO-select starts with the initializa-
tion of both Arrview1 [] and Arrview2 [] independently with randomly selected Ki 
gene IDs as centers from the original set of n genes. Arrcons [] of all ‘ P ’ solutions 
are initialized as a null array at the beginning of execution. Only once Arrview1 and 
Arrview2 are completely initialized, then Arrcons is updated (discussed in the next 
step of the algorithm). In Fig.  5, GC j and GC’ j represent IDs of jth cluster center 
(where j ∈ [1, . . . ,Ki] ) correspond to Arrview1 and Arrview2 , respectively. Also, 
GCc

j  is the ID of jth cluster center of the consensus clustering solution Arrcons . 
Please note that in our proposed algorithm, at any stage, cluster centers of any clus-
tering solution must be the members of the original gene set ( n genes), i.e., basically, 
they are medoids.

Step 2: Assigning non-center genes to clusters and creating consensus clustering solution
Once Arrview1 [] and Arrview2 [] within each of ‘ P ’ solutions are initialized with 

random centers, the rest of the genes are assigned to their corresponding clusters for 
each view independently. This assignment follows the minimum-dissimilarity strategy 

(9)Ki = {rand()% (
√
n− 1)} + 2

Fig. 5  Structure of each clustering solution
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between the gene to be assigned and encoded centers. For each view, the gene-gene 
dissimilarity matrix for the corresponding view ( DView1n×n or DView2n×n ) is uti-
lized for this purpose. As previously mentioned, three binary two-dimensional mem-
bership matrices ( MM-view1Ki×n , MM-view2Ki×n , and MM-consKi×n ) correspond to 
three center vectors are maintained, and they are shown in Fig.  5. The rows of the 
corresponding membership matrix represent the index of encoded clusters ( Ki clus-
ters for ith solution), and columns represent n genes’ IDs. The presence of a gene in a 
cluster is represented by 0 or 1 within the matrix. Once the assignment of non-center 
genes is done for both views, next, the existing cluster centers are updated with the 

Fig. 6  Working flow diagram of proposed UMVMO-select algorithm
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IDs of most centrally located genes (gene having minimum average dissimilarity with 
other genes of the same cluster).

Next, the consensus partitions for ‘ P ’ solutions are created combining Arrview1 and 
Arrview2 and stored in Arrcons . The procedure for the consensus of both views has 
been partially illustrated in Fig. 7. The three-step process of consensus generation is 
described as follows.

•	 First step: Identifying overlapping clusters Started with the first encoded cluster of 
Arrview1 with all clusters of Arrview2 , one-to-one maximum overlapping cluster 
pairs are identified. The common genes from two overlapping clusters form a new 
consensus cluster. For example, according to Fig. 7, the overlapping clusters are as 
follows.

–	 Cluster 1 of Arrview1 combines with Cluster 2 of Arrview2 forms Cluster 1 in 
Arrcons.

–	 Cluster 2 of Arrview1 combines with Cluster 3 of Arrview2 forms Cluster 2 in 
Arrcons.

–	 Cluster 3 of Arrview1 combines with Cluster 1 of Arrview2 forms Cluster 3 in 
Arrcons.

•	 Second step: Update consensus cluster centers For each formed consensus cluster, 
the most centrally located gene among all members is chosen as the center. For 
example, in the consensus Cluster 1 of Fig. 7, among genes with ID 1, 4, 5, and 14, 
the one with minimum average pair-wise dissimilarity with other members (con-
sidering average from both DView1n×n or DView2n×n ) is chosen as the center of 

Fig. 7  The scheme of forming consensus clusters in each solution
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consensus Cluster 1. Similarly, centers of other consensus clusters are identified, 
and Arrcons [] is formed.

•	 Third step: Assignment of unallocated genes The rest of the genes which are still 
unallocated get assigned to their corresponding consensus clusters having mini-
mum-average-dissimilarity with centers. Following the same example in Fig. 7, we 
can see genes with IDs 2, 8, 10, 11 have not been categorized. So each of them 
is placed in any one of three formed consensus clusters of Arrcons accordingly. 
Accordingly, the corresponding membership matrix MM-consKi×n is updated.

Step 3: Calculating objective functions
As UMVMO-select is designed as a multi-objective approach; therefore, it optimizes 

multiple objective functions at each iteration during its execution. The objective func-
tions for our method have been chosen to maximize gene relevance and minimize 
gene redundancy. Mathematical descriptions of all three chosen objective functions 
are provided in detail as follows. 

