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Abstract

Background: Antibiotic resistance genes (ARGs) can spread among pathogens via horizontal gene transfer,
resulting in imparities in their distribution even within the same species. Therefore, a pan-genome approach to
analyzing resistomes is necessary for thoroughly characterizing patterns of ARGs distribution within particular
pathogen populations. Software tools are readily available for either ARGs identification or pan-genome analysis,
but few exist to combine the two functions.

Results: We developed Pan Resistome Analysis Pipeline (PRAP) for the rapid identification of antibiotic resistance
genes from various formats of whole genome sequences based on the CARD or ResFinder databases. Detailed
annotations were used to analyze pan-resistome features and characterize distributions of ARGs. The contribution of
different alleles to antibiotic resistance was predicted by a random forest classifier. Results of analysis were
presented in browsable files along with a variety of visualization options. We demonstrated the performance of
PRAP by analyzing the genomes of 26 Salmonella enterica isolates from Shanghai, China.

Conclusions: PRAP was effective for identifying ARGs and visualizing pan-resistome features, therefore facilitating
pan-genomic investigation of ARGs. This tool has the ability to further excavate potential relationships between
antibiotic resistance genes and their phenotypic traits.
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Background
Antibiotics have been used to treat infections, and
for prophylaxis as additives in animal feeds for de-
cades. However, the emergence and proliferation of
antibiotic resistant bacterial strains has rendered a
significant number of antibiotics either ineffective or
only marginally effective. A global increase of anti-
biotic resistance in major pathogens such as Escheri-
chia coli and Salmonella has been observed [1].
Vertical gene transfer of antibiotic resistance genes
(ARGs) goes from parent to offspring, while hori-
zontal gene transfer can occur among different bac-
terial species or strains via mobile genetic elements
that include plasmids, insertion sequences and inte-
grative conjugative elements [2]. Therefore,
characterization of ARGs found in a group of

pathogens can assist in determining mechanisms of
the transmission and distribution of ARGs.
Identification of ARGs contributes to distinguish-

ing and predicting antibiotic resistance phenotypes.
However, antibiotic resistance phenotypes do not
strictly correspond to a fixed combination of ARGs.
For instance, mutations in either of uphT or glpT
gene contribute to fosfomycin resistance in
Staphylococcus aureus [3]. Alleles of the same ac-
quired ARG may confer resistance to different anti-
biotics, for example, the AAC(6′)-Ib gene has the
ability to inactivate aminoglycosides while AAC(6′)-
Ib-cr, one of its mutated forms, confers fluoroquino-
lone resistance [4, 5]. Unlike the former, some
ARGs may contribute to several types of antibiotic
resistance, such as the multidrug efflux genes oqxAB
that enable olaquindox and ciprofloxacin resistance
and acrAB genes in E. coli that decrease susceptibil-
ity to cephalothin and cephaloridine [6, 7]. As a
consequence, it would be laborious if only trad-
itional methods, such as polymerase chain reaction,
were used for identification of all possible ARGs
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and their subtypes. In addition, bioinformatics tools
are able to rapidly identify ARGs and analyze their
characteristics within multiple genomes to reveal
potential relationships. Databases like the Antibiotic
Resistance Genes Database (ARDB) [8], the Compre-
hensive Antibiotic Resistance Database (CARD) [9],
the Pathosystems Resource Integration Center
(PATRIC) [10] and the ResFinder database [11] are
used to collect and maintain information on ARGs
that can be easily utilized to facilitate bioinformatic
analysis. However, substantial diversity in ARGs
composition could occur among isolates of the same
species due to horizontal gene transfer of mobile
genetic elements [12]. This indicates that different
ARGs should be analyzed separately to discover
their unique features in a given species.
The concept of the “pan-genome” was first pro-

