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Abstract

Background: Drug repurposing aims to detect the new therapeutic benefits of the
existing drugs and reduce the spent time and cost of the drug development
projects. The synthetic repurposing of drugs may prove to be more useful than the
single repurposing in terms of reducing toxicity and enhancing efficacy. However,
the researchers have not given it serious consideration. To address the issue, a novel
datamining method is introduced and applied to repositioning of drugs for
hypertension (HT) which is a serious medical condition and needs some improved
treatment plans to help treat it.

Results: A novel two-step data mining method, which is based on the If-Then
association rules as well as a novel discrete optimization algorithm, was introduced and
applied to the synthetic repurposing of drugs for HT. The required data were also
extracted from DrugBank, KEGG, and DrugR+ databases. The findings indicated that
based on the different statistical criteria, the proposed method outperformed the other
state-of-the-art approaches. In contrast to the previously proposed methods which had
failed to discover a list on some datasets, our method could find a combination list for
all of them.

Conclusion: Since the proposed synthetic method uses medications in small dosages,
it might revive some failed drug development projects and put forward a suitable plan
for treating different diseases such as COVID-19 and HT. It is also worth noting that
applying efficient computational methods helps to produce better results.

Keywords: Data mining, Drug repurposing, Hypertension, Optimization algorithm,
Synthetic repurposing
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Background
Hypertension (HT) is a long-term medical condition, in which blood circulates anomal-

ously through the vessels. In terms of the nature of HT, the patients are divided into

two groups, which are as follows [1]:

i) The Primary HT: some genetic factors as well as unhealthy lifestyles such as having

a salty diet, smoking, drinking alcohol, stresses and strains, overweight etc. [2] all

have an important role in inducing HT. More than 90% of the hypertensive

patients who are mostly adults, are placed in this category.

ii) The Secondary HT: some medical conditions such as the chronic kidney illnesses

might also give rise to HT [3]. Less than 10% of the patients, whose HT may be

reduced through treating the main condition [4], are placed in this group.

According to the world health organization, about 1.3 billion people around the

world, which is a remarkable number, suffer from HT [5]. Most of these patients who

are from the low and middle-paid countries [6], need some proper therapeutic plans

such as drug repurposing methods which could yield the desired effect [7]. Drug repur-

posing or drug repositioning process, which may be the best option to treat diseases,

brings about some big advantages as follows: First, it may make the finding treatment

plan against HT a cost-effective and time-saving process. Second, it might be useful in

treating both the orphan and rare HT diseases such as COVID-19, considering the fact

that drug companies cannot afford to develop new molecular entities or cannot develop

a suitable medication in a reasonable time order. Third, it might prove that the existing

drugs have many hidden medical benefits in treating HT, in view of the fact that such

advantages have not been detected before.

Beside taking advantage of drug repurposing, The synthetic repurposing of Drugs, in

which instead of recommending a specific drug, a combination of two or more medi-

cines is prescribed, might yield various advantages as follows:

i) It might lessen the medicines’ toxicity through applying them in small doses [8],

which in turn can lead to reviving the previous drug development projects which

have failed due to facing some biological problems such as bioavailability or large

amounts of toxicity.

ii) It may increase the effectualness of drugs and yield some better treatment

methods. In contrast to a single therapy, a proper combination of drugs can

produce much better synergic effect and have more control over the disease.

However, the drug-drug adverse reactions are considered to be the main challenge

in front of the researchers [9].

iii) It may pave the way for developing a new research branch of drug repurposing and

expanding the drug usages in a wide range of diseases [10], which in turn can help

pharmaceutical companies or pharmacologists determine the doses of drugs and

address their technical issues.

iv) The results obtained from the synthetic repurposing of drugs may also be applied

to a combination therapy, in which a drug can increase the effectualness of one

particular drug when combined with it [11]. There is a marked difference between

the synthetic treatment and combination therapy concepts. The first one is based
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on a synthesis of different drugs instead of a given medication, whereas the second

one combines one or more medications with a given drug [12]. In other words, in

the synthetic repurposing method, a combination of two drugs (A and B) is used

instead of a given drug (C), whereas in the combination therapy, a combination of

a given drug (C) and another drug (E) is being used.

The present study aims to introduce the synthetic repurposing of drugs as a useful

approach to treat various diseases such as HT. For this purpose, a novel datamining

method, which is based on our proposed algorithm and the association rules, is pre-

sented. The approach employed to conducting the research, consists of two main parts

as follows: First, the If-Then association rules are applied to a large volume of data to

extract information about the drug-target interactions, the drug-drug adverse reactions,

and the drug-diseases data. Second, the discrete version of the proposed discrete algo-

rithm (Trader) [13] is introduced and used to discover the synthetic lists which might

be useful in controlling HT.

