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710072 Xian, China Results: We propose a learning-based method based on feature representation

learning and deep neural network named DTI-CNN to predict the drug-target
interactions. We first extract the relevant features of drugs and proteins from
heterogeneous networks by using the Jaccard similarity coefficient and restart random
walk model. Then, we adopt a denoising autoencoder model to reduce the dimension
and identify the essential features. Third, based on the features obtained from last step,
we constructed a convolutional neural network model to predict the interaction
between drugs and proteins . The evaluation results show that the average AUROC
score and AUPR score of DTI-CNN were 0.9416 and 0.9499, which obtains better
performance than the other three existing state-of-the-art methods.

Conclusions: All the experimental results show that the performance of DTI-CNN is
better than that of the three existing methods and the proposed method is
appropriately designed.
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Background

Drug targets are special molecules that can bind to drugs and produce effects in cells, the
main molecular targets for drugs are proteins [1]. Drug-target interactions (DTIs) pre-
diction is of great significance for drug repositioning [2], drug discovery [3], side-effect
prediction [4] and drug resistance [5]. However, identifying the drug-target interactions
via biochemical and chemical biological experiments is costly and time-consuming [6].
Recently, as genomic, chemical, and pharmacological data become more and more com-
plete, new opportunities for identifying drug target interactions have been emerged [2].
Therefore, many researchers have attempted to predict DTIs by using silico or computa-
tional approaches to guide in vivo validation in recent years, and thus significantly reduce
the cost and time for identifying the drug-target interactions [2].

The traditional computational DTIs prediction approaches are mainly categorized into
docking-based approaches [7] [8] and ligand-based approaches [9]. However, the docking
is difficult to play a good performance when the three-dimensional structures of the target
protein are unknown [10]. The ligand-based approaches are very effective in DTIs predic-
tion, but it often requires a large number of known binding data and thus the prediction
results are poor with only a small amount of known data [11].

In recent years, network-based approaches have demonstrated great advantages com-
pared to docking-based and ligand-based methods [12] [13]. First, network-based
approaches have a good prediction performance even without the three-dimensional
structure of the target. Secondly, they are simple and fast for only by performing simple
physical processes [13]. In the past decade, DTIs prediction approaches based on machine
learning have also been widely studied. A key idea of these approaches is the assumption
that similar drugs may share similar targets [14].Thus predicting DTIs is often regarded
as a binary classification issue by using chemical structures of drugs and targets as input
features and considering known DTIs as labels [2]. However, most existing prediction
methods are limited to homogeneous networks, which ignore a rich variety of topological
information and the complex interaction relationship of heterogeneous data [3].

In recent years, a variety of computing methods based on heterogeneous data sources
have been developed to predict DTI. Wang et.al used a heterogeneous network data to
obtain the diffusion feature and directly use the obtained diffusion distributions to derive
the prediction scores of DTIs [3]. However, the direct use of diffusion state as a feature or
prediction score is vulnerable to the deviation caused by noise and high dimension of het-
erogeneous network data, resulting in inaccurate DTI prediction [2]. Luo et.al provided
the DTINet as a new prediction method, which extracted the low-dimensional char-
acteristic information from heterogeneous data sources and used the inductive matrix
completion (IMC) approach to predict the drug-target interaction fraction [2]. The induc-
tive matrix completion approach predicts the new DTI by using a small amount of known
drug-protein interaction information, combined with the extracted drug and protein
characteristic information. This method has been proved to be superior to the commonly
used Laplacian regularization least square approach [15], heterogeneous network model
[16], cooperation matrix factorization (CMF) [17] and Bipartite local model by learning
from local information and neighbors [18].