posed in 2005 [13]. Genes within a group of genomes
of the same species were categorized into three
groups: core, dispensable and strain-specific [13].
Similarly, here we proposed the concept of “pan-resis-
tome”, which referred to the entire ARGs within a
group of genomes and is classified into core and
accessory resistomes. Pan-resistome analysis may re-
veal the diversity of acquired ARGs within the group
and uncover the prevalence of group-specific ARGs.
For instance, an analysis of antimicrobial resistance
activities based on orthologous gene clusters indicated
that the accessory clusters annotated by CARD exhib-
ited better ability to predict phenotypes than all gene
clusters [14]. However, few software tools are cur-
rently available to describe characteristics of pan-
resistomes. Existing pan-genome analysis tools such
as PanOTC [15], ClustAGE [16] and PGAP-X [17]
were not specifically developed for ARGs. Other tools
such as ARG-ANNOT [18] and KmerResistance [19]
focus only on ARGs identification. Therefore, a soft-
ware tool that combines ARGs identification and pan-
genome analysis is needed to facilitate pan-resistome
analysis.
In this paper, we presented PRAP (Pan-resistome Ana-

lysis Pipeline), an open source pipeline for rapid identifi-
cation of ARGs, annotation-based characterization of
pan-resistomes, and machine learning-guided prediction
of ARG contribution to resistance phenotypes. PRAP ad-
vances further excavation of potential ARG features and
facilitates prediction of antibiotic resistance phenotypes
directly from whole genome sequences.

Implementation
Workflow of PRAP is divided into three parts: pre-
processing of input files, identification of ARGs and
characterization of the pan-resistome. For input data
preprocessing, PRAP accepts numerous formats of

sequence files, including raw reads files (fastq), fasta
nucleic acid files (fna), fasta amino acid files (faa) and
GenBank annotation files (gb). For GenBank annota-
tion files, PRAP extracts protein coding sequences
(CDSs) and forms both corresponding fna and faa
files.
For identification of ARGs, the CARD or ResFin-

der databases is selected according to user prefer-
ences and different methods are used for different
formats of input files. For “fastq” files, an assembly-
free k-mer method is implemented to locate exact
matches between short sequence strings (k-mers)
and a pre-defined k-mers library of ARGs [20].
Firstly, ARGs in the original database are segmented
into k (user-defined) bp lengths with a step size of
1 bp for both original sequences and reverse com-
plement sequences, and then stored in a temporary
database. Secondly, in order to minimize the run
time, one, two or three kernels (user-defined) are
determined for each read (e.g. one kernel is the
middle of a read), and then a kbp length sequence
ranging from [kernel-k/2, kernel+k/2] is extracted to
determine whether it is in the temporary database.
Thirdly, only those filtered reads are segmented into
kbp lengths and matched with the temporary data-
base. The diagrammatic sketch of k-mer algorithms
is shown in Fig. 1. Scoring for each gene in the
database is carried out according to their intersec-
tion with all filtered raw reads, and only those
higher than the user-defined threshold will be writ-
ten into results. Lower k values and more kernels
(two or three) are recommended when multipoint
mutations within individual genes are expected, such
as those in gyrA, gyrB, parC and parE. Otherwise
higher k values and a single kernel are recom-
mended for saving runtime and reducing false posi-
tives. For other input data formats, PRAP executes
BLAST for query sequences versus the nucleotide or
protein sequences as implemented by users. The
module parses the results of k-mer or BLAST and
forms new output files that contain detailed annota-
tion information.
PRAP’s pan-resistome characterization toolset consists

of modules for pan-resistome modeling, ARGs classifica-
tion, and antibiotics matrices analysis. All these modules
use annotation results from the ARGs identification
module as input.
The pan-resistome modeling module can be used to

characterize the distribution of ARGs among the input

genomes. It traverses all possible combinations (Ck
N ) (N

refers to the total number of genomes and k refers to
the number of genomes selected in each combination)
of genomes to extrapolate the number of ARGs in the
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pan and core resistomes. Note that grouping orthologous
genes according to sequence identity is not carried out,
but alleles of the same ARG are regarded as orthologous
genes. An orthologous genes cluster is categorized into
core resistomes if it presents in all the input genomes,
otherwise it is divided into accessory resistomes. The
choice of fitting model for pan and core resistomes size
extrapolation is user-defined. One of the models provided
is a “polynomial model” that accesses fitness within a
given interval. However, as a consequence of over-fitting,
the trend may be incorrect after exceeding the interval of
input genomes. Another “power law regression” model
can overcome this shortcoming but may not be appropri-
ate when the number of genomes is small [21]. Thus,
PRAP uses a coverage parameter that can be modified in
the configuration file to determine the curve-fitting per-
centage. In addition, the model proposed by the PanGP
platform is also provided [22].

