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Abstract

Background: Most biomedical information extraction focuses on binary relations
within single sentences. However, extracting n-ary relations that span multiple
sentences is in huge demand. At present, in the cross-sentence n-ary relation
extraction task, the mainstream method not only relies heavily on syntactic parsing but
also ignores prior knowledge.

Results: In this paper, we propose a novel cross-sentence n-ary relation extraction
method that utilizes the multihead attention and knowledge representation that is
learned from the knowledge graph. Our model is built on self-attention, which can
directly capture the relations between two words regardless of their syntactic relation.
In addition, our method makes use of entity and relation information from the
knowledge base to impose assistance while predicting the relation. Experiments on
n-ary relation extraction show that combining context and knowledge representations
can significantly improve the n-ary relation extraction performance. Meanwhile, we
achieve comparable results with state-of-the-art methods.

Conclusions: We explored a novel method for cross-sentence n-ary relation
extraction. Unlike previous approaches, our methods operate directly on the sequence
and learn how to model the internal structures of sentences. In addition, we introduce
the knowledge representations learned from the knowledge graph into the
cross-sentence n-ary relation extraction. Experiments based on knowledge
representation learning show that entities and relations can be extracted in the
knowledge graph, and coding this knowledge can provide consistent benefits.
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Background
The current tasks of biomedical relation extraction mainly focus on the extraction of
binary relations in single sentences, such as protein-protein interaction (PPI), chemical-
protein interaction (CPI) and drug-drug interaction (DDI) [1–3]. It is crucial for biomed-
ical relation extraction to automatically construct a knowledge graph, which supports a
variety of downstreamnatural language processing (NLP) tasks such as drug discovery [4].
An obvious problem is that as the biomedical literature continues to grow, there is a large
number of biomedical entities whose binary relations exist not only in a single sentence
but also in cross-sentences. In addition, the relations between entities are not merely a
binary relation but may also be an n-ary relation. Consider the following example: the
relations between drugs, genes and mutations. “The deletion mutation on exon 19 of the
EGFR gene was present in 16 patients, while the L858E point mutation on exon 21 was
noted in 10. All patients were treated with gefitinib and showed a partial response.”. The
message conveyed by the two sentences is that there is a reaction between the three bold
entities. As the biomedical literature contains a wealth of drug-gene-mutation relations,
how to quickly and accurately identify the drug-gene-mutation relations is particularly
important in the treatment of precision medicine [5].
Biomedical binary relation extraction is mainly divided into a rule-based method and a

machine learning-basedmethod [6]. The rule-based approach primarily uses the syntactic
rules designed by linguists to extract relations between entities from documents. As the
length of cross-sentence documents grows, the use of artificially designed language rules
becomes complex and works inefficiently [7]. Neural networks are dominant in machine
learning-based approaches. Neural networks do not require artificial design features and
perform very well. The main methods are convolutional neural networks (CNNs), recur-
rent neural networks (RNNs), and their variants [8, 9]. CNN learns sequence local features
through convolution kernels. RNN is a linear chain neural network that is ideal for pro-
cessing sequence features. Compared with CNN, most biomedical relation extraction
methods use RNN as the main framework. However, RNN also has certain limitations. As
the sequences grow in length, a single memory unit requires powerful storage capabilities
to preserve the complete information of long sequences. Additionally, the limitation is
that RNN has difficulty processing tree structure documents, which ignores word depen-
dency relations. To solve the above mentioned problems, Hochreiter et al. proposed the
long short-term memory networks (LSTMs) that use a series of gating mechanisms to
avoid simplification and compression of the gradient [10]. For the second problem, Miwa
proposed tree LSTM [11]. The hidden layer unit in tree LSTM not only includes the pre-
vious sequence information but also integrates the information of the child nodes into
the current node through the dependency relations. To solve cross-sentence n-ary rela-
tion extraction challenges. Peng et al. proposed the graph LSTM (Graph LSTM), which
is a simplified version of tree LSTM because each node has a maximum of 2 incoming
edges in the graph [5]. Song et al. proposed a graph-state LSTMmodel for cross-sentence
n-ary relation extraction, which used a parallel state to model each word and enrich
state values recurrently via message passing(GS GLSTM) [12]. Mandya et al. proposed a
model of combining LSTM and a CNN for cross-sentence n-ary relation extraction. The
proposed model brings together the properties of both LSTMs and CNNs, to simulta-
neously exploit long-range sequential information and capture most informative features
(LSTM-CNN) [13].
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Additionally, another type of graph neural network (GNN) has received considerable
attention in natural language processing fields. GNN is a kind of neural network that
can learn the attribute information of nodes and structure information of graphs [14].
Compared with RNNs alone, GNNs have certain advantages because GNN can capture
the long-term dependencies of sentences through the constructed syntactic dependency.
To solve the relation extraction task. Zhang et al. applied a graph convolutional network
(GCN) over the pruned tree to extract relations[15]. Guo et al. proposed a soft-pruning
approach that automatically learns how to selectively attend to the relevant important
information [16], which used multihead attention applied on the dependency graph
(AGGCN). The key idea behind the AGGCN is to use multihead attention to induce
relations between nodes. In this paper, we use bidirectional long short-termmemory net-
works (Bi-LSTM) to model cross-sentences as it can automatically and efficiently learn
latent features from the input sequence. However, it is difficult to learn abundant latent
features in the n-ary relations extraction. Therefore, we concatenate the Bi-LSTM layer
with the multihead attention. The intuition behind the multihead attention is that apply-
ing the attention multiple time may learn more abundant features than single attention in
the cross-sentence [17].
In addition, some relation extraction works have started to use a universal schema and