In the present study, the related works on the repurposing of drugs are examined and

categorized from a computational perspective, which are listed as follows:

i) The machine learning-based researches: in these researches, the existing data are

examined to discover the relationship between inputs and outputs [14]. Overall,

until recently, three types of machine learning methods, including supervised,

semi-supervised, and unsupervised have been applied to the scope of drug discov-

ery processes [15]. It has been also shown that some modified and improved ver-

sions of the present approaches such as deep neural networks could yield better

predictive models [16], and overfitting and insufficient amounts of data have been

the main challenges in front of the researchers who have been engaged in generat-

ing an appropriate predictive model [17–19].

ii) The theory-based researches: normally, researchers formulate the relationship

among the biological entities based on the numerical and experimental experiences

[20, 21]. For this purpose, they have proposed many mathematical equations to cal-

culate the drugs’ structural similarities [22, 23] and based on the similarity score,

they have examined the role of the analogous drugs in treating diseases [24]. The

fact that the drugs with similar structures (scores) might be replaced with one an-

other, is of the utmost importance. However, it has been reported that the theory-

based methods are not applicable to the most projects and to qualify, they need to

meet some other criteria [25].

iii) The graph and network theory-based researches: these studies employ a graph or a

network to show the communication among the biological components [26]. For

this purpose, first the graph algorithms are applied to the generated network [27,

28], and then the hidden relations are detected [29]. Although these techniques are

confronted with minimal validity challenges and can produce significant results,

they are not applicable to the most drug repurposing cases because the biological

elements act according to the hypergraph concepts [30, 31].

iv) The text mining-based researches: in these studies, different algorithms are applied

to delve into a massive volume of raw data and gather the desired ones [32]. The

prevalent drug repositioning strategies which are employed to apply this approach,
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are as follows: K-means, KNN, the association rules, and optimization algorithms

[33, 34]. For best results, it is essential to organize the data effectively and apply

the state-of-the-art algorithms. Our proposed method, which employs both the as-

sociation rules (If-Then) [35] and the novel discrete algorithm (Trader), fits into

this category of the related works.

v) The ensemble method-based researches: in such research projects, various tech-

niques are combined in several different ways [36] to generate an efficient tool for

predicting and discovering the hidden benefits of the drugs [37]. For example,

some researchers have mixed different aspects of the computational methods to

obtain a suitable predictive model [38–40]. However, from the biological perspec-

tive, it has been shown that the simple techniques are sometimes better than the

complex ones [41], and the ensemble methods’ overfitting possibilities might be

more than the other approaches’.

Results
The newly proposed method for the synthetic repurposing of drugs was implemented

in the MATLAB programming language and then compared with the four state-of-the-

art algorithms, including the discrete symbiotic optimization search (DSOS) [42], the

forest optimization algorithm (FOA) [43], the world competitive contests algorithm

(WCC) [44], and the cuckoo optimization (CUK) algorithm [45]. Afterwards, the

above-mentioned state-of-the-art algorithms were applied to the generated datasets

which have been presented in Table 1. Next, some candidate medicines were selected

from medications which have been suggested for use in controlling HT by the different

proposed treatment methods. In the datasets, there exist three pieces of information

about every drug, which are as follows: i) the total number of a drug’s targets, including

the main targets and the side effects, ii) the total number of a drug’s targets which are

effective in controlling hypertension, and (iii) the total number of the drugs which have

a target in common with one of the main targets of the specified drug. For instance, in

the case of Nicardipine which interacts with 15 targets, only 4 targets play a key role in

treating hypertension, and the remaining 11 targets are regarded as just some side ef-

fects. There are also 40 drugs which have at least an interaction with the main targets

of Nicardipine. The present study aims to substitute a specified drug such as Nicardi-

pine with an optimal subset of drugs which help control hypertension.

The results obtained from applying the algorithms to the datasets have been divided

into two categories, which are as follows:

i) In the first class of evaluations, the performance of the algorithms was examined in

terms of convergence, stability, and some statistical criteria such as the P-value, the

standard deviation (STD). The stochastic operations of the optimization algorithms

generate various results in their different runs. For this reason, each algorithm was

individually executed 50 times, and then the generated data were analyzed. Each

algorithm was executed under similar circumstances and invoked the same

number of the score functions. Figure 1 represents the convergence of the

algorithms on the generated datasets. The horizontal and vertical axes show the

iteration number and the best-obtained score, respectively. When the size of the

problem or the candidate drugs is small, most of the algorithms can choose the
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Table 1 The properties of the generated datasets

DrugBank Id Drug name Abbr Chemical structure TNT TNMT TNC

DB00519 Trandolapril TRA 1 1 16

DB00335 Atenolol ATE 2 1 26

DB00521 Carteolol CAR 2 2 28

DB00622 Nicardipine NIC 15 4 40

DB01023 Felodipine FEL 13 5 50

DB01115 Nifedipine NIF 8 5 50

DB00401 Nisoldipine NIS 5 5 50

DB00590 Doxazosin DOX 6 3 112

DB00457 Prazosin PRA 6 3 112

TNT The total number of targets, TNMT The total number of main targets, TNC The total number of candidates
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Fig. 2 The stability behavior of the algorithms on the generated dataset. The stability of the algorithms on
the a Trandolapril, b Atenolol, c Carteolol, d Nicardipine, e Felodipine, f Nifedipine, g Nisoldipine, h
Doxazosin, and i Prazosin datasets. Trader is remarkably more stable than the others and delivers better
results on the datasets except for Trandolapril and Nicardipine. Moreover, Trader’s performance is better
than the others’ because the performance of the other algorithms lowers through increasing the total
number of candidate drugs