The ARGs classification module outputs summary
statistics of classified ARGs in both pan and
accessory resistomes, because ARGs in core resis-
tomes may lead to indistinguishable differences if
only analyzing the pan-resistome. A stacked bar
graph together with a cluster map shows the quan-
tity and relationships of the associated genes for
each type of antibiotic. A comparison matrix graph
with n2 (n is the number of genomes) subgraphs is
drawn and each subgraph represents comparison of
ARGs from two genomes.
The antibiotics matrices analysis module presents as-

sociated ARGs for each type of antibiotic as individual
cluster maps. If resistance phenotypes are provided, the
contribution of each gene to the resistance of given anti-
biotics will be calculated via a machine learning classifier

that uses the random forest algorithm. An overview of
PRAP workflow is shown in Fig. 2. A detailed user man-
ual is available in the GitHub repository of PRAP
(https://github.com/syyrjx-hyc/PRAP).

Results
Data sets for performance evaluation
To test the performance of PRAP, we used genome se-
quences and antimicrobial susceptibility testing results
of 26 Salmonella enterica isolates of three different sero-
types (S. Indiana, S. Typhimurium and S. Enteritidis).
The isolates were obtained from food and clinical
sources in Shanghai, China. The genomes of the isolates
were sequenced using an Illumina Hiseq platform and
sequencing reads were assembled using SOAPdenovo
and GapCloser. Assembled genomes were submitted via
the submission Portal to NCBI and annotated by the
Prokaryotic Genome Annotation Pipeline where the
GenBank annotation files were downloaded as part of
the input files. Minimum inhibitory concentrations
(MIC) of antibiotics were determined by the agar dilu-
tion method as recommended by the Clinical and La-
boratory Standard Institute. Detailed information about
the isolates is available in Additional file 1.

Comparison of different gene identification methods
In order to compare different ARGs identification
methods, we used the input files containing raw sequen-
cing reads, draft genome assemblies, CDSs and protein
sequences extracted from GenBank files. The k-mer and
BLAST methods based on different databases were im-
plemented simultaneously to handle various input files.
Metrics for performance evaluation included the simple
matching coefficient (SMC) = (TP + FP)/Nalleles, Mat-
thews’ correlation coefficient (MCC) = (TP × TN-FP ×

Fig. 1 Diagrammatic sketch of k-mer algorithm. Using two kernels as an example
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and
runtime (Table 1). Metrics were calculated based on ac-
quired ARGs for the ResFinder database and all ARGs
for the CARD. The k-mer method worked best when
using the CARD database with the average turnaround
time of 1 min per genome, and BLAST worked best on
the ResFinder database by averaging 3 s per genome.
Files generated by the k-mer method are available in
Additional file 2, and various annotation results based

on different methods and databases are available in
Additional file 3.

Pan-resistome modeling
Pan-resistome modeling was based on the annotation re-
sults from the previous step for both CARD and ResFin-
der databases. The resistomes identified with CARD
contained 13 core ARGs (Fig. 3a), greater than the single
core ARG identified with ResFinder (Fig. 3b). This differ-
ence was likely caused by the fact that ResFinder data-
base only included acquired ARGs instead of all
resistance conferring genes and mutations in the core
resistomes. The only core gene from acquired ARGs
belonged to the AAC(6′) family. The power law model
with a fitting coverage of 80% was used for modeling the
pan-resistome size curve. The models of pan-resistome
size were P = 36.3310 × 0.04699 (R2 = 0.9534) for CARD
(Fig. 3c) and P = 21.1194 × 0.0544 (R2 = 0.9637) for ResFin-
der (Fig. 3d). The results suggested that these S. enterica
isolates had an open pan-resistome, revealing the high
likelihood of S. enterica to acquire foreign ARGs.