knowledge representation learning to assist the model work [18–20]. In the universal
schema, textual representations of entity pair and their relations are encoded into the
same vector space as the canonical knowledge base relations. Knowledge representation
learning is a method of transforming knowledge triplet data into low-dimensional vector
space. The continuous representation of entities and relations obtained by this method
retains the attribute information of the triples. TransE is a typical model of knowledge
representation learning that uses a relation as the head entity to the tail entity transla-
tion operation [21]. For example, e1 + r ≈ e2, where e is the entity and r is the relation.
However, the TransE model has limitations when dealing with 1-N, N-1, and N-N com-
plex relations. To solve this problem, Wang et al. proposed a TransH method in which
an entity has different representations under different relations [22]. Lin et al. proposed
a TransR method that ensures different relations have different semantic spaces [23]. For
each triple, the entity should be projected into the corresponding relational space using
thematrix, and then the translation relations from the head entity to the tail entity. For the
heterogeneity and imbalance of entities in the knowledge base and the excessive matrix
parameters in the TransR model, Ji et al. proposed a TransD method that optimized
the TransR method [24]. However, knowledge representation learning has not yet been
explored in the cross-sentence n-ary relation extraction.
In this paper, we propose a novel cross-sentence n-ary relation extraction method

that utilizes multihead attention and knowledge representation learning from the knowl-
edge graph (KG). The cross-sentence is relatively twice as long as the single sentence.
A multihead attention mechanism directly draws the global dependencies of the inputs
regardless of the length of the sentence. Knowledge representation learning makes use
of entity and relation information from the KG to impose assistance while predicting
the relation. Our method uses encoded context representation information obtained
from multihead attention, along with embedded relation representation information, to
improve cross-sentence n-ary relation extraction. Our contributions are summarized
as follows:
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• We propose a novel neural method that utilizes representation learning from the KG
to learn prior knowledge in n-ary relation extraction.

• Our method first uses Bi-LSTM to model sentences and then uses the multihead
attention to learn abundant latent features of the Bi-LSTM output.

• We conduct experiments on the cross-sentence n-ary relation extraction dataset and
achieve state-of-the-art performance.

Methods
In this section, we mainly introduce the components and architectures of the model.

Knowledge representation learning

Construct knowledge graph

We use the Gene Drug Knowledge Database and the Clinical Interpretations of Variants
in Cancer knowledge base to extract drug-gene and drug-mutation pairs [25]. There are
five relations: “resistance or nonresponse”, “sensitivity”, “response”, “resistance” and “none”
for the knowledge triples. Our KG is a directed graph G = (E ,R, T ), where E , R and
T indicate the sets of entities, relations and facts. Each triple (h, r, t) ∈ T indicates that
there is a relation r ∈ R between h ∈ E and t ∈ E . More generally, we can formalize two
types of triples, such as (ed, r, eg) and (ed, r, em). ed, eg , em and r indicate a drug entity,
gene entity, mutation entity and a relation, respectively. After building the KG, we use the
translation model to encode entities and relations uniformly. When performing relation
extraction from sentence, we first obtain the identification of the entity from the sentence,
and then use the identification to obtain the vector representation of the entity in the KG.