1.	 Average signal-to-noise (SNR) ratio [30]

	 The samples of chosen gene expression data sets belong to either class 1 (let us 
denote it by CL1 ) or class 2 ( CL2 ). Then the signal-to-noise ratio (SNR) of each gene 
gi (feature) is calculated using mean ( MN ) and standard deviation ( SD ) of CL1 and 
CL2 , and it is defined as follows [30]. 

 Here r ∈ {1, . . . ,n} . The MN(gr(CL1)) and MN(gr(CL2)) represent the mean 
of expression values of gene gr in CL1 and CL2 , respectively. SD(gr(CL1)) and 
SD(gr(CL2)) represent the standard deviation of gr for CL1 and CL2 , respectively. 
The SNR represents the ratio of relative mean to the sum of the standard deviation 
of two classes of samples. It indicates the difference between central tendency and 
dispersion or variation exists from the average value of data points (here features/
genes). A lower value of SNR represents that the feature (here gene) does not have 
many different values in different classes. In contrast, high SNR value indicates that 
the feature values are spread out over an extensive range, and that means the values 
are different over classes. So, the SNR value represents the relevance of genes. For an 
ideal multi-view solution, the average SNR value of all encoded center genes within 
its consensus solution ( Arrcons ) should be as high as possible.

	 Please note that our proposed UMVMO-select is an unsupervised algorithm. There-
fore, no labeled data can be utilized at any stage of it. However, for SNR calculation, 
it needs sample class information. To retrieve that, at the beginning (before the exe-
cution of UMVMO-select starts), we perform a basic unsupervised multi-objective 
clustering [15] on samples of chosen gene expression data sets, and hence the availa-
ble samples are divided into two groups. The obtained group information is then uti-
lized for the SNR calculation of all genes under experiment during UMVMO-select.

(10)|SNRgr | = |MN(gr
(CL1))− MN(gr(CL2))

SD(gr(CL1))+ SD(gr(CL2))
|
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2.	 Average pairwise correlation distance
	 The selected genes by proposed UMVMO-select aim not only to be relevant but non-

redundant as well. To identify the set of non-redundant genes, a second objective 
function has been designed, i.e., average pairwise correlation distance [31] between 
centers. The correlation distance can be calculated according to Eq.  1 and can be 
obtained from the dissimilarity matrix of view-1 or DView1n×n . For a better solu-
tion, the average pairwise correlation distance [31] between center genes of its con-
sensus solution ( Arrcons ) must be higher to ensure those centers are non-redundant 
to each other.

3.	 Agreement Index (AI)
	 As the name implies, the objective function AI [32] quantifies the similarity between 

partitions of over n genes obtained by view-1 and view-2 (i.e., Arrview1 and 
Arrview2 ). A higher value of AI signifies both views obtain more similar partitions.

	 The formulation of AI for two-views, v1 , and v2 , is as follows. Suppose, Av1 and Av2 
are the two agreement matrices corresponding to both views. The number of agree-
ments ( na ) is calculated as follows: na =

∑n
i=1

∑n
j=1 IAv1

ij
,Av2

ij
 , where 

 The number of disagreements ( nd ) is calculated as follows: nd = n2 − na Hence the 
AI between these two views ( v1 , v2 ) is calculated as follows: 

 Here 1 is used as a normalization factor to avoid division by zero problem.
	 For more than two views the total Agreement index for the entire obtained parti-
tioning is calculated as follows. 

 Here m is the total number of views available. For an optimal multi-view clustering 
solution, a higher AI is expected.

For all of ‘ P ’ solutions, their corresponding three objective functions are calculated 
accordingly.

Step 4: Perturbation operators
Like most of the existing optimization techniques, to explore the search space prop-

erly, our proposed algorithm utilizes three types of perturbation operators (update, 
insert and delete) [15] applied on both Arrview1 and Arrview2 of each multi-view 
solution. Please note that consensus solution Arrcons does not directly perturb. How-
ever, they get updated after any change in Arrview1 and Arrview2 . For every solu-
tion, the probability of choosing any one of three perturbation operators is equal, i.e., 
0.33 each. Our proposed perturbation operations are inspired by Acharya et al. [15], 
though we have significantly modified them according to our algorithm’s requirement. 

IAv1
ij

,Av2
ij

=1 if A
v1
ij = A

v2
ij

=0 otherwise

AIv1,v2 =
na + 1

nd + 1

AI =
∑m

i=1

∑m
j=1,j �=i 2× AIvi ,vj

m× (m− 1)
,
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The details of applied perturbation operations are provided as follows. They are also 
illustrated in Fig. 8.