In this paper, we improve the prediction method by learning low-dimensional vec-
tor representations of features from heterogeneous networks, and adopting convolution
neural networks (CNN) as classification model. An efficient DTI prediction method
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is presented, DTI-CNN, which can be used to identify the drug-target interactions,
guide biochemical experiments and reduce the cost of research. Here are four major

contributions:

e e propose a learning-based method for drug-target interaction prediction that
contains three components, named as heterogeneous-network-based feature
extractor, denoising-autoencoder-based feature selector and CNN-based interaction
predictor.

e Based on random walk with restart (RWR) and denoising autoencoder (DAE) model,
DTI-CNN can cope with the noisy, incomplete and high-dimensional features from
heterogeneous data sources, including drug, proteins, side-effects and diseases
information.

e Based on a deep CNN model, DTI-CNN can handle the low dimensional feature
vectors and predict the probability of interaction between each pair of drugs and
proteins.

e Based on our DTI prediction task, the results indicate that DTI-CNN is better than
the other three state-of-the-art methods and is appropriately designed.

Methods

We propose an learning-based method called DTI-CNN to predict drug-target interac-
tions. The workflow of DTI-CNN is shown in Fig. 1. First, the heterogeneous network was
constructed by integrating a variety of drug and protein related information sources, and
the initial drug feature vector and protein feature vector were obtained by RWR model.

Drug side-effect Drug-drug
association  interaction ®Jaccard similarity coefficient
number of drugs
@ o9 . @Random Walk with Restart
!_&'\. PUS similarity Matrix ® Denoising Autoencoder
A o) matrixes of ® representation of @Classify samples and combine
.‘\A .Y. drug drug features drugs and protein vectors
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L
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Fig. 1 The flowchart of DTI-CNN pipeline. The DTI-CNN contains heterogeneous-network-based feature
extractor, denoising-autoencoder-based feature selector and CNN-based interaction predictor. First, the
features are extracted from seven networks of drug and protein by the Jaccard similarity coefficient and RWR
algorithm, then we get the low-dimensional representation of drug and protein features by adopting the DAE
model. Third, a deep CNN model is constructed to predict the interaction of each pair of drugs and proteins
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In the second step, the high-dimensional features of drugs and proteins are reduced by
adopting the DAE model, and the low-dimensional representations of them are obtained
respectively. Finally, according to the known drug-protein interactions, the samples are
divided into positive samples and negative samples. Combining the feature vector of drug-
protein pairs, CNN was adopted to predict the association between each pair of drugs

and proteins.

Heterogeneous-network-based feature extractor
The heterogeneous networks is constructed based on two types of networks as follows.
One is the drug-related networks, including drug-drug interactions, drug-disease asso-
ciations, drug-side-effect associations, drug similarities (based on chemical structures of
drugs) [2]. The other is protein-related networks, including protein-disease associations,
protein-protein interactions, protein similarities (based on primary sequences of pro-
teins) [2]. Firstly, the Jaccard similarity algorithm [19] is executed on each association and
interaction matrix respectively, so we can generate a similarity matrix for each network.
Taking the drug-disease interactions matrix as an example, two sets A and B are given
as two rows in the adjacent matrix, which represent the interactions between two dif-
ferent drugs and all diseases. The Jaccard similarity coefficient[20] is an indicator of the
similarity between two sets, defined as follows:
|ANB]
~ JAUB|’

The original adjacent matrix is a description of the relationship between a single row and

Sim(A, B) (1)

column node, and the Jaccard similarity coefficient calculation is based on the adjacent
two row vectors of the original adjacent matrix. Thus the similarity matrices S represent
the similarity between each drug or protein node and all features of the column nodes.
The element S;; represents similarity of row i and row j in the original adjacenct matrix.

After all the original data is transformed into similarity matrices, the RWR algorithm
[21] is applied to each similarity matrix, which represents a weighted network. The dif-
fusion state of each drug or protein is obtained on each network, which includes the
topological structure relation of each drug or protein with all the other nodes in the
network.

The reason for using RWR is that the similarity matrix obtained in the previous step
only calculates the similarity of the two nodes in isolation. RWR can be used to consider
global structure information in the network. If the distribution state of the two nodes is
close, they can be considered to be in a similar position relative to other nodes in the
network. According to the RWR principle, the greater the similarity between the two
nodes, the higher the transition probability of them [22].