ARGs classification
To compare the compositions of acquired ARGs of the
three different serotypes of S. enterica, we identified
accessory resistomes using the ResFinder database. The
total counts (Fig. 4a) and clustering (Fig. 4b) of the

Table 1 Performance of different methods for ARGs
identification

Input Format Database SMC MCC Runtime (min)

Raw Reads CARD 0.9638 0.9809 25

Scaffolds CARD 0.8954 0.9440 < 1

CDSs CARD 0.9600 0.9789 < 1

Proteins CARD 0.9532 0.9347 30

Raw Reads ResFinder 0.9345 0.9649 25

Scaffolds ResFinder 0.9924 0.9960 < 1

CDSs ResFinder 0.9899 0.9946 < 1

Proteins ResFinder 0.9647 0.9812 30

Parameters for the k-mer method included a k value of 25, two searching
kernels, a depth of 20 and at least 100 area score and 90% coverage by
length. Parameters for BLASTn and BLASTp included 95% identity for BLASTn
and 98% identity for BLASTp and at least 90% coverage by length for both.
Runtime is the time consumed for analyzing 26 genomes

Fig. 2 PRAP workflow. The input files and steps are shown in blue and output files and steps are shown in red. The cells in gray represent the
PRAP modules

He et al. BMC Bioinformatics           (2020) 21:20 Page 4 of 8



accessory resistomes illustrated the discrepancy of the
resistance of different serotypes or strains to individual
antibiotics. S. Typhimurium and S. Indiana possessed
more ARGs than that of S. Enteritidis. A pairwise com-
parison of accessory ARGs for each genome further con-
firmed this (Fig. 4c, partially shown). With respect to the
different antibiotics, these 26 S. enterica isolates pos-
sessed more genes that conferred aminoglycoside resist-
ance compared with other types of resistance
phenotypes.

Antibiotic matrices analysis
The accessory resistomes identified by the ResFinder
database were then analyzed for their correlated resist-
ance phenotypes. For example, the “β-lactam” results in-
cluded the presence of all genes related to resistance of
β-lactam antibiotics in each genome and a cluster map
was drawn according to the matrix (Fig. 5a and b). For
26 S. enterica isolates, ARGs that confer β-lactam resist-
ance contained the alleles of CTX-M, OXA and TEM
(Fig. 5a) and this included subtypes for the multiple
CTX-M genes (Fig.5b). The resistance phenotypes could
be shown in front of the matrix if raw phenotype data
were provided (Fig.5b). In the example, the β-lactam re-
sistance phenotypes were positively correlated with the

genotype in most circumstances although there were ex-
ceptions for SJTUF10855 and SJTUF12367. Prediction of
the highest contribution value of alleles to aminoglyco-
side, β-lactam, phenicol, sulfonamide and tetracycline re-
sistance were aph(3′) (14.71%), blaCTX-M (21.58%), floR
(24.54%), catB (14.18%) and tet (22.35%), respectively.
Detailed output results are available in Additional file 4.

Discussion
For the ARGs identification module of PRAP, the k-mer
method was used only for the selection of the most
likely allele with the highest score and coverage from
each type of ARG, resulting in a relatively lower recall
rate when more than one orthologous ARG existed in a
genome. For BLAST methods, the use of protein se-
quences might lead to poor discrimination among alleles
for each type of ARG because different alleles may have
identical amino acid products. For example, blaTEM-1
has four genotypes that include blaTEM-1A, B, C and D
in the ResFinder database, which have identical amino
acid sequences but different nucleotide sequences. The
use of nucleotide sequences could avoid this problem
and yield a lower false positive rate at the subtype level.
With respect to the prediction of contribution of

