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Abstract

Background: In order to improve the accuracy of constraint-based metabolic models, several approaches have
been developed which intend to integrate additional biological information. Two of these methods, MOMENT and
GECKO, incorporate enzymatic (kcat) parameters and enzyme mass constraints to further constrain the space of
feasible metabolic flux distributions. While both methods have been proven to deliver useful extensions of
metabolic models, they may considerably increase size and complexity of the models and there is currently no tool
available to fully automate generation and calibration of such enzyme-constrained models from given
stoichiometric models.

Results: In this work we present three major developments. We first conceived short MOMENT (sMOMENT), a
simplified version of the MOMENT approach, which yields the same predictions as MOMENT but requires
significantly fewer variables and enables direct inclusion of the relevant enzyme constraints in the standard
representation of a constraint-based model. When measurements of enzyme concentrations are available, these
can be included as well leading in the extreme case, where all enzyme concentrations are known, to a model
representation that is analogous to the GECKO approach. Second, we developed the AutoPACMEN toolbox which
allows an almost fully automated creation of sMOMENT-enhanced stoichiometric metabolic models. In particular,
this includes the automatic read-out and processing of relevant enzymatic data from different databases and the
reconfiguration of the stoichiometric model with embedded enzymatic constraints. Additionally, tools have been
developed to adjust (kcat and enzyme pool) parameters of sMOMENT models based on given flux data. We finally
applied the new sMOMENT approach and the AutoPACMEN toolbox to generate an enzyme-constrained version of
the E. coli genome-scale model iJO1366 and analyze its key properties and differences with the standard model. In
particular, we show that the enzyme constraints improve flux predictions (e.g., explaining overflow metabolism and
other metabolic switches) and demonstrate, for the first time, that these constraints can markedly change the
spectrum of metabolic engineering strategies for different target products.

Conclusions: The methodological and tool developments presented herein pave the way for a simplified and
routine construction and analysis of enzyme-constrained metabolic models.

Keywords: Flux balance analysis, Escherichia coli, Metabolic modeling, Enzyme constraints, Protein allocation,
Minimal cut sets, Proteomics
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Background
Constraint-based metabolic models (CBM) have become
a powerful framework for describing, analyzing, and
redesigning the cellular metabolism of diverse organisms
(see reviews [1–3]). A minimum constraint-based model
consists of the stoichiometric matrix of the metabolic
network under study, the reversibility of the reactions
and some upper or lower flux bounds, typically of ex-
change reactions. Assuming a steady state of the internal
metabolite concentrations, a mass balance equation is
formulated using the stoichiometric matrix. This equa-
tion, together with the flux bounds, defines a space of
feasible flux distributions in the metabolic network
which is then analyzed by various methods [1–3],
including flux balance analysis (FBA, see review [4]),
metabolic pathway analysis [5, 6] or computational
strain design [7]. While the mass balances represent the
most important constraint, various extensions of CBM have
been proposed which incorporate additional biological data
with the goal to further constrain the solution space and thus
to improve the accuracy of predictions. This includes the in-
tegration of different omics [8] and thermodynamic data [9].
One particular branch of these methods deals with the inclu-
sion of enzyme constraints which basically rely on the fact
that there is a limited amount of protein in a cell which
needs to be optimally allocated to the different (in particular
metabolic) processes. This naturally raises an optimization
problem of optimal enzyme allocation and it has been shown
that the incorporation of these constraints in CBM indeed
leads to better predictions, for example, of overflow metabo-
lisms and of the Crabtree effect [10, 11] as well as of growth
rates without explicitly limiting the substrate uptake rates
[12, 13]. Over the last years, quite a number of different (but
often related) approaches for CBM with protein allocation
constraints have been proposed ranging from the inclusion
of enzyme requirements in metabolic reactions (e.g., FBA
with molecular crowding (FBAwMC, [12]) and its extensions
MOMENT [13] and GECKO [11]) up to the very detailed
description of the synthesis of proteins (and of other cellular
components) including resource balance analysis (RBA, [14,
15] and Metabolism-Expression models (ME models [16]).
While such fine-grained models allow, for example, the ex-
plicit inclusion of transcription and translation processes,
they also require much more biological data (e.g. translation
and transcription efficiencies) in order to obtain valid model
predictions. For many organisms, such data are not avail-
able. In contrast, simpler approaches such as MOMENT
and GECKO basically need as input the molecular weight
as well as the (maximal) turnover number kcat (or, alterna-
tively, the apparent or effective turnover number kapp) of
the involved metabolic enzymes. This information is read-
ily available for many (organism-specific) enzymes in data-
bases such as SABIO-RK [17] or BRENDA [18].
MOMENT was applied on the genome-scale E. coli model