Fig. 1 The convergence behavior of the algorithms on the generated datasets. The convergence of the
algorithms on the a Trandolapril, b Atenolol, c Carteolol, d Nicardipine, e Felodipine, f Nifedipine, g
Nisoldipine, h Doxazosin, and i Prazosin datasets. For the datasets with small sizes, the performance of the
algorithms is almost the same. However, through increasing the total number of candidate drugs (the size
of the problem), algorithms display different functionality. Trader, WCC, DSOS, FOA, and CUK, respectively
are among the algorithms which are considered to have the proper convergence behavior
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Table 2 A comparison of the algorithms’ performance on the generated datasets

Dataset Algorithm Worst Best Average STD P-value Low of CI High of CI

TRA Trader −1.00 − 1.00 − 1.00 0.00 0 − 1.00 − 1.00

WCC −1.00 − 1.00 − 1.00 0.00 0 − 1.00 − 1.00

CUK −1.00 − 1.00 − 1.00 0.00 0 − 1.00 − 1.00

FOA −1.00 − 1.00 − 1.00 0.00 0 − 1.00 − 1.00

DSOS −1.00 − 1.00 − 1.00 0.00 0 − 1.00 − 1.00

ATE Trader −1.00 − 1.00 − 1.00 0.00 0 − 1.00 − 1.00

WCC −1.00 − 1.00 − 1.00 0.00 0 − 1.00 − 1.00

CUK −21.93 −14.03 − 18.40 1.98 2.00E-49 −18.96 − 17.83

FOA −11.72 −2.01 −6.75 3.02 7.44E-21 −7.61 −5.89

DSOS −11.44 −1.09 −6.20 3.37 1.61E-17 −7.16 −5.24

CAR Trader −1.00 −1.00 − 1.00 0.00 0 −1.00 − 1.00

WCC −1.99 −1.02 − 1.55 0.29 1.40E-37 −1.63 − 1.47

CUK −18.97 −17.00 − 17.90 0.54 1.49E-76 −18.05 − 17.74

FOA −6.98 − 3.15 −5.18 1.16 3.31E-34 −5.51 −4.85

DSOS − 9.99 −1.04 −4.90 2.63 9.86E-18 −5.65 −4.15

NIC Trader −2.00 −2.00 −2.00 0.00 0 − 2.00 −2.00

WCC −2.00 −2.00 − 2.00 0.00 0 −2.00 − 2.00

CUK −96.80 −61.69 −80.69 10.44 1.39E-45 −83.66 −77.73

FOA −45.91 −17.13 −32.25 7.71 6.68E-33 −34.44 − 30.05

DSOS −52.49 −2.20 −28.40 11.77 1.72E-18 −32.54 −24.26

FEL Trader −2.00 −2.00 − 2.00 0.00 0 −2.00 − 2.00

WCC −4.99 −1.06 −2.92 1.32 1.17E-20 −3.30 −2.54

CUK −93.19 −76.13 −83.90 5.23 5.30E-61 −85.39 − 82.42

FOA −51.84 −27.04 −37.57 6.79 1.25E-38 −39.50 −35.64

DSOS −65.78 −1.07 −31.28 8.32 1.01E-14 −37.04 −25.53

NIF Trader −1.00 −1.00 − 1.00 0.00 0 −1.00 − 1.00

WCC −5.90 −1.02 −3.42 1.48 1.60E-21 −3.84 −3.00

CUK − 122.51 −78.98 −99.80 11.72 1.32E-47 − 103.13 − 96.46

FOA −67.15 −24.92 −47.31 12.75 1.63E-30 −50.93 −43.69

DSOS −58.92 −2.48 −31.63 13.13 8.08E-19 −36.15 −27.11

NIS Trader −1.00 −1.00 − 1.00 0.58 0 −1.00 − 1.00

WCC −4.68 −1.01 −2.81 1.06 5.62E-24 −3.11 −2.51

CUK −134.77 −67.15 − 104.76 15.09 2.00E-38 − 110.19 −99.33

FOA −79.83 −29.24 −54.61 15.54 1.96E-29 −59.02 − 50.19

DSOS −91.12 −3.16 −51.46 16.01 1.02E-18 −58.86 −44.06

DOX Trader −109.49 −2.19 −52.34 35.19 3.66E-14 −62.35 −42.34

WCC −136.29 −8.11 −78.53 40.19 1.59E-18 −89.95 −67.11

CUK − 500.91 − 445.43 − 476.60 17.31 1.90E-72 − 481.52 − 471.68

FOA − 374.17 − 203.50 − 302.06 41.25 1.58E-38 −317.64 −286.47

DSOS − 365.21 −65.66 − 207.26 43.20 2.67E-20 − 234.47 − 180.04

PRA Trader −16.93 − 1.03 −8.74 4.90 5.34E-17 −10.13 −7.35

WCC − 160.25 −5.99 −70.80 42.14 4.89E-16 −82.78 −58.82

CUK −550.57 −407.07 −476.59 42.81 2.97E-53 −488.76 − 464.42

FOA −374.62 −236.38 − 310.26 46.38 1.48E-42 − 323.44 − 297.08
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best possible subset of medicines to cure HT. However, both their performance

and their convergence are reduced when the total number of the candidate drugs

rises, which in turn can lead to their failure to acquire the best answer to the syn-

thetic repurposing of drugs. For instance, Although the FOA algorithm has ac-

quired the best solution to the Trandolapril dataset, it does not produce the best

synthetic medicines on the remaining datasets and therefore falls into the local op-

tima solutions.