ARGs, results showed that most of the predicted ARGs

Fig. 3 Features of the pan-resistome. a ARGs distribution based on the CARD. b ARGs distribution based on the ResFinder database c Models of
pan and core resistomes based on the CARD. d Models of pan and core resistomes based on the ResFinder database
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conferred resistance to related antibiotics. However, catB
was not related to sulfonamide antibiotic resistance but
conferred phenicol antibiotic resistance [9]. The primary
reason for this deviation was that the sulfonamide anti-
biotic resistance phenotypes in the data sets did not dif-
fer significantly among different isolates. Therefore,
users should provide highly differentiated phenotype
data to minimize the Gini impurity in the random forest
algorithm, so as to avoid spurious correlation in the final
prediction of the contribution value.

The output of PRAP is of high significance in under-
standing the antibiotic resistance abilities among different
stains and for surveillance of antibiotic resistance condi-
tions in foodborne pathogens. It could be further utilized
to mine relationships between genomic features and anti-
biotic resistance phenotypes and build corresponding pre-
diction models, since numerous genomes together with
their antimicrobial susceptibility testing results were avail-
able in the PARTIC database. These prediction models
could also be included as a functional module in a future

Fig. 4 Characteristics of the accessory resistomes based on the ResFinder database. a Total counts of antibiotic resistance genes for individual
strains of S. enterica serotypes. The different colors correspond to different antibiotics shown in the legend. b Clustering results of the accessory
resistomes. The darker the color, the greater the number of related genes. c Comparison matrix of accessory ARGs within each genome. Each
symbol represents the number of genes related to a specific antibiotic. The blue symbols indicate that the genomes on the x-axis and the y-axis
have equal numbers of genes (nx = ny), while green for nx < ny and orange for nx > ny. If the number of the two genomes is equal, all the
symbols will be arranged on the diagonal, otherwise significant shifts will deviate substantially from the diagonal
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version of PRAP, which would contribute to the real-time
prediction of antibiotic resistance phenotypes.

Conclusions
We have proposed the concept of “pan-resistome” and de-
veloped an effective, easy to install and convenient to use
tool (PRAP) that characterizes the bacterial pan-resistome.
PRAP works with multiple genome file formats and iden-
tifies ARGs from them based on the CARD and ResFinder
databases according to user preferences. Further analysis
implemented by PRAP can excavate antibiotic resistance
features within the total studied population and distin-
guish differences among individual isolates, rendering the
results through intuitive visualization. In brief, PRAP facil-
itates rapid identification of ARGs from multiple genome
files and discovery of potential ‘laws’ of ARGs transmis-
sion and distribution within the population.

Availability and requirements
Project name: PRAP.
Project home page: https://github.com/syyrjx-hyc/PRAP
Operating system(s): Platform independent.
Programming language: Python3.
Other requirements: Python v3.5 or higher, BLAST+

v2.7.1 or higher.
License: GNU GPL v3.
Any restrictions to use by non-academics: None.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s12859-019-3335-y.

Additional file 1. Information for 26 S. enterica genomes.

Additional file 2. Archive containing files for evaluation k-mer perform-
ance and scoring generated by the k-mer method.

Additional file 3. Archive containing results of annotation of different
formats of genome files for 26 S. enterica genomes based on both the
CARD and ResFinder databases.

Additional file 4. Archive containing results of analysis for nucleotide
sequences of 26 S. enterica genomes annotated by the ResFinder
database.

Abbreviations
ARGs: Antibiotic resistance genes; CARD: Comprehensive Antibiotic
Resistance Database; MCC: Matthews’ correlation coefficient; SMC: Simple
matching coefficient

Acknowledgements
Not applicable.

Authors’ contributions
YH and XS conceived the main idea of this study, and YH wrote the Python
scripts and prepared the manuscript. XD, HO and LZ contributed to the idea
of the software. XZ, ZC, XD and AG edited the manuscript for technical
content. XS improved the whole manuscript. All the authors have read and
approved the final manuscript.

Funding
This study was supported by the National Key R&D program of China (No.
2017YFC1601200) and the National Natural Science Foundation of China (No.
31601562). The funders played no role in the design of the study and
collection, analysis, and interpretation of data and in writing the manuscript.