•	 Update This is used to replace all existing centers of Arrview1 and Arrview2 
with new non-center genes from the input gene set. Please note, this perturba-
tion operation intends to impose a slight change in existing clusters. Hence, a gene 
having minimum dissimilarity with an existing center (utilizing DView1n×n or 
DView2n×n ) replaces it to become the new center. If a multi-view solution is cho-
sen for perturbation type, then clustering solutions corresponding to both views 
go through it independently. For example, as illustrated in Fig. 8, a solution Solorg 
goes through this perturbation operation, and independently both Arrview1 [] and 
Arrview2 [] are perturbed. Suppose, from Arrview1 and Arrview2 , 3rd (GC3 ) and 
1st (GC’1 ) cluster are chosen respectively, and their existing centers are replaced 
by NGC3 and NGC’1.

•	 Insert This type of perturbation has been performed to increase the number of 
clusters by one within each of Arrview1 and Arrview2 of a multi-view solution. 
A random non-center gene is chosen from the input set each time and added to 
Arrview1 [] and Arrview2 [] independently. To apply this operator, the number of 
clusters ( Ki ) of a solution must be less than 

√
n so that after perturbation, Ki does 

not exceed the permitted length ( 
√
n ). If we continue the same example of Fig. 8, 

suppose the solution Solupdate is selected for this operation. Then randomly, 
two non-center genes GCKi+1

 and GC’Ki+1
 are chosen from the input gene set and 

added to respected vectors. However, before applying this operation, we need to 
make sure that Ki+1 ≤

√
n.

•	 Delete This perturbation type aims to decrease the number of clusters by one in 
each of Arrview1 and Arrview2 . Randomly one existing center is chosen from 
Arrview1 [] and Arrview2 [] independently and deleted from the array. To apply 

Fig. 8  Three perturbation operations on a multi-view solution
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this operation, the number of clusters ( Ki ) of a solution must have a minimum 
length of 3 so that after perturbation, Ki is not decreased below the permitted 
length (i.e., 2). In Fig. 8, Solinsert is chosen for this operation. Existing gene cent-
ers from 2nd and 3rd clusters of Arrview1 [] and Arrview2[], respectively (GC2 and 
GC’3 ), are chosen randomly and omitted. As a result, the new solution Soldelete 
is formed.

After following any one of the above-mentioned types of perturbation operation, all 
non-center genes’ membership status is recalculated; hence membership matrices for 
both views ( MM-view1Ki×n and MM-view2Ki×n ) are updated. The corresponding con-
sensus clustering solution ( Arrcons ) is also updated accordingly.

Step 5: Forming non-dominating Archive
Once all of ‘ P ’ solutions are completely initialized according to Step 1 and Step 2, 

then according to Step 3, all three objective functions are calculated for them. Next, 
these solutions are perturbed once (according to Step 4). Similar to original solutions, 
objective functions are calculated for their corresponding perturbed solutions too. In 
this step, UMVMO-select aims to identify non-dominated solutions. According to the 
concept of underlying optimization strategy AMOSA [15], to store non-dominated 
solutions obtained so far, an Archive is maintained. These non-dominated solutions 
are also called Pareto-optimal solutions, and the front made by them is also known as 
Pareto-front [51].

Before forming Archive, the domination status between ‘ P ’ number of original and 
corresponding perturbed solutions is checked. If a perturbed solution dominates the 
original one, then the original solution is replaced by the perturbed one; otherwise, 
the original is kept. If both solutions are non-dominating then also the original stays 
unchanged. Next, the Archive made of non-dominated solutions (out of ‘ P ’ solutions) 
is identified. Any two clustering solutions are called non-dominating if both of them 
dominates each other with respect to at least one objective function value. These 
solutions are identified and added to the Archive. It follows two size limits; soft limit 
( SL ) and hard limit ( HL ). Generally, SL > HL . During the entire optimization process, 
non-dominated solutions are stored in the Archive up to the limit of SL . Once the 
number of solutions crosses SL , a single linkage-based clustering is applied to reduce 
the size of Archive to HL.