The principles of the meta-heuristic algorithms are approximately the same. For in-

stance, these algorithms generate some random potential answers to a problem and,

then, try to improve them based on some random operations [46]. Therefore, they must

be executed at least 30 times, and their performance should be evaluated based on the

produced data [47]. An algorithm which can yield very similar results in disparate runs,

is more stable than the others and consequently, its generated outcomes should be bet-

ter than the others’. Figure 2 demonstrates the algorithms’ stability on the created data-

sets in 50 distinct executions.

In Fig. 2, the horizontal and vertical axes present the number of runs and the best-

obtained score values, respectively. Since all of the algorithms produce the best possible

results on Trandolapril in all of their executions, the generated results overlap. The sta-

bility of each algorithm will differ from that of the other ones as the number of the can-

didate drugs increases. Overall, Trader, WCC, DSOS, FOA, and CUK, respectively are

the best algorithms in terms of the stability power.

Table 2, which shows the algorithms’ performance on the generated datasets in 50

distinct executions, has been provided to examine the functionality of the algorithms

accurately. For different executions, this table presents the following information: (i)

the worst results of the algorithms, (ii) the best results of the algorithms, (iii) the aver-

age value of the results, (iv) The p-value which indicates how much the algorithms’ re-

sults is produced by chance, (v) the standard deviation (STD) of the results, and (vi) the

confidence interval (CI) which indicates a range in which the outcomes of the algo-

rithms are expected to be obtained. Due to falling into the local optima solutions, the

value of STD is higher than the other algorithms’ value on some datasets. For instance,

the DSOS algorithm does not show stable behavior in finding a potential answer to the

problem as the size of the problem increases.

Every algorithm’s performance on the Trandolapril dataset is the same as the other

algorithms’. Also, The best results obtained from applying both Trader and the WCC

algorithm on the Atenolol and Nicardipine datasets are alike. The WCC algorithm’s

best-obtained score on the Felodipine dataset is better than the other algorithms’. In

the case of the newly introduced algorithm (Trader), its best-acquired outcomes are

very similar to the WCC algorithm’s on the Felodipine dataset. Compared to the other

algorithms, Trader has better performance on the remaining datasets.

Table 2 A comparison of the algorithms’ performance on the generated datasets (Continued)

Dataset Algorithm Worst Best Average STD P-value Low of CI High of CI

DSOS − 371.64 − 130.85 − 242.03 47.33 4.26E-27 − 264.08 − 219.98

STD Standard deviation, CI Confidence interval, TRA Trandolapril, ATE Atenolol, CAR Carteolol, NIC Nicardipine, FEL
Felodipine, NIF Nifedipine, NIS Nisoldipine, DOX Doxazosin, PAR Prazosin, WCC World competitive contest algorithm, CUK
Cuckoo, FOA Forest optimization algorithm, DSOS Discrete symbiotic optimization search
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Table 3 summarizes the data presented in Table 2 and makes a comprehensive com-

parison among the algorithms. This Table shows that compared to the other methods,

the newly proposed method is the most suitable option for the synthetic repositioning

of drugs.

To make a comparison among the algorithms, their performance was examined based

on the Wilcoxon statistical test [48]. For the purpose of this comparison, the results of

the proposed algorithm (Trader) which were regarded as the test base, were compared

with the other algorithms’ outcomes (Table 4). As mentioned earlier, the p-value in

Table 2 shows what amount of the results of the algorithms is produced randomly, but

the p-value in Table 4 demonstrates whether the proposed algorithm’s performance is

the same as or more efficient than the others’ performance. For the purpose of compar-

ing the proposed algorithm with an algorithm, named A, we considered the following

hypotheses:

H0: The performance of the proposed algorithm is the same as the performance of A.

H1: The performance of the proposed algorithm is more efficient than the

performance of A.

If the p-value is less than 0.05, H0 will be rejected and H1 will be accepted. Otherwise,

H0 will be accepted, and H1 will be rejected.

ii) In the second part of the results, the outcomes of the algorithm are discussed from

the drug synthetic repurposing aspect. For the selected drugs against HT, Table 5

demonstrates a list of drugs which may be replaced with a given drug.