Fig. 5 Matrix analysis of β-lactam antibiotics based on the ResFinder database. a Clustering results of ARGs that were associated with β-lactam
resistance with the “allele” parameter. b Clustering results of ARGs that were associated with β-lactam resistance with the “detailed” parameter,
together with user-provided phenotypes of β-lactam antibiotic resistance results. The deeper the color, the greater number of antibiotics to
which the isolate is resistant

He et al. BMC Bioinformatics           (2020) 21:20 Page 7 of 8

https://github.com/syyrjx-hyc/PRAP
https://doi.org/10.1186/s12859-019-3335-y
https://doi.org/10.1186/s12859-019-3335-y


Availability of data and materials
The software is available on GitHub (https://github.com/syyrjx-hyc/PRAP) and
the test data sets are available in the NCBI genome repositories (https://
www.ncbi.nlm.nih.gov/genome). The GenBank accession numbers of 26 S.
enterica genomes are listed below, which are also available in Addition file 1:
GCA_004324145.1, GCA_004324315.1, GCA_004324275.1, GCA_004324135.1,
GCA_004324125.1, GCA_004324115.1, GCA_004324095.1, GCA_004324045.1,
GCA_004337745.1, GCA_004324035.1, GCA_004324025.1, GCA_004324015.1,
GCA_004324245.1, GCA_004324235.1, GCA_004337755.1, GCA_004323995.1,
GCA_004337735.1, GCA_004323935.1, GCA_004323945.1, GCA_004324225.1,
GCA_004323925.1, GCA_004323915.1, GCA_004323815.1, GCA_004324215.1,
GCA_004323855.1 and GCA_004324195.1.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1Department of Food Science and Technology, MOST-USDA Joint Research
Center for Food Safety, School of Agriculture & Biology, and State Key Lab of
Microbial Metabolism, Shanghai Jiao Tong University, 800 Dongchuan Road,
Shanghai 200240, China. 2Center for Food Safety, Department of Food
Science and Technology, University of Georgia, Griffin, GA 30223, USA.
3United States Department of Agriculture, Agricultural Research Service,
Eastern Regional Research Center, 600 East Mermaid Lane, Wyndmoor, PA
19038, USA.

Received: 6 June 2019 Accepted: 23 December 2019

References
1. Laxminarayan R, Duse A, Wattal C, Zaidi AKM, Wertheim HFL, Sumpradit N,

et al. Antibiotic resistance-the need for global solutions. Lancet Infect Dis.
2013;13:1057–98.

2. Li J, Tai C, Deng Z, Zhong W, He Y, Ou HY. VRprofile: gene-cluster-detection-
based profiling of virulence and antibiotic resistance traits encoded within
genome sequences of pathogenic bacteria. Brief Bioinform. 2018;19:566–74.

3. Xu S, Fu Z, Zhou Y, Liu Y, Xu X, Wang M. Mutations of the transporter
proteins glpT and uhpT confer fosfomycin resistance in Staphylococcus
aureus. Front Microbiol. 2017;8:914.

4. Ramirez MS, Nikolaidis N, Tolmasky ME. Rise and dissemination of
aminoglycoside resistance: the aac(6′)-Ib paradigm. Front Microbiol. 2013;4:
121.

5. Yan J, Zhihui Z, Ying Q, Zeqing W, Yunsong Y, Songnian H, et al. Plasmid-
mediated quinolone resistance determinants qnr and aac(6′)-Ib-cr in
extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella
pneumoniae in China. J Antimicrob Chemoth. 2008;61:1003.

6. Hong BK, Wang M, Chi HP, Kim EC, Jacoby GA, Hooper DC. OqxAB
encoding a multidrug efflux pump in human clinical isolates of
Enterobacteriaceae. Antimicrob Agents Chemother. 2009;53:3582.

7. Ma D, Cook DN, Alberti M, Pon NG, Nikaido H, Hearst JE. Genes acrA and
acrB encode a stress-induced efflux system of Escherichia coli. Mol Microbiol.
2010;16:45–55.