Taking the drug-disease similarity matrix A;; as an example, we can get the drug-disease
transition probability matrix B according to the A; ;, whose elements B;; describe the tran-
sition probability from the drug node i to the disease node j [23], that is defined as follows:

Ai,j

ij = .
> Aij
Next, the final drug-disease diffusion state matrix can be obtained by iterative conver-

B (2)

gence as follows:

S = (1 - p,)SIB + pre;. 3)
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Where S! is the result after ¢ iterations, and each element stores the probability of access-
ing a disease node from the drug node i after iteration in the process of random walk, p,
is the restart probability, and e; is an n-dimensional unit matrix.

After all the similarity matrices is transformed into diffusion state matrices, we splice
the single diffusion state matrix of drug and protein networks, so that we can get two
diffusion state matrices about drug and protein. The row of the drug diffusion matrix
represents different drugs, and the column represents the four nodes of drugs, diseases,
side effects and drugs, in which the element D(i, ) represents the transition probability
between drug i and node j. The row of the protein diffusion state matrix represents differ-
ent proteins, and the column represents the three nodes of protein, disease and protein,
in which the element P(i, j) represents the transfer probability of protein i and node ;.

Denoising-autoencoder-based feature selector

The vector of diffusion state matrix obtained in the previous step is high-dimensional,
noisy and incomplete. In order to obtain the essential features, we apply a DAE model
which carry on the data operation on the basis of the autoencoder. The main idea of DAE
is shown in Fig. 2. Taking the diffusion state matrix about drug as an input example, by
adding noise to the input training data and making the self-encoder learn to remove this
noise, the real input which has not been polluted by noise can be obtained [24]. Therefore,
the encoder can obtain the most essential features from the original input to get more
robust representation. This is why its generalization ability is better than that of the gen-
eral encoder [25]. Autoencoders use automatic Encoders to obtain low-dimensional data
through neural networks based on the input data. Similarly, the Decoders to recover the
original input from low-dimensional data [26].

In the model, we reduce the dimension of drug features to 100 dimensions and pro-
tein features to 400 dimensions. We set the noise figure to 0.2, and use the softplus [27]
and RMSProp fuction [28] to optimize the mean-square error (MSE) [29]. At last, the
backpropagation (BP) algorithm is used to train our DAE [30].

CNN-based interaction predictor

Convolutional Neural Networks is a classical and widely used structure since 1980s [31]
and can greatly reduces the complexity of convolution neural network [32]. The param-
eters of each layer network are shared and the number of parameters to be trained

Encoder input
vector with noise Original input vector X

0000000000}

"\

[c00}—{60000Y

Encoder output Y Decoder output Z

Fig. 2 The schematic illustration of denoising autoencoder. The original input data is high-dimensional, noisy
and incomplete, the DAE adds noise to it and makes the self-encoder learn to remove the noise, which
makes the encoder learn more robust and low-dimensional representation in the input data. Then the
decoder is used to recover the original input from low-dimensional data, the loss between the original input
and the decoder output is optimized by the RMSProp algorithm
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is reduced during training. Compared with the standard fully connected neural net-
work, it has better performance in image classification, sentence classification and other
classification tasks [33].

Inspired by the success of CNN in classification tasks [34], we use CNN as the super-
vised learning model and the structure of the prediction model is shown in Fig. 3. The
prediction model contains the convolution, max-pooling, fully-connected and output
layer. A convolution layer with a rectified linear unit (ReLU) activation fuction [34] is used
as a feature extractor [35]. A max-pooling layer is employed to reduce the dimension of
features, and the fully-connection layer and the output sigmoid layer are used to classify
the tasks.