Translationmodel

The basic idea of a translation model is that the relations between two entities correspond
to a translation between the embedded representations of two entities. In this paper, we

Fig. 1 Simple illustration of TransE
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Fig. 2 Overview of our model. The Bi-LSTM first encodes each word by concatenating word and position
embeddings, followed the multihead attention directly draws the global dependencies of the Bi-LSTM
output. Then, sentence embedding is concatenated with relation information, which comes from the KG.
edrug , egene and emutation are the drug, gene and mutation entities, respectively. vdrug−gene and vdrug−mutation

denote the different relation vectors. Finally, sentence representation with entity relation information is fed
to a softmax classifier

mainly use the TransE, TransR, TransH and TransD methods to learn entity and rela-
tions representation [21–24, 26]. Taking the TransE method as an example, the relation
in each triple instance is treated as a translation from the entity head to the entity tail by
constantly adjusting h, r, and t (the vector of head, relation, and tail), making h + r as
equal as possible to t; that is, h + r ≈ t. Figure 1 is a schematic diagram of the TransE
model. we use the bold face h, t and r to indicate their low-dimensional vectors, respec-
tively. h, t ∈ R

k , r ∈ R
k , and k are the dimensions of both entities and relations. The loss

function of TransE is defined as:

L =
∑

(h,r,t)∈T

∑

(h′,r,t′)∈T ′
[ γ − ‖h + r − t‖ + ‖h′ + r − t′‖]+ (1)

γ is the margin hyperparameter, T ′ is a negative sampled triple set obtained by replacing
h or t, and [ ]+ is a positive value function. Motivated by the above method, we utilize
a relation vector r to represent the features of the relation that links drug (ed), gene (eg)
and mutation (em), r ≈ h− t. In this paper, we explore whether the method of combining
representation learning is more effective for cross-sentence n-ary relation extraction.

The architecture of model

Our model mainly includes four parts: the word and position embedding, the Bi-LSTM,
the multihead attention and the concatenate layer. The overall architecture of our method
is shown in Fig. 2.

Word and position embedding

Converting words into low-dimensional vectors has been shown to effectively improve
many natural language processing tasks. This paper uses Wikipedia and Web text pre-
trained vectors to initialize the text embedding, and each word can be mapped to the
corresponding feature vector through the pre-trained words1. In the relation extraction
task, the position feature is essential [8]. Similarly, we also add position features in the
cross-sentence n-ary relation extraction. It is calculated from the relative distance of the
current word to the entity. Each word has three relative distances. For example, “The

1http://nlp.stanford.edu/projects/glove/

http://nlp.stanford.edu/projects/glove/
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deletion mutation on exon 19 of the EGFR gene was present in 16 patients, while The
L858E point mutation on exon 21 was noted in 10. All patients were treated with gefitinib
and showed a partial response.”. The relative distances from the treated to the entity
(EFGR), entity (L858E) and entity (gefitinib) are 22, 13 and -2, respectively. We randomly
initialize the three-position embedding matrices and then convert the relative distances
into vectors by lookup.

Bidirectional long short-term layer

RNN is very suitable for processing sequence input and has been successfully applied to
many NLP tasks. Compared with traditional RNN, LSTM uses a gating mechanism to
mitigate gradient problems. In this paper, we use bidirectional long short-term memory
networks (Bi-LSTM) to learn more contextual information. For a given sentence X =
(x1, x2..., xn), x ∈ R

k , x denotes the concatenating vector of the current word embedding
and three position features, and the LSTM unit is calculated as follows:

i = σ(Wxixt + Whiht−1 + bi) (2)

f = σ(Wxf xt + Whf ht−1 + bf ) (3)

o = σ(Wxoxt + Whoht−1 + bo) (4)

g = tanh(Wxgxt + Whg(i � ht−1) + bg) (5)

ct = f � ct−1 + i � g (6)

ht = (1 − f ) � ht−1 + f � g (7)

W∗ and b∗ denote weight matrices and biases, σ is the sigmoid function and � is ele-
mentwise multiplication. At the time step t, each LSTM unit calculates the input word xt ,
ht is the hidden state of the current time step t. The Bi-LSTM combines forward LSTM
→
hi and backward LSTM

←
hi, which is denoted as hbi−lstm

i =[
→
hi;

←
hi].