8. Liu B, Pop M. ARDB—antibiotic resistance genes database. Nucleic Acids
Res. 2009;37:D443–7.

9. Jia B, Raphenya AR, Alcock B, Waglechner N, Guo P, Tsang KK, et al. CARD
2017: expansion and model-centric curation of the comprehensive
antibiotic resistance database. Nucleic Acids Res. 2017;45:D566–73.

10. Wattam AR, Davis JJ, Assaf R, Boisvert S, Brettin T, Bun C, et al.
Improvements to PATRIC, the all-bacterial bioinformatics database and
analysis resource center. Nucleic Acids Res. 2017;45:D535–42.

11. Ea Z, Henrik H, Salvatore C, Martin V, Simon R, Ole L, et al. Identification of
acquired antimicrobial resistance genes. J Antimicrob Chemoth. 2012;67:
2640–4.

12. Catchpole RJ, Poole AM. Horizontal gene transfer: antibiotic genes spread
far and wide. Elife Sci. 2014;3:e05244.

13. Tettelin H, Masignani V, Cieslewicz MJ, Donati C, Medini D, Ward NL, et al.
Genome analysis of multiple pathogenic isolates of Streptococcus agalactiae:
implications for the microbial "pan-genome". P Natl Acad Sci USA. 2005;102:
13950–5.

14. Her HL, Wu YW. A pan-genome-based machine learning approach for
predicting antimicrobial resistance activities of the Escherichia coli strains.
Bioinformatics. 2018;34:i89–95.

15. Fouts DE, Lauren B, Erin B, Jason I, Granger S. PanOCT: automated clustering
of orthologs using conserved gene neighborhood for pan-genomic analysis
of bacterial strains and closely related species. Nucleic Acids Res. 2012;40:
e172.

16. Ozer EA. ClustAGE: a tool for clustering and distribution analysis of bacterial
accessory genomic elements. BMC Bioinformatics. 2018;19:150.

17. Zhao Y, Sun C, Zhao D, Zhang Y, You Y, Jia X, et al. PGAP-X: extension on
pan-genome analysis pipeline. BMC Genomics. 2018;19:36.

18. Sushim Kumar G, Babu Roshan P, Diene SM, Rafael LR, Marie K, Luce L, et al.
ARG-ANNOT, a new bioinformatic tool to discover antibiotic resistance
genes in bacterial genomes. Antimicrob Agents Chemother. 2014;58:212–20.

19. Clausen PTLC, Zankari E, Aarestrup FM, Lund O. Benchmarking of methods
for identification of antimicrobial resistance genes in bacterial whole
genome data. J Antimicrob Chemother. 2016;71:2484–8.

20. Gupta A, Jordan IK, Rishishwar L. stringMLST: a fast k-mer based tool for
multilocus sequence typing. Bioinformatics. 2017;33:w586.

21. Tettelin H, Riley D, Cattuto C, Medini D. Comparative genomics: the
bacterial pan-genome. Curr Opin Microbiol. 2008;11:472–7.

22. Yongbing Z, Xinmiao J, Junhui Y, Yunchao L, Zhang Z, Jun Y, et al. PanGP: a
tool for quickly analyzing bacterial pan-genome profile. Bioinformatics. 2014;
30:1297–9.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

He et al. BMC Bioinformatics           (2020) 21:20 Page 8 of 8

https://github.com/syyrjx-hyc/PRAP
https://www.ncbi.nlm.nih.gov/genome
https://www.ncbi.nlm.nih.gov/genome

	Abstract
	Background
	Results
	Conclusions

	Background
	Implementation
	Results
	Data sets for performance evaluation
	Comparison of different gene identification methods
	Pan-resistome modeling
	ARGs classification
	Antibiotic matrices analysis

	Discussion
	Conclusions
	Availability and requirements

	Supplementary information
	Abbreviations
	Acknowledgements
	Authors’ contributions
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Author details
	References
	Publisher’s Note