Trandolapril which is used for treating the minor HT, is a molecule which blocks the

angiotensin-converting enzyme’s activity (ACE) [49]. This medication can interact with

Table 4 The p-value of the algorithms on the generated datasets based on the results of the
Trader algorithm (proposed algorithm) as a test base

Algorithm TRA ATE CAR NIC FEL NIF NIS DOX PRA

WCC 1.00 1.00 9.72e-18 0.01 1.00e-05 1.17e-15 2.77e-16 3.84e-7 1.12e-13

CUK 1.00 3.00e-48 2.49e-75 4.66e-45 1.72e-60 2.14e-47 3.15e-38 4.08e-51 1.51e-52

FOA 1.00 4.50e-18 6.67e-30 1.29e-31 1.68e-37 4.33e-30 4.54e-29 3.53e-30 6.92e-42

DSOS 1.00 1.01e-14 3.99e-14 2.87e-17 9.73e-14 2.84e-18 2.19e-18 3.45e-14 1.44e-26

TRA Trandolapril, ATE Atenolol, CAR Carteolol, NIC Nicardipine, FEL Felodipine, NIF Nifedipine, NIS Nisoldipine, DOX
Doxazosin, PAR Prazosin, WCC World competitive contest algorithm, CUK Cuckoo, FOA Forest optimization algorithm,
DSOS Discrete symbiotic optimization search

Table 3 A comprehensive comparison of the algorithms’ performance on the generated datasets

Dataset Algorithm Worst Best Average STD P-value Low of CI High of CI

ALL Trader −15.05 −1.36 −7.79 4.45 4.07E-35 −9.05 −6.52

WCC −35.34 −2.47 −18.23 9.61 5.45E-37 −20.96 −15.49

CUK − 171.19 − 129.83 − 151.07 11.68 2.22E-39 −154.52 − 147.62

FOA −112.58 −60.48 −88.55 14.84 8.26E-42 −93.23 − 83.87

DSOS −114.18 −23.17 −67.13 16.20 1.12E-35 −75.22 −59.04

STD Standard deviation, CI Confidence interval, WCC World competitive contest algorithm, CUK Cuckoo, FOA Forest
optimization algorithm, DSOS Discrete symbiotic optimization search
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ACE whose involvement in regulating the rate of fluids in the body makes it capable of

controlling HT. As shown in Table 5, all of the algorithms have proposed a drug with a

few side effects, which may be replaced with Trandolapril. Atenolol, which is used to

cure the abnormal rhythm of heartbeats, is a beta-blocker. Like Trandolapril, it inter-

acts with ACE [50]. Once again, all of the algorithms have suggested a drug which can

be replaced with Atenolol, as in Trandolapril’s case. However, the proposed drugs have

a number of side effects and may produce some undesired effects on the body. Trader,

WCC, and DSOS managed to find some substitutes without side effects and therefore

are better than FOA and CUK.

Since Carteolol acts against the beta-2 adrenergic receptor and agonists the beta-1

adrenergic receptor [51] it can reduce the blood pressure; for this reason, it is regarded

as a candidate for treating HT. All of the algorithms propose a list of drugs, but both

their lists and their costs differ. Compared to the other algorithms, both Trader and

WCC algorithm have produced a proper result based on the score function.

Nicardipine, which is a calcium channel blocker, controls the blood pressure [52].

CUK and FOA could not propose some candidate drugs which can be replaced with

Nicardipine. While Trader yielded two lists which can be replaced with Nicardipine,

WCC and DSOS proposed just a synthetic list instead of Nicardipine. Based on the

score function, all of the lists have an identical value and may be a suitable option for

treating HT.

Felodipine is capable of controlling the blood pressure by blocking the calcium chan-

nels, so it can be a proper option for curing both the mild and minor HT [53]. To treat

HT, instead of proposing Felodipine, algorithms have acquired a list of medications

which include Pinaverium. Trader’s suggested list has the best score value compared to

the lists proposed by the other ones.

Nifedipine and Nisoldipine slow down the penetration of calcium into the heart cells

and vessel walls [54]. As a result, heart can pump blood around the body and widen

the blood vessels efficiently. All of the algorithms except Trader have failed to discover

candidates which can be used instead of Nifedipine and Nisoldipine. In this case,

Trader puts forward one or two possible lists.

Doxazosin blocks the Alpha-1A, Alpha-1B, and Alpha-1D adrenergic receptors and

smooths the growth of muscle cells [55]. In contrast to CUK and FOA which did not

manage to detect any drug substitutes for Doxazosin, Trader, WCC, and DSOS suc-

ceeded in discovering a single-member list. Based on the score value, Trader, WCC,

and DSOS, respectively can be ranked among the most functional algorithms.

Prazosin works against the Alpha-1A, Alpha-1B, and Alpha-1D adrenergic receptors.

In a comparison made among the results obtained from different algorithms, it is

shown that to control HT, Trader has substituted three different lists for Prazosin,

whereas the other algorithms have replaced Prazosin with just a two-member list.

Moreover, from the score value viewpoint, Trader’s proposed lists are more suitable

than those suggested by the other algorithms.