As the key component of a CNN, convolution layer can help the model to learn
local and global structures from the input vector [35]. In our model, the convolu-
tional layer consists of 4 kernels. Given the input vector X of length S, and the length
of weight vector is 4 % 1. For each kernel, convolution operation is independent and
thus we can obtain four particular feature with the length (S — 4) + 1, which was
extracted from the input vector and named feature map M. The M is obtained as
follows:

4
M=) WXy (4)
j=1

Input vector

Y
Convelutional 4 kernels
layer size 4x1

ReLU activation

Y
Max-pooling size 2x1
layer stride 2

ReLU activation
dropout 0.5

Y
Fully-connected
layer

128 neurons

sigmoid function

Y

Sigmoid output probability over labels

Fig. 3 The structure of the convolutional neural network model




Peng et al. BMC Bioinformatics 2020, 21(Suppl 13):394 Page 7 of 13

where (i € 0,1,...,5S —4), and W is initialized by a truncated normal distribution and
used as a weight vector. Then a ReLU function is used to the feature map obtained last
step:

f(x) = max(0,x). (5)

The ReLU function is selected for the excitation function, which can effectively simplify
the calculation process and avoid the gradient explosion and disappearance [36].

Next layer is the max-pooling layer, which can extract the maximum value in the pooled
region and the pooled region continues to move forward at a certain step size in an input
sequence, thus reducing the dimension in each feature map [36]. In our model, the pooled
size is 2 x 1, and the step size is 2. Given an input vector 4; (i € 0,1,...,S — 4), the length
of output of this layer is %

After the first two layers, we use a one-dimensional vector to connect the important
features extracted from all the kernels and then pass them to the fully connected layer.
The number of hidden units in this layer is 180 and the output of this layer is calculated
as follows:

f=Wsxy. (6)

where W e R"*189) js the weight matrix, y is the output of pooling layer, and f is the
ReLU function.

The final output sigmoid layer is constructed for the binary classification. The Sigmoid
function maps output values between 0 and 1 for classification, which is extracted by the
following equation:

S(x) = (7)

14+e
Results

Data preparation

To make the performance evaluationn, DTI-CNN was tested on the drug-target interac-
tions prediction task.

We obtained the heterogeneous network from Luo’s paper, which include 12,015
nodes and 1,895,445 edges in total [2]. The isolated nodes are excluded. The het-
erogeneous network integrates four types of nodes (drugs, proteins, diseases and
side-effects) and six type of edges (drug-protein interactions, drug-drug interac-
tions, drug-disease associations, drug-side-effect associations, protein-disease asso-
ciations and protein-protein interactions) [2]. Based on chemical structures of
drugs and primary sequences of proteins, we also built up the multiple similarity
networks [16].

The drug nodes, known DTIs and drug-drug interactions were extracted from the
DrugBank database [37]. The protein nodes and protein—protein interactions were
obtained from the HPRD database [38]. The disease nodes, drug—disease and protein—
disease associations were extracted from the Comparative Toxicogenomics Database [39].
The side-effect nodes and drug—side-effect associations were collected from the SIDER
database [40].
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In our model, we first constructed seven similarity matrices after the Jaccard simi-
larity algorithm. We obtained the drug-related similarity matrices including drug-drug
similarity matrix, drug-disease similarity matrix, drug-side-effect similarity matrix and
drug similarities matrix. The protein-related similarity matrices include protein-disease
similarity matrix, protein-protein similarity matrix and protein similarities matrix. Sec-
ondly, we perform RWR algorithm for the two kinds of matrices respectively and splice
the single diffusion state matrix of drug and protein networks. After this step, we get
two diffusion state matrices corresponding to drug and protein respectively. The rows
of the drug diffusion matrix represent different drugs, and the columns represent pro-
teins, diseases, side effects and drugs nodes. The values in the matrix represent the
associations between drugs and the four biological entities. The rows of the protein
diffusion state matrix represent different proteins. The columns represent proteins, dis-
eases and drugs nodes. The values in the matrix represent the associations between
proteins and the three biological entities. Then, we reduce the dimension of drug
diffusion state matrix and protein diffusion state matrix respectively by using DAE
model. Finally, we obtain the drugs feature vector matrix of 100 dimensions and a total
of 708 samples. Similarly, the proteins feature vector matrix is 400 dimensions and
1512 samples.

At last, we adopted the method of ten fold cross validation to divide the train set and
test set, in which 90% of the positive and negative samples were used to train model
and 10% of the positive and negative samples were used to test the model. According
to the known drug-protein interactions matrix, we use the known drug-protein inter-
action pairs as positive samples. We randomly selected negative samples with the same
number of positive samples. In total, we have 3846 samples. After splicing the corre-
sponding protein vectors into drug vectors, we get drug-protein pair vectors of 500
dimensions.