Multihead attention

Although Bi-LSTM can effectively and automatically learn the latent features from the
input sequences, it is difficult to learn abundant latent features in the n-ary relation
extraction. The inspiration behind using the multihead attention mechanism is to learn
the word dependence within the cross-sentence and capture the important information
of the sentence. Figure 3 shows the calculation process of the multihead attention mech-
anism. Given X ∈ R

n×d denoting the input vectors, multihead attention applies different
linear projection functions to map the matrix X as the query Q ∈ R

n×d , key K ∈ R
n×d ,

and value V ∈ R
n×d . The multihead attention uses dot-product attention to compute the

Fig. 3 Overview of multihead attention
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attention scores based on the following equation.

attention(Q,K ,V ) = softmax(
QKt
√
d

)V (8)

d denotes the number of hidden units. The key point of multihead attention is employing
h parallel heads to focus on different parts of the value vector channels. For each head, we
define the corresponding learning parameters, WQ

i ∈ R
n× d

h , WK
i ∈ R

n× d
h , WV

i ∈ R
n× d

h ,
and the i-th head attention can be calculated as follows:

Mi = Attention(QWQ
i ,KWK

i ,VWV
i ) (9)

Splicing the h times scaled dot-product attention result, and then performing a linear
transformation to obtain the value as the result of the multiheaded attention

M = Concat(M1, ...,Mh) (10)

Y = MW (11)

whereM ∈ R
n×d ,W ∈ R

d×d .

Concatenate layer

Similar to manymethods, we do not directly use themultihead attention output represen-
tation B but instead embed the embedding of each sentence with the translation relations
of the corresponding entity obtained from the translation model [26].

B̌ =[B;Rdrug−gene;Rdrug−mutation] (12)

By using the translationmodel, we obtain a distributed representation of entities and rela-
tions. Furthermore, instead of directly using the training vector, we perform subtraction
on the distributed representation of the two entities to obtain a corresponding relation
vector representation.

Rdrug−gene = Egene − Edrug (13)

where E ∈ R
k . Similarly, for the drug-mutation relation,

Rdrug−mutation = Emutation − Edrug (14)

Finally, B̌ is fed to the softmax classifier to obtain a probability distribution for each
relation.

p(y) = Softmax(W · B̌ + b) (15)

Results
Dataset description

In order to build knowledge graph, we follow Peng to generate 137,469 drug-gene and
3,192 drug-mutation positive triples from the approximately one million biomedical
fulltext articles [5]. The data we used were extracted by cross-sentence n-ary relation
extraction, which extracts the drug-gene-mutation triples in the biomedical literature2.
The data were constructed by 6,987 n-ary relation instances and 6,087 binary instances.
Table 1 shows the statistics of the data. Most of the n-ary relation instances were con-
tained in the cross-sentences, and the average number of sentences was two. There were

2The dataset is available at http://hanover.azurewebsites.net.

http://hanover.azurewebsites.net.
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Table 1 Ternary and binary relation data statistic percentages indicate instances that contain
multiple sentences

Data Single Cross Positive Cross-percentage

Ternary 2,301 4,956 3,462 70.1%

Binary 2,728 3,359 3,192 55.2%

5 categories of relations: “resistance or nonresponse”, “sensitivity”, “response”, “resistance”
and “none”. “None” indicates a negative instance, which is no reaction relations in the
cooccurring entity. In the case of binary classifications (two categories), the labels of all
positive case relations are denoted as “yes”, none denotes “no”, and with fine-grained clas-
sification, the data are labeled with five types of relations [12]. Five types of n-ary relation
data examples are given below

• Sensitivity: Exon 19 deletions and L858Rmutations have shown similar in vitro
sensitivity to gefitinib; however, erlotinib and gefitinib have shown different clinical
efficacy depending on whether exon 19 deletions and L858R mutations are present.
Despite these differences, both drugs have efficacy in patients with both of these
mutations, and these differences do not influence treatment selection. As the number
of clinical trials evaluating EGFR TKIs continues to increase, the number of patients
eligible for pooled analyses such as this one increase.