Based on the obtained results, it can be concluded that Trader (the newly introduced

algorithm) is more efficient than the other state-of-the-art algorithms and proposes

some better synthetic drug lists to treat HT. In addition, the results of the newly pro-

posed drug lists by Trader have been presented in detail in Table 6 and demonstrate

how similar the suggested drugs are.
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Discussion
To discover the hidden applications of the existing drugs, a drug repositioning method,

which is based on the newly introduced discrete optimization algorithm (Trader) and

If-Then association rules, was proposed. The proposed method may reduce the toxicity

of drugs and enhance their effectualness in curing diseases. To investigate the applic-

ability of the suggested method, it was applied to the nine hypertension-related data-

sets, and the results were analyzed and examined from two perspectives. From the first

viewpoint, it was shown that the state-of-the-art algorithms yield better outcomes than

the others. The average score value and the confidence interval of the proposed algo-

rithm (Trader) were − 7.79 and [− 9.05–6.52], respectively, which were remarkably bet-

ter than those obtained from the other algorithms. Besides, while the proposed

algorithm could detect some candidate lists for all of the datasets, the others failed to

do so. For example, the other algorithms except for Trader failed to explore for the po-

tential drugs which can be replaced with Nifedipine and Nisoldipine. From the second

viewpoint, the application of the suggested drugs was examined in treating hyperten-

sion. A detailed examination of the data yielded some important results as follows:

First, the proposed method succeeded in suggesting some proper substitutes for the se-

lected drugs, which may be more useful than the current therapeutic methods in treat-

ing HT. For example, the proposed approach managed to replace Atenolol with

Esmolol which belongs to a family of beta-blocker drugs and does not have any side ef-

fects [56]. As mentioned before, Atenolol can interact with two targets [57], one of

which is responsible for HT, and the next one is a side effect. The small doses of the

Table 6 The outcomes of the proposed algorithm on the selected drugs

Given drug Chemical
formula

Proposed lists Drugs of the
list

Chemical
formula

Similarity

Trandolapril C24H34N2O5 (Cilazapril) Cilazapril C22H31N3O5 0.87

Atenolol C14H22N2O3 (Esmolol) Esmolol C16H25NO4 0.75

Carteolol C16H24N2O3 (Xamoterol+Nebivolol) Xamoterol C16H25N3O5 0.80

Nebivolol C22H25F2NO4 0.58

Nicardipine C26H29NO6 (Cyclandelate+Nisoldipine),
(Drotaverine+Nisoldipine)

Cyclandelate C17H24O3 0.49

Nisoldipine C20H24N2O6 0.82

Drotaverine C24H31NO4 0.71

Felodipine C18HCl2NO4 (Pinaverium+ Nisoldipine) Pinaverium C26H41BrNO4 0.35

Nisoldipine C20H24N2O6 0.57

Nifedipine C17H18N2O6 (Pinaverium + Nisoldipine) Pinaverium C26H41BrNO4 0.35

Nisoldipine C20H24N2O6 0.90

Nisoldipine C20H24N2O6 (Pinaverium+Isradipine),
(Pinaverium+Drotaverine+Nilvadipine)

Pinaverium C26H41BrNO4 0.40

Isradipine C19H21N3O5 0.83

Drotaverine C24H31NO4 0.69

Nilvadipine C19H19N3O6 0.85

Doxazosin C23H25N5O5 (Nicergoline) Nicergoline C24H26BrN3O3 0.50

Prazosin C19H21N5O4 (Dapiprazole), (Nicergoline+Tamsulosin),
(Nicergoline+Periciazine+Dapiprazole)

Dapiprazole C19H27N5 0.69

Nicergoline C24H26BrN3O3 0.47

Tamsulosin C20H28N2O5S 0.58

Periciazine C21H23N3OS 0.53

Masoudi-Sobhanzadeh and Masoudi-Nejad BMC Bioinformatics          (2020) 21:313 Page 12 of 21



above-mentioned drugs may combine with their substitutes and produce the desired ef-

fect. For instance, in databases, it has been reported that a combination of Trandolapril

and Cilazapril might prove more useful in controlling HT [58]. Second, the proposed

approach can introduce the novel applications of some drugs. For example, Pinaverium

which is a first-line option for curing bowl dysfunctionality, operates as an inhibitor

and antagonist of the voltage-dependent calcium channel protein [59]. Moreover, more

than 60 countries are exploiting Pinaverium to treat gastrointestinal disorders. How-

ever, it still has not won approval from FDA. Pinaverium’s application in controlling

HT may be based on the kind of method employed in this research. Therefore, the in-

troduced approach might especially revitalize the projects which have already failed due

to the various undesired biological effects of drugs [60]. Besides, this method might be

a suitable therapeutic plan for treating orphans or diseases because developing an effi-

cient drug is both costly and time-consuming and therefore not affordable for drug

companies [61]. Another introduced medication for managing HT is Dapiprazole which

is an alpha-blocker agent. Dapiprazol helps to reduce the size of the pupils of the eyes

in patients who suffer from mydriasis [62]. Although different studies have reported

many undesired side effects of Dapiprazole and some other drugs such as Pinaverium

[63], the proposed approach aims to employ these drugs in an appropriate manner. To

this end, such medications are used in small doses to decrease their undesired effects,

[64]. Furthermore, a proper combination of drugs might produce a synergistic effect on

treating HT [65]. A few studies have investigated the synergic effects of drugs and for

this purpose, have examined some drug-drug adverse reactions. However, most of them

have not been specified, yet. The machine learning approaches can help predict the

drug-drug adverse reactions and introduce the most reliable synthetic candidates.