iJO1366 [19]. Without restricting maximal carbon source
uptake rates, this MOMENT-applied model successfully
showed superior aerobic growth rate predictions for 24
different carbon sources compared to the original
iJO1366, thus explaining the growth rates with enzyme
mass constraints only. GECKO (Genome-scale model en-
hancement with Enzymatic Constraints accounting for
Kinetic and Omics data [11]) uses the same type of pro-
tein allocation constraints but in a more explicit manner.
It introduces additional reactions and metabolites to re-
flect enzyme usage. As the main advantage, this represen-
tation allows the direct incorporation of measured enzyme
concentrations implying upper limits for flux capacities.
GECKO was successfully used for a Saccharomyces cerevi-
siae model together with in vivo proteomic data. In par-
ticular, this GECKO model exhibited the Crabtree effect
[20], i.e. the switch to fermentative metabolism in yeast at
high glucose uptake rates, without explicitly bounding
substrate or oxygen uptake rates.
The present work has three major goals. First, we

introduce the sMOMENT (short MOMENT) method
for the inclusion of protein allocation constraints in stoi-
chiometric metabolic models. It is primarily based on
MOMENT, but, due to simplifications, it requires con-
siderably less variables and the resulting constraints can
directly be incorporated in the stoichiometric matrix.
This not only reduces the computational demand for
complex calculations (e.g., determination of minimal cut
sets [21]) but also facilitates the direct application of
standard software tools for constraint-based modeling
for the analysis of sMOMENT models. We also show
how protein concentration measurements can be inte-
grated in sMOMENT models mimicking the functional-
ity of GECKO models, but again needing much smaller
models (as long as concentration measurements are only
available for a subset of all enzymes). Second, we present
the AutoPACMEN (Automatic integration of Protein
Allocation Constraints in MEtabolic Networks) toolbox
allowing an almost fully automated creation of
sMOMENT metabolic models. In particular, this in-
cludes the automatic read-out of the relevant enzymatic
data from the SABIO-RK [17] and BRENDA [18] (and
optional custom) databases and the reconfiguration of
the stoichiometric model to embed the enzymatic con-
straints according to sMOMENT. AutoPACMEN can be
used for any organism and stoichiometric model and
requires only the SBML representation of the metabolic
model as primary input. Additionally, AutoPACMEN
provides tools to adjust parameters of sMOMENT
models based on experimental flux data.
Finally, as an exemplary use of the new AutoPACMEN

toolbox and as illustration of the sMOMENT method,
we applied AutoPACMEN to generate an sMOMENT-
enhanced version of the E. coli genome-scale model
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iJO1366. We then compare the original model with the
sMOMENT model with respect to various properties. In
particular, we show that the sMOMENT model signifi-
cantly improves flux predictions (including overflow
metabolism) and we demonstrate, for the first time, that
enzyme constraints may significantly change the
spectrum of metabolic engineering strategies.

Methods
The sMOMENT method
We assume that we are given a constraint-based metabolic
model in standard form with its stoichiometric matrix S
and flux vector v together with steady state mass balances

Sv ¼ 0 ð1Þ
and upper and lower bounds for the fluxes

αi≤vi≤βi: ð2Þ
We further assume that, in a preprocessing step, re-

versible reactions of enzymatically catalyzed reactions in
the metabolic network model are split into two irrevers-
ible (forward and backward) reactions (with αi ≥ 0).
In order to incorporate adequate enzyme (mass) con-

straints in a given metabolic model, MOMENT [13] first
introduces, for each enzyme-catalyzed reaction i, an en-
zyme concentration variable gi (mmol/gDW). We initially
assume that a reaction is catalyzed by a unique enzyme.
The flux vi (mmol/gDW/h) through reaction i is then
limited by the product of the enzyme concentration and
the (maximal) turnover number, kcat,i (1/h), of this enzyme:

vi≤kcat;i∙gi ð3Þ
which can alternatively be written as

vi
kcat;i

≤gi: ð4Þ

(Note that the kcat,i values may differ for forward and
backward direction of (split) reversible reactions). In
order to reflect the limited amount of metabolic en-
zymes in the cell another constraint is introduced stating
that the sum of all enzymes in the model may not
exceed a threshold P (g/gDW):X

gi∙MWi≤P: ð5Þ

MWi is the molecular weight (g/mmol) of the enzyme
catalyzing reaction i. It should be noted that P only
refers to metabolic enzymes (covered by the metabolic
model) and is thus smaller than the total protein content
of the cell.
When applying MOMENT to a genome-scale model, a

great number of additional variables gi and their associ-
ated constraints (4) must be introduced which may

negatively affect the performance of complex analyses of
the resulting model. Furthermore, the constraints (4)
and (5) cannot be directly integrated into the standard
form of a metabolic model represented by (1) and (2).
For this reason, MOMENT models cannot be directly
treated with standard tools for constraint-based model-
ing (such as [22–24]). In order to tackle these issues, we
developed the sMOMENT (short MOMENT) method
which leads to the same results as MOMENT but uses a
more compact representation of the model. Using (4) we
first substitute gi in (5) and obtain:

X
vi∙

MWi

kcat;i
≤
X

gi∙MWi≤P: ð6Þ

We can thus safely use the following alternative for
(5):

X
vi∙

MWi

kcat;i
≤P: ð7Þ

This inequality can be reformulated as follows:

−
X

vi∙
MWi

kcat;i
þ vPool ¼ 0; vPool ≤P: ð8Þ

The auxiliary variable vPool (g/gDW) quantifies the
mass of all metabolic enzymes per gram of cell dry
weight needed to catalyze the reaction fluxes vi and this
value must not exceed the given maximum P. The advan-
tage of (8) is that it can directly be integrated in the standard
system defined by (1) and (2) (Fig. 1). First, a pseudo-
metabolite (enzyme pool) is added as a new row in the stoi-
chiometric matrix where the stoichiometric coefficient for
each reaction i is ð−MWi

kcat;i
Þ . Afterwards, a pseudo-reaction

Rpool (“enzyme delivery”) is added whose coefficients in S are

Fig. 1 Augmentation of the stoichiometric matrix with the
sMOMENT approach. Mpool is the enzyme pool pseudo-metabolite
and Rpool the enzyme-pool-delivering pseudo-reaction. Ri stands for
reaction i, Mj for metabolite j; r is the number of reactions, m the
number of metabolites
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all zero except unity for the added enzyme pool pseudo-
metabolite and the associated “enzyme delivery flux” vPool
has an upper bound of P (Fig. 1).
The integration of the enzyme mass constraints in the

stoichiometric matrix as shown in Fig. 1 is similar to the
one used by GECKO [11] but it markedly differs from it
as it avoids explicit introduction of enzyme species and
their delivery reactions which largely increases the di-
mension of GECKO models. To achieve that, special
treatment is needed for reactions catalyzed by multiple
enzymes as well as for multifunctional (promiscuous)
enzymes. The handling of these cases in sMOMENT is
similar to MOMENT but again simplified compared to
MOMENT’s usage of recursive rules. Herein we consider
an enzyme as an entity that can catalyze one or, in the
case of multifunctional enzymes, several reactions. An en-
zyme can be either a single protein or an enzyme complex
consisting of multiple proteins. Genome-scale metabolic
models often provide gene-enzyme-reaction relationships
which are essential to build enzyme-constrained metabolic
models because they enable one to associate reactions
with their catalyzing enzymes as well as enzymes with the
respective genes and gene products needed to build that
enzyme (or enzyme complex). We denote by E the set of
all q enzymes of a metabolic model:

E ¼ E1;…; Eq
� �

: ð9Þ
Every enzyme Ej has its own molecular weight MWE j

(g/mmol) which can be directly derived from the masses
of its amino acids (in the case of enzyme complexes, its
molecular weight is the sum of the single protein
masses, each multiplied with the stoichiometry of the
single protein in the complex). This information is readily
available in databases such as UniProt [25]. Additionally,
each enzyme Ej has an associated kcat value kcat;E j . With
E(i) we denote the enzyme(s) that catalyze reaction i:

E ið Þ ¼ Ei1;Ei2;…
� � ð10Þ

For setting the enzyme costs ci =MWi/kcat,i of reaction
i in the eqs. (5)–(8) sMOMENT selects the minimal
enzyme costs of all enzymes catalyzing reaction i:

ci ¼ MWi

kcat;i

¼ min
MWEi1

kcat;Ei1
;
MWEi2

kcat;Ei2
;…

( ) !
; Ei1;Ei2;…∈E ið Þ:

ð11Þ
This rule used by sMOMENT simplifies the treatment

of reactions with multiple enzymes but does not change
the feasible flux space because the solution with minimal
protein costs used by sMOMENT is contained in the
corresponding MOMENT or GECKO model as well

(and will in fact be selected in these models by the solver
in optimizations where the protein pool becomes limit-
ing). While the flux space of sMOMENT and predictions
made therein are thus identical to MOMENT and
GECKO, the latter two hold explicit variables for the in-
volvement of each enzyme and can thus account for all
possible enzyme combinations that can generate a given
flux in the case where a reaction can be catalyzed by
multiple enzymes (whereas sMOMENT always assumes
that the enzyme with the minimal cost is used). How-
ever, this additional information is rarely relevant and in
cases where the solutions of the optimization is limited
by the protein pool, the enzyme with the minimal en-
zyme costs (as favored by sMOMENT) will be selected.
If a reaction has no associated enzyme we set the term
MWi
kcat;i

(and thus the enzyme costs) in eq. (8) to 0.