• Resistance or nonresponse: All of the patients had EGFR gene mutations in exon 19
(delE746-A750) or exon 21 (L858R) and received or were receiving gefitinib or
erlotinib for treatment against advanced diseases at time of blood sampling. For
analysis of EGFR gene mutations in exon 19 (delE746-A750) or exon 21 (L858R), the
peptic nucleic acid locked nucleic acid (PNA-LNA) polymerase chain reaction (PCR)
clamp method was adopted using protocols described previously. The EGFR T790M
mutation was examined in cell-free DNA obtained from the plasma of patients since
no biopsy specimens for DNA analysis could be obtained because of the difficult
accessibility of tumors during or after EGFR-TKI treatment.

• Response: The appearance of a second mutation represents a mechanism of
resistance. In fact, the authors demonstrate that the insertion of T790M into test
cells renders them resistant to gefitinib in vitro. They also found that when test cells
transfected with both mutations are treated with other EGFR inhibitors, such as
AG1478, cetuximab, erlotinib or CL-387,785, no objective response is obtained
using the first three agents, while the fourth is effective.

• Resistance: This analysis included F1174L, from the SH-SY5Y neuroblastoma cell
line, as well as a number of additional previously uncharacterized ALK mutations,
and looked at their transformation potential. However, this work did not examine
whether the various ALKmutants were able to respond to activation by external
ligand or agonist antibodies or examine their sensitivity to treatment with crizotinib.

• None: This shows how vemurafenib can be beneficial for tumors of one molecular
phenotype (V600Emutant) but potentially adverse for another (HRAS/NRAS
mutant). Molecular therapeutics in melanomas are not restricted to treatments
directed at theMAPK pathway. In a recent Phase II study of 43 patients with
metastatic melanoma with KIT aberrations (mutation or amplification) treated with
imatinib, an overall response rate of 23.3% was observed.:
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Parameters setting

In this paper, we use the average accuracy of the five-fold cross validation to verify the
performance of the model. In our experiments, our model is based on TensorFlow as the
back-end computational framework [27]. We use cross-entropy as the loss function. To
prevent overfitting the model during training, dropout techniques are used in different
layers of the model [28]. Hyper parameters were set based on preliminary experiments
on a small development dataset. The parameters used are shown in Table 2. The vec-
tor initializes the 200-dimensional word vector through GloVe. while the word vector is
obtained through Wikipedia and web text [29], the number of hidden units in the LSTM
is 200, the minimum batch is 6, the learning rate of Adam is 0.001 [30], and the number
of epochs is 10, the number of heads is 4. We use TransR as the main translation model
in the experiment. The final experimental results select the best experimental model on
the validation set and use the test set for verification. Like Song, we randomly select 200
instances from the training set as the verification set [12].

Experimental results

“Ternary” and “binary” denote ternary drug-gene-mutation (entity triples) interactions
and binary drug-mutation (entity pairs) interactions, respectively. “Single” represents
experiments only on instances within single sentences, while “Cross” represents experi-
ments on all instances.

Compare with baseline methods

To evaluate the effectiveness of our proposed method in the cross-sentence n-ary rela-
tion extraction task, we consider feature-based, hybrid, and graph models as baselines.
For ternary relation extraction (first two columns in Table 3), our multihead attention
achieves accuracies of 81.5 and 87.1, respectively. In all instances of cross-sentences,
our multihead attention achieves the same performance as the state-of-the-art AGGCN
and outperforms other baselines. Compared with the graph-based method, our method
does not require the process of text-to-graph conversion and enables a higher accuracy.
AGGCN used the combination of a densely connected layer and an attention guided layer
to learn representations of graphs [16]. Compared with AGGCN, our method has a sim-
pler architecture and enables the same accuracy. We notice that our method achieves
better accuracy than all GCN models, which further demonstrates its ability to learn
global dependencies. We also report accuracies only on instances within single sentences

Table 2 Parameters design

Parameter name Value

Word embedding dimension 200

Subrelation embedding dimension 50

Position embedding dimension 50

Recurrent dropout for Bi-LSTM 0.5

GCN dropout probability 0.5

Batch size 6

Adam-learning rate 0.001

Hidden state dimension of Bi-LSTM 200

Hidden state dimension of multihead 400

Multihead attention head 4
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Table 3 Average test accuracy in five-fold cross validation of the proposed model and state-of-the-
art methods on cross-sentence n-ary relation extraction. “-” denotes that the value is not provided
herein. Full Parametrization (FULL) denote as each edge label is associated with a 2D weight matrix to
be tuned in training. Type Embedding (EMBED) denote as each edge label to an embedding vector.
K in the GCN models means that the preprocessed pruned trees include tokens up to distance K
away from the dependency path in the lowest common ancestor subtree. *: significant at p < 0.005