Model parameters
For the RWR model, the restart probability is 0.5 and the number of iterations is 20.

The parameters used in the DAE model are as follows. For the drug features
matrices, the original dimensions are 2832 and the DAE has one hidden layer
with 100 units. For the protein features matrices, the original dimensions are 4536
and has one hidden layer with 400 units. For drug and protein features, there
are 16 and 32 samples for each batch respectively. The number of epochs is 20.
The noise scale value is 0.2 and we use Respro optimizer algorithm to train the
model.

The parameters of the CNN model are as follows. We added a dropout layer before
the fully-connected layer and the dropout percentage is 0.5. We run 35 epochs with 64
samples for each batch . We used Adam algorithm and set an initial learning rate as 0.001
to optimize the binary cross entropy loss [41].

Evaluation Metrics

The AUROC and AUPR scores were used to evaluate the model test and
comparison. AUROC and AUPR scores are commonly used evaluation cri-
teria for machine learning, which represent the area under the curve of
ROC curve and PR curve respectively. The higher the score, the higher the
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prediction accuracy of the model and the better the performance of the
model.

ROC curve refers to the curve with false positive probability (FPR) as horizontal axis
and true positive rate (TPR) as longitudinal axis, in which FPR = % , TPR = TP{L%
PR curve refers to the curve with Recall as horizontal axis and Precision as longitudinal

axis, and Recall = Tpfr%, Precision = %fﬂ)

Performance evaluation on predicting drug-target interactions

We compared the performance of DTI-CNN with three existing state-of-art methods
(DTINet [2], CMF [17] and NRLMF [42]) on the task of predicting drug-target interac-
tions.All models are trained and tested with a 10-fold cross validation. Our comparative
results are shown in Fig. 4 and Table 1. Comparing with other methods, the result shows
that DTI-CNN can perform best on both scores at the same time and DTINet is the sec-
ond best method. The AUROC of DTI-CNN is 0.9416, which is 0.03 higher than DTINet.
The AUPR of DTI-CNN is 0.02 higher than DTINet. In summary, DTI-CNN performs
better on drug-target interactions prediction task than the other three state-of-the-art
DTI prediction methods.

Effects of DTI-CNN components

We choose two different approaches in feature selection module and interaction predic-
tion module respectively to figure out the performance of each module of DTI-CNN. To
test the effect of our feature selection model, we first use the singular value decomposi-
tion (SVD) method [43] to replace our DAE model and name this method as SVD-CNN.
To test the effect of the CNN component, we substitute the CNN model with the support
vector machine (SVM) model and name this method as DTI-SVM. All three methods are
used on DTI prediction task to compare performance and the comparative results are
shown in Fig. 5 and Table 2. Comparing with other two methods, the result shows that
DTI-CNN can achieve higher AUROC and AUPR scores at the same time, indicating that
the two modules of our model are appropriately designed.

08t = e 0.8
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Fig. 4 The ROC (a) and P-R (b) curves of DTI-CNN, DTINet, CMF and NRLMF on drug-target interactions
prediction task. The AUROC of DTI-CNN is 0.9416 and the AUPR of DTI-CNN is 0.9499, which performs better
on the drug-target interactions prediction task than the other three state-of-the-art DTI prediction methods
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Table 1 The AUROC, AUPR scores of DTI-CNN, DTINet, CMF and NRLMF on drug-target interactions
prediction task

Methods AUROC AUPR

DTINet 09111 0.9290
NRLMF 0.8692 04411
CMF 0.9037 04173
DTI-CNN 09416 0.9499

Case study in three drugs

We extracted the known DTIs from the DrugBank database. We choose the three drugs
with the largest number of interactions in known DTIs, which are Quetiapine, Olanzapine
and Meprobamate. In the train set, we exclude all the features and interactions between
the three drugs and their related proteins to avoid logic circle. In the test set, we input
the features of the three drugs and its related proteins. In the “Quetiapine set’, 24 of 24
known interactions are identified. In the “Meprobamate set’, 23 of 24 known interactions
are discovered. And in the “Olanzapine set’, 23 of 23 known interactions are recognized.
These results indicate that the DTI-CNN method has a good performance on drug-target
interactions prediction.