Conclusion
A novel discrete algorithm, named Trader, was introduced for the synthetic repurpos-

ing of drugs. This method can resume most of the failed drug discovery projects and

might be the most suitable option for treating the orphan and rare diseases. The pro-

posed approach takes account of the various aspects of the synthetic repositioning of

medications, including the drugs’ mechanism of action on targets, the drug-drug ad-

verse reactions, and the total number of side effects. Based on the obtained results, it

can be concluded that the-state-of-the-art algorithms yield better results and show

more suitable performance in comparison to the others. Furthermore, the literature

findings validate the functionality of the proposed method and suggest several synthetic

repurposing lists to reduce hypertension.

Methods
A two-step datamining method was proposed to discover drugs that might be useful in

treating HT. In the first step, based on the If-Then rules, it was determined which

drugs may inhibit or prevent the targets inducing HT. In the second step, an optimal

subset of the candidate drugs whose combinations may be helpful to treat HT, was se-

lected by the proposed discrete optimization algorithm (Trader). Figure 3 presents the

framework of the proposed method.

The first part of the proposed approach includes a number of steps which are as

follows:
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i) Obtaining the data: data on the drugs and their different targets were extracted

from DrugR+ (version 2019.11) [66], which is a relational database and integrates

DrugBank (version 5.0) [67] and KEGG (version September 1, 2019) [68] databases.

DrugR+ database provides an online tool that takes a drug and suggests some

potential drugs which can be substituted for the first one [69]. Meanwhile, DrugR+

has an advanced search section in which users can state their SQL queries and

download the results immediately. In selecting the datasets, the size of the data and

the various treatment properties of drugs have been considered.

ii) Constituting the drug-disease (D-DI) matrix: based on the downloaded data, a bin-

ary matrix, named DDI, and incorporated drugs-diseases relationships, was formed

using Eq. (1).

DDI i; jð Þ ¼ 1 if the ith drug is used for treating the jth disease
0 else

�
ð1Þ

Where i and j indicate a drug and a disease, respectively. The total number of drugs

and diseases are 13,251 and 3318, respectively.

Fig. 3 The framework of the proposed method. In the first step, the desired data are obtained from
DrugR+ database. Next, drug-disease (D-DI), drug-target (D-T), and drug-drug-adverse reaction (D-D AR)
matrices are formed. Drugs which can affect the HT inducing targets, are acquired based on the If-then
rules. In the second step, the proposed optimization algorithm (Trader) is used to select a combination of
drugs for the repurposing of medications for HT
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iii) Constituting the drug-target (D-T) matrix: this matrix shows whether a drug af-

fects a target or not. The extracted data show that there are four classes of drug-

target effects, including (a) agonizing, (b) antagonizing, (c) inhibiting, and (d) indu-

cing. The targets whose total numbers were 4893, consisted of both proteins and

enzymes. The DT matrix was formed using Eq. (2).

DT i; jð Þ ¼

INH if the ith drug inhibits the jth target
IND if the ith drug induces the jth target
AGO if the ith drug agonists the jth target
ANT if the ith drug antagonists the jth target

0 else

8>>>><
>>>>:

ð2Þ

iv) Constituting the drug-drug adverse reaction (DDAR) matrix: Some drugs may

interact, neutralize their effects, and trigger a serious problem in a body. A matrix,

named DDAR, was formed to investigate the problem (Eq. (3).

DDAR i; jð Þ ¼ 1 if the ith drug has adverse reaction with the jth drug
0 else

�
ð3Þ

v) Mining: during every stage of the process, we employed the DT and DDI matrices

to extract some information which were used as the input of the discrete

optimization algorithm (Trader). In the first part of the proposed method, different

targets of blood pressure along with their effects (inhibiting, inducing, agonizing,

and antagonizing) are determined and placed in a set named HT_TARGETS.

Equation (4) presents the mentioned set as follow:

HT TARGETS ¼ T1;R1ð Þ;…; Tn;Rnð Þ½ � ð4Þ

Where n, Ti, and Ri are the total number of the obtained targets, the ith target, and

the effect which leads to high blood pressure, respectively.

Furthermore, another set, named DRUGS, was created for drugs that directly interact

with the HT_TARGETS collection and exert exactly the same impact on the targets.

For instance, both the Angiotensin II and Candesartan drugs interact with the Type-1

angiotensin II receptor. However, Angiotensin II affects the mentioned target as an

agonist whereas Candesartan affects it as an antagonist. Therefore, Angiotensin II is ig-

nored because its function is not exactly the same as Candesartan’s.