Method
Ternary Binary

Single Cross Single Cross

Feature-based [31] 74.7 77.7 73.9 75.2

LSTM-CNN [13] 79.6 82.9 85.8 88.5

Graph LSTM-EMBED [5] 76.5 80.6 74.3 76.5

Graph LSTM-FULL [5] 77.9 80.7 75.6 76.7

Graph LSTM MULTITASK [5] - 82.0 - 78.5

GS GLSTM [12] 82.3 85.5 85.4 85.6

GCN (K=0) [15] 85.6 85.8 82.8 82.7

AGGCN [16] 87.1 87.0 85.2 85.6

Bi-LSTM 80.8 85.9 88.6 89.3

GNN 83.0 86.6 88.7 88.6

Multihead attention 81.5 87.1 89.7* 90.6*

With KG 87.3* 91.9* - -

(column Single in Table 3), which exhibited broadly similar trends. Note that all meth-
ods except AGGCN drop performance when evaluated only on single-sentence relations,
which are more challenging. The reason for this phenomenon is that the training data is
relatively small in the single sentence, as only 30% of instances are within a single sentence.
Another possible reason is that the context information provided in a single sentence is
insufficient.
These results also suggest that compared to previous feature based method which use a

statistical method with the features derived from shortest paths between all entity pairs,
variant graph LSTMs (Graph LSTM, GS GLSTM) are able to extract valuable information
from the underlying tree structure. Compared with variant graph LSTMs, GNN based
methods (GCN, AGGCN) can learn amore expressive representation through graph con-
volutions. The hybrid neural network method combines the advantages of LSTM and
CNN and also achieves a considerable result.
We extend the multihead attentionmethod with a translationmodel to capture the rela-

tion representations, which are subsequently fed into softmax layers. Using all instances
(the cross column in Table 3), our method shows the highest test accuracy among all
methods, which is 4.8% higher than our baseline3. Through experimental analysis, we
observe that themultihead attentionmechanism concatenate knowledge graph can detect
more positive examples.

Fine-grained classification

In this paper, we have carried out multi-class classification experiments on cross-sentence
n-ary relation extraction. For the multi-class relation extraction task, we also report the
macro-averaged F1 score. Table 4 shows the accuracy and F1 score of the multi-class

3p < 0.005 using t-test. The significance tests are performed against the best performing baseline. For the remaining of
this paper, we use the same measure for statistical significance.
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Table 4 Average test accuracies and F1 for multi-class relation extraction with all instances

Method
Multi-class

Ternary accuracy Ternary F1 Binary accuracy Binary F1

GS GLSTM [12] 82.3 76.1 82.1 75.8

GCN (K=0) [15] 78.1 74.6 73.1 70.2

AGGCN [16] 79.7 75.5 77.5 73.5

Multihead attention 86.8 84.3 91.6 88.8

With KG 89.8* 86.8* - -

relation extraction. In terms of accuracy and F1 score, our method leads current state-
of-the-art methods by 7.5% and 10.7%, respectively. In addition, we observe that after
concatenating the KG, our method can detect more “resistance or non-response” and
“sensitivity” categories, but instead detect the number of “none” category relations begin
to decrease. This phenomenon is also attributed to prior knowledge which to provide
valuable information for sentences.

Multihead attention results

We assessed the effectiveness of multihead attention in n-ary relation extraction. In this
experiment, all models used a multihead attention mechanism and the combination of
word and position embedding as input representations. To verify the influence of the dif-
ferent heads, we randomly selected several heads from {2,4,8}. Table 5 shows the results.
Multihead attention can be combined with important features from different heads to
represent a comprehensive feature. We notice that when the number of heads is set to
2 or 8, the performance will drop off. Overall, multihead attention achieved the highest
accuracy of 87.1 when the number of heads was 4.