Discussion
At present, there are three traditional kinds of DTI prediction approaches which con-
tains molecular-based approach, ligand-based approach and network-based approach
[10]. There are a variety of related models, and the demand for algorithm prediction accu-
racy is getting higher and higher. The feature learning approach based on deep learning
is different from the traditional neural network [44]. Through layer-by-layer learning, we
can learn the essential features of the data set without relying on a large scale of samples.,
so as to predict the unknown data more accurately [45].

The purpose of this research is to improve the prediction accuracy by using the CNN
model based on depth learning on the basis of the developed method DTINet. The
DTINet contains two modules which are feature extraction and classification. In the first
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Fig. 5 The ROC (a) and P-R (b) curves of DTI-CNN, SVD-CNN and DTI-SVM on drug-target interactions
prediction task. The DTI-CNN achieves both higher AUROC and AUPR scores than the SVD-CNN and the
DTI-SVM method, indicating that the DTI-CNN has been appropriately designed
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Table 2 The AUROC, AUPR scores of DTI-CNN, SVD-CNN and DTI-SVM on drug-target interactions
prediction task

Methods AUROC AUPR

DTI-SVM 0.9068 0.9292
SVD-CNN 0.9306 0.9370
DTI-CNN 09416 0.9499

module, we replace the dimension reduction model based on SVD with DAE model to
ensure that we can learn features that are more suitable for neural network learning. Then,
we improve the classification prediction model of DTINet and use the CNN model as the
new prediction model in the second module. Compared with the IMC approach used by
DTINet, the CNN model can take into account the topological information and interrela-
tion between the nodes in the network. In addition, we also choose three state-of-the-art
DTI prediction methods as comparison. The experimental results show that the AUROC
and AUPR scores of our model are both higher than DTINet, NRLMF and CMFE.

In addition, we want to know which network contributes more to the DTI prediction.
We sequentially remove a network from the original heterogeneous networks as new
input data, and then use our DTI-CNN method to perform DTI prediction. The results
are shown in Table 3. The result shows that the drug-drug interaction of drug networks
and the protein similarities of protein networks contributed more to the DTI predic-
tion. When the drug-drug interaction network was removed, the result achieves both the
lowest AUROC and AUPR scores at the same time.

In the future, we will consider adding more relevant information to the heteroge-
neous network. For the CNN model, we can add the network structure appropriately to
accommodate more complex input networks. In this work, although DTI-CNN is mainly
designed to predict DTIs, it is an extendible method and can also be used to predict other
related directions in the future, such as drug-drug, drug-side-effects and protein-disease.

Conclusion

In this paper, we propose a learning-based method named DTI-CNN to predict the drug-
target interactions. Firstly, the Jaccard similarity coefficient and RWR model are used to
obtain the relevant features of drugs and targets from heterogeneous networks. Then, we
use DAE model to reduce dimensions and identify the essential features. Thirdly, based
on the features obtained from the last step, a CNN model is constructed to make a pre-
diction of DTIs.To demonstrate the advantages of DTI-CNN, we compare it with three
advanced methods. In addition, we also evaluate the effect of each DTI-CNN module. All

Table 3 The AUROC, AUPR scores of sequentially strip out a network from the original
heterogeneous network as new input data of DTI-CNN on drug-target interactions prediction task

Networks AUROC AUPR

Without drug-drug 0.9299 0.9370
Without drug-disease 0.9343 0.9416
Without drug side-effect 0.9344 0.9444
Without drug similarities 0.9345 0.9425
Without protein-protein 09418 0.9499
Without protein-disease 0.9364 0.9452

Without protein similarities 0.9327 0.9411
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the experimental results show that the performance of DTI-CNN is better than that of
the existing methods and the proposed method is appropriately designed. The case study
also shows that DTI-CNN can be used to predict the drug-target interactions.
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