Step 6: The main optimization process
At this step, our proposed algorithm follows the optimization strategy of AMOSA 

[15]. According to this optimization strategy, a variable tmp is initiated with a maxi-
mum temperature parameter Tmax . α is a fixed parameter denoting the cooling rate. 
tmp gets decreased gradually from Tmax with cooling rate α until α ≤ Tmin . Tmin is 
the lowest temperature variable. At each value of tmp , several times ( TotalIter ), 
also referred to as generations, the main optimization process is executed. A single 
solution is picked up randomly from the Archive; let us denote it as the current point 
or c-pt. To generate a new solution—n-pt, any one type of perturbation operations 
is performed on the c-pt (according to Step 4). After that, objective function values 
of n-pt are calculated (according to Step 3), and domination status between c-pt and 
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n-pt along with rest solutions in Archive is checked. According to [15], the amount of 
domination �dom(a, b) between two solutions a and b is defined as follows.

where fi(a) and fi(b) are the ith objective values of the two solutions. The range of the 
ith objective is denoted by Ri and Mobj denotes the number of objective functions. To 
calculate Ri , the solutions present in the Archive along with c-pt and the n-pt are used. 
Next, based on the domination status of the n-pt and the c-pt along with Archive mem-
ber, three different cases can arise. Based on these cases, different strategies are adopted 
to update c-pt and Archive members. The overall pseudo-code of the optimization strat-
egy (AMOSA), followed by our proposed algorithm, is shown in Fig. 9. Also, please see 

(11)�doma,b =
Mobj∏

i=1,fi(a) �=fi(b)

|fi(a)− fi(b)|
Ri

Fig. 9  Pseudo-code of AMOSA algorithm
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the main optimization process module from the flowchart, as shown in Fig. 6. Finally, 
once the temperature variable ( tmp ) drops into or below Tmin , the obtained Archive is 
considered as the final optimized set containing non-dominated solutions or the final 
Pareto-front.

Step 7: Ensemble operation on the final Pareto front
From the obtained Pareto-front, any solution can be chosen as a final multi-view 

clustering solution according to any cluster quality metric [3]. However, our proposed 
UMVMO-select performs an ensemble operation on consensus solutions ( Arrcons ) 
obtained from the Archive following the majority voting strategy. If a pair of genes are 
members of the same cluster for the majority of produced consensus clustering solu-
tions, then they are kept together in the final solution. Following this rule, the grouping 
is done for most of the input genes. The genes which can not be grouped in this manner 
follow a similar strategy as followed in Step 2, i.e., minimum-average-dissimilarity with 
centers utilizing both views.

The final ensembled consensus clustering solution is further utilized to generate a set 
of non-redundant and relevant candidate genes.

Step 8: Validate the final ensembled consensus clustering solution and extract centers as 
candidate genes

Once the final ensembled clustering solution is obtained, we perform a biological sig-
nificance test on the obtained clustering solution before extracting the candidate genes. 
The GO enrichment analysis—presented by the GO tool5 is conducted for this purpose, 
described in detail in the “Discussion” section. If any cluster(s) from the obtained solu-
tion fails the validation test, then the following tests must be performed until the final 
solution is found as valid.

•	 Individually perform biological significance test on each consensus solution of Pareto 
front. The solution(s) who fails in the validation test is discarded. Rest consensus 
solutions are ensembled to produce the final solution, according to Step 7.

•	 If all Pareto front solutions are biologically significant, but not the ensembled one 
then, the consensus solution having maximum Silhouette index value [35] is chosen 
for candidate gene selection instead of the ensembled one.

•	 If neither ensembled nor any Pareto front solutions are biologically significant, then 
the input parameters are changed through the sensitivity analysis (discussed in the 
“Results” section) to re-execute UMVMO-select.

After validating the obtained solution, the encoded cluster centers are extracted as can-
didate genes (features) of reduced gene-space. Suppose Cand represents this set of can-
didate genes. Let, |Cand| = nc , which represents nc number of genes, are selected as 
candidate genes. Here, nc < n and also nc = # clusters in the final solution. Finally, from 
the original expression data set Gorg[n][d] , rows corresponding to nc candidate genes 
are extracted, and gene expression data set Gredu[nc][d] with reduced gene space nc is 
formed.

Step 9: Identifying gene markers from multiple runs of proposed algorithm

5  http://geneo​ntolo​gy.org/.

http://geneontology.org/
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We execute the proposed algorithm UMVMO-select ‘ t ’ number of times on a particu-
lar data set, which forms ‘ t ’ different sets of candidate genes. To ensure the stability, the 
genes those appear in each of ‘ t ’ obtained sets are chosen and reported as gene markers 
in this article. To decide the best value of ‘ t ’ for each data set, it is increased up to certain 
trials, after which the set of obtained common gene markers does not change anymore.
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