Performance comparison of basic models

In Table 3, we find that GNN is better than Bi-LSTM, except that it performs slightly
worse in the cross-sentence binary relation extraction. Compared with Bi-LSTM, GNN
can learn effective information, which fully indicates that GNN can capture effective
information by using the document graph. We also see that the overall performance of
the multihead attention mechanism exceeds Bi-LSTM, which fully demonstrates that the
multihead attention mechanism can learn global dependency information, whether it is a
long or a short sequence. Compared with Bi-LSTM, the multihead attention mechanism
has been improved in identifying the number of positive and negative examples, espe-
cially for relatively long sequences. Additionally, we observed that the performance of the
multihead attention mechanism also exceeded that of the GNN. This phenomenon shows
that themultiattentionmechanism network can learnmore effective information than the
GNN. In terms of input features, GNN not only needs word and position embedding but

Table 5 Average test accuracies in five-fold validation for different numbers of head attention

Method
Ternary Binary

Single Cross Single Cross

2-head 81.2 85.8 91.4 89.1

4-head 81.5* 87.1* 89.7 90.6

8-head 81.2 86.7 91.4 90.7
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also requires a document graph. In the process of converting text from sequence to graph,
not only does it require considerable time, but the parsing document may also have noise
data. The multihead attention mechanism does not require any external processing tech-
nology, and it can achieve good performance, which shows that the multihead attention
mechanism is more suitable for cross-sentence n-ary relation extraction.

The impact of position embedding on themodel performance

From Table 6, we can see that position embedding plays an essential role in binary rela-
tion extraction. After adding the position embedding, the accuracy increases by 6.1% and
6.2%. Similarly, adding position embedding can greatly improve the performance of n-
ary relation extraction. Position features are useful for multihead attention models by
providing coded information on the location of word entities within a useful text range,
which helps achieve greater accuracy. Without position embedding, the multihead atten-
tion only achieves an accuracy of 78.7 on the cross-sentence n-ary relation. When using
the position embedding approach, the accuracy improves to 87.1.

The effect of representation learning

We further study the effects of several knowledge representation learning methods on n-
ary relation extraction. In the experiment, we used four representation learning methods,
namely, TransE, TransR, TransH and TransD. In this paper, we use the multihead atten-
tion mechanism as a baseline model that does not include representation learning. Here,
we do not provide the performance of representation learning in binary relation extrac-
tion since it indicates that representation learning has obtained the category of binary
relations. Therefore, it is not appropriate to add the binary relation representation to the
text. Table 7 shows the results. The combination of the multiattention mechanism and
the representation learning performance is superior to that without representation learn-
ing, which indicates that the knowledge representation can reveal the semantic links of
entities and relations. TransE is simple to model 1-N, N-1 and N-N relations, and enti-
ties and relations are all modeled in the same union space; however, entities and relations
are different types of data, and not all are suitable on a single space. Instead, the other
three models map the relations to another space. Through the analysis of the experimen-
tal results, we find that the number of positive and negative examples identified by TransR
has increased compared to TransE and TransD. Compared with TransH, the number of
negative examples identified by TransR is almost the same, but the number of positive
examples has been greatly improved. Overall, the best performance in cross-sentence n-
ary relation extraction is TransR, which translates entities and relations in separate entity
and relation spaces, ensuring the diversity of information. In addition, we explored the
impact of the representation of the two subrelations on the overall model. Compared with
the no representation learning method, using any subrelation representation has a bene-
ficial impact. The experimental results are shown in Table 8. Of course, the model learns

Table 6 Average test accuracies in five-fold validation for the effect of position embedding

Method
Ternary Binary

Single Cross Single Cross

word 76.0 78.7 83.6 84.4

word+position 81.5* 87.1* 89.7* 90.6*
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Table 7 Average test accuracies in five-fold validation for knowledge representation learning

Method
Ternary

Single Cross

TransE 83.9 90.8

TransD 85.8 90.9

TransH 86.5 91.2

TransR 87.3* 91.9*

that two types of relation representations will further improve the performance. Over-
all, we observed that compared with models without KG, models which integrate with
different type KG can detect more positive instances.

Sentence length analysis

Figure 4 shows the accuracy of the four models under different sentence lengths. We
divide the length of the sentence into three ranges: 0-45, 45-75, and 75-. We can see from
Fig. 4 that the multihead attention mechanism performs best at any length except with
the KG model. Compared with GNN, the advantage in the range of 45-75 is not partic-
ularly obvious. The possible reason is that the semantic parsing of the short sentence is
more accurate, and GNN can learn more effective knowledge in short sentences. Overall,
the performance of Bi-LSTM is relatively poor. Both GNN and the multihead attention
mechanism can learn the internal structure of the sentence. In addition, we observe that
compare with baseline models, multihead attention with KG has the best performance at
any length, and the rate of accuracy increase is relatively large. As a result, it is inferred
from the experiment that the performance of the multihead attention with KG is the best
regardless of the length of the sentence.