In this study, the interaction between a drug such as D and a target such as T (pro-

tein (P) and an enzyme (E)) is presented by “➔”. The effect of D on T and the cause of

hypertension due to T are shown by F(D,T) and F(HT,T), respectively. Next, the
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following rules are applied to all of the existing drugs, and the candidate drugs are

added to the DRUGS set.

a) IF D T && F(D,T) = F(HT,T) THEN

D may be useful for controlling HT

b) IF E P && F(E,P) = F(HT,P) THEN

The drug, which interacts with E, may be useful for controlling HT

c) IF P E && F(E,P) = F(HT,E) THEN

The drug, which interacts with P, may be useful for controlling HT

d) IF P1 P2 && F(P1,P2) = F(HT,P2) THEN

The drug, which interacts with P1, may be useful for controlling HT

e) IF E1 E2 && F(E1,E2) = F(HT,E2) THEN

The drug, which interacts with E1, may be useful for controlling HT.

In the second part of the proposed method, the discrete optimization algorithm

(Trader) was applied to select the optimal subsets of the obtained drugs which

may reduce the pressure of blood. For this purpose, a number of steps were

followed:

i) Creating the first population of the candidate solutions (CSs): Trader begins

with randomly created potential answers, which are presented by an array

shown in Eq. (5).

CS ¼ V1;V2;…;Vm;G; Score½ � ð5Þ

Where Vi, m, G, and Score are the ith variable, the total number of variables, the

group, and the score or fitness of the CS. Every variable shows a drug whose value is

set 1 or 0 for the selected and unselected drugs, respectively.

ii) Calculating the score of the CSs: The CSs which are answers to the mentioned

problem, differ widely in terms of how much they are worthy of consideration. In

this study, the score is calculated using Eq. (6).

Score ¼ AT −

Pm
i¼SEiPm
i¼1vi

ð6Þ

Where m, vi, SE, and AT represent the length of a CS, the value of the ith vari-

able (0 or 1), the total number of side effects related to the ith drug, and the

total number of the covered targets which are correspondent with HT,

respectively.

iii) Grouping CSs: The total number of the groups and the total number of the traders

are the same concepts, and they show a group. At the beginning of the algorithm,
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the total number of the members in the groups is the same, and In the next

iterations, they are updated using Eq. (7).

TMi ¼ round
propertyiPT
k¼1propertyk

� C -M� Tð Þ
 !

ð7Þ

Where TMi, C, and T present the total number of the members in the ith group, the

total number of CSs, and the total number of the traders or groups, respectively. M is a

constant value (2) and guarantees that none of the groups will be eliminated during the

iterations of the algorithm in each stage. The property of the ith trader is calculated

using Eq. (8).

propertyi ¼
XM

i¼1
score CSið Þ ð8Þ

Where M and score show the total number of CSs in the ith group and the score of

the related CS, respectively. In other words, the property of a group is equivalent to the

sum of its CSs’ scores.

iv) Changing the CSs: there are three operators who change both the master and the

slave CSs. As shown in Eqs. (9, 10, and 11), these operators, named retailing,

distributing, and importing-exporting, try to improve the CSs. when the retailing

operator is employed, the minimum number of changes will be applied to a slave-

CS. The distributing operator obtains some values from the best CS of the group

(the master-CS) and then, assigns them to the other CSs of the group (slave_CS).

While both the distributing and retailing operators change the slave-CSs, the

importing-exporting operator brings about changes in the master-CSs. The

changes can be accepted in all of the operators, provided that they improve the

value of a CS’s score.

XR

i¼1
CSslave Kð Þ ¼ CSslave Kð Þ − 1ð Þj jð Þ ð9Þ

Where K and R are two random integer values in [1, length(CS)] and [1, length(CS)/

10], respectively.

XR

i¼1
CSslave Kð Þ ¼ CSmaster Kð Þð Þ ð10Þ

Where K and R are two random integer values in [1, length(CS)].

XR

i¼1
CSmaster j Kð Þ ¼ CSmasterm Kð Þ� � ð11Þ

Where j and m are the importer and exporter CSs, respectively. Also, the values of K

and R can be measured using Eq. (9).

An instance of the mentioned operators has been illustrated in Fig. 4.
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Calculating drug-drug similarity score

Equation (12) was employed to calculate the similarity score between drugs [70]:

SimilarityðDi;Dj ¼
Pn

r¼1 wr�Ci:r � C j:r
� �

Pn
r¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wr�Ci:r

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wr�C j:r

p� � ð12Þ

Where Di, Dj, n, Ci,r, and Cj,r are the ith drug, the jth drug, the total number of the

chemical components, the total number of the rth chemical component in ith, and the

total number of the rth chemical component in the jth chemical component, respect-

ively. Wr, which is calculated by Eq. (13), is the weight of the rth chemical component.

wr ¼
min dr: 1ð Þ � min Ci:r: C j:r

� �
max Ci:r: C j:r

� �þ eps
ð13Þ

Where dr shows the data frequency of the rth chemical component.

Fig. 4 The Trader’s operators. a An example of the retailing operator: three points have been chosen
randomly, and, then, their values have been updated by Eq. (9). This operator is only applied to slave_CSs. b
An instance of the distributing operator: The master_CS selects two values from its values and distributes
them to the slave_CS. c An example of the importing-exporting operator: The exporter CSs select some of
their values and send them to the importer CS. After applying the operators, the score function is called.
The changes can be accepted, provided that the new score is better than the previous one. In contrast, the
changes will be ignored, if the previous values are retrieved from the memory
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