Error analysis

Tables 9 and 10 show the multi-class result confusion matrix on the same fold set. The x-
axis is the predicted label by our method, and the y-axis is the gold standard label. From
the results in Tables 9 and 10, we can observe that compared with the multihead atten-
tion, although the number of correct “none” relations identified by the model combined
with KG is decreasing, the number of other four types of relations can be correctly iden-
tified are increasing, especially the number of “resistance or nonresponse” relations has
increased significantly, from 168 to 227. In Table 10, we can see that the major challenge is
“none” relation being mistaken for relations and vice versa. In addition, we perform error
analysis on some sample prediction errors and give some examples. The drug, gene and
mutation entities are in bold. For example, “There are several promising agents for patients
with activating EGFR mutations who experience disease progression of an EGFR tyrosine
kinase inhibitor and have aT790M resistancemutation, andmultiple clinical trials will be

Table 8 Average test accuracies in five-fold validation for the different subrelations

Method
Ternary

Single Cross

With drug-gene relation 83.1 89.5

With drug-mutation relation 82.7 89.5

With two relation 87.3* 91.9*
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Fig. 4 Test set performances on different sentence lengths

available. Trials investigating adjuvant erlotinib in EGFR mutant NSCLC and comparing
erlotinib to erlotinib plus bevacizumab in metastatic EGFRmutant NSCLC are ongoing.”.
We found that predictive error instances are caused by the presence of multiple entities.
Duplicate entities are more likely to behave as noise. Therefore, an improved strategy is
needed to handle this situation. Replacing a duplicate entity with a specific tag may be one
method for handling this situation. In another case, the three entities do not have an n-ary
relation in the sentence. However, in the KG, some of the pairs may have a relation, which
makes most samples nonrelated, but the model is mistaken for a relation. For example, At
least 10 other activating mutations (less common single amino acid substitutions such as
“D761Y, L747S, and T854A) have been reported within the kinase domain, and the novel
E884Kmutation has been associated with resistance to gefitinib and erlotinib. Balak et al.
noted that given the proportion of patients with acquired resistance, whose tumors contain
T790M, malignant cells remain dependent on mutant EGFR for survival in at least half of
patients”. In the KG, entities erlotinib and D761Y have a “none” relation, but erlotinib
and EGFR have a “response” relation. In this case, our model failed to identify the non-
relation in the document. In future plans, more efforts should be made to explore how to
better utilize the KG.

Table 9Multi-class confusion matrix for multihead attention on the one fold set

Gold none resistance or sensitivity response resistance

non-response

none 721 7 10 16 32

resistance or 74 168 0 4 2

non-response

sensitivity 22 0 57 0 13

response 16 0 0 55 0

resistance 49 1 0 0 302
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Table 10Multi-class confusion matrix for multihead attention with KG on the one fold set

Gold none resistance or sensitivity response resistance

non-response

none 701 11 17 5 42

resistance or 17 227 0 3 1

non-response

sensitivity 13 0 78 0 1

response 12 0 0 59 0

resistance 43 0 0 0 309

Conclusion
We explored a novel method for cross-sentence n-ary relation extraction. Unlike previ-
ous approaches, our methods operate directly on the sequence and learn to model the
internal structure of sentences. In addition, we introduce the knowledge representations
learned from the KG into the cross-sentence n-ary relation extraction. Experiments based
on knowledge representation learning show that entities and relations can be extracted in
the KG, and coding this knowledge can provide consistent benefits. Experimental results
show that combining knowledge representation learning achieves state-of-the-art results
on cross-sentence n-ary relation extraction.
In the future, we plan to work with healthcare professionals to apply our approach

to clinical decision making. In particular, automatically extracted facts can serve as
candidates for manual curation. However, in this paper, we only construct a small KG for
representation learning. The relations we learn are only the relations between drug-gene,
drug-mutation, and many biomedical binary relations that we have not yet applied. For
example, the relations between gene-disease and drug-disease. We can use other binary
relations to build a larger KG for rich knowledge representation learning.
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