As already stated above, GECKO [11] was introduced as
an extension of MOMENT. It uses the same type of en-
zyme mass constraints but introduces additional reactions
and metabolites to explicitly reflect enzyme usage. The
disadvantage is that the model size increases significantly
which hampers its use in computationally expensive ana-
lyses. On the other hand, this representation allows the
direct incorporation of measured in vivo proteomic con-
centrations as upper limits for enzyme usage. Equivalently
to GECKO, although not further used herein, it is possible
to include proteomic concentration data in the
sMOMENT method as well. Assuming we are given the
concentration [Ek] of an enzyme Ek (mmol/gDW) and that
this enzyme is the only catalyst in the reaction(s) it cata-
lyzes, this immediately sets an upper bound for the sum of
all reaction fluxes catalyzed by enzyme Ek:

X
iϵR Ekð Þ

vi
kcat;i

≤ Ek
� � ð12Þ

where R(Ek) denotes the set of reactions catalyzed by en-
zyme Ek. Similar as we did for the overall protein pool
(cf. eq. (7) and (8)) we may include this constraint by
adding an additional pseudo metabolite and pseudo re-
action in the stoichiometric matrix.
For the case that Ek is not the only catalyzing enzyme

in a reaction i it catalyzes, we split this reaction in two
reactions with the same stoichiometry, one reaction is
now (exclusively) catalyzed by enzyme Ek while the other
reaction is catalyzed by all other enzymes of the former
reaction i (i.e., E(i)\Ek). Thereby, the rule (11) has to be
applied again for both of the new reactions and the re-
spective (possibly adapted) enzyme cost values have to
be used in eq. (8) and in the augmented stoichiometric
matrix. In case that the split reaction i had a limited flux
bound (vi <∞), additional constraints must be intro-
duced (e.g. “arm” reactions as used in the GECKO
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approach) to ensure that this constraint is met by the
sum of all the reactions obtained by splitting reaction i.
The procedure outlined above has to be repeated for all

enzymes with measured concentrations. With a growing set
of concentration measurements, this will add several new
columns and reactions in the stoichiometric matrix. How-
ever, concentration measurements are often available only
for a small fraction of all enzymes. In these cases, the size of
the augmented sMOMENT model as described above will
still be significantly smaller than a fully expanded GECKO
model. If concentrations are specified for all enzymes then
the resulting model will, in fact, be an analogon to a GECKO
model with the same number of reactions and metabolites.
In principle, when using the AutoPACMEN toolbox (see
below), very high (non-limiting) concentrations can be de-
fined during model generation to enforce explicit inclusion
of some or of all enzymes (in the latter case, a GECKO-
analogous model will be generated); these concentration
values can later be adapted for a given set of measurements.

AutoPACMEN toolbox
The AutoPACMEN (Automatic integration of Protein Allo-
cation Constraints in Metabolic Networks) toolbox imple-
ments the sMOMENT method. It consists of two parts
(Fig. 2): (1) the AutoPACMEN model generator for the auto-
matic generation of an sMOMENT-enhanced version of a
stoichiometric metabolic model, and (2) the AutoPACMEN
model calibrator which helps fitting parameters of
sMOMENT models to measured in vivo data.
The AutoPACMEN model generator needs as main

input the metabolic model as SBML file [26]. This SBML
description must include gene-enzyme-reaction asso-
ciations with standard (UniProt) enzyme identifiers. The

model generator retrieves the molecular weights of pro-
teins automatically from the UniProt protein database
[25]. In addition, since the kcat values are central for the
enzyme constraints, AutoPACMEN includes a specific-
ally engineered automatic kcat retrieval method.
AutoPACMEN can access the publicly available en-
zymatic databases SABIO-RK [17] and BRENDA [18].
Optionally, the user can also provide other (custom) kcat
database(s). Using the collected kcat data from all these
sources, AutoPACMEN chooses the kcat values accord-
ing to the number of entries for a reaction’s EC (Enzyme
Commission) number as well as according to the sub-
strates and the organism in which the kcat values were
measured. The substrate-depending kcat search is sup-
ported using the BIGG database metabolite identifiers
[27], while the organism-specific kcat search uses NCBI
TAXONOMY [28]. A full description of the approach to
assign kcat values to enzymes and reactions is described
in the Additional file 1. In short, the kcat selection
algorithm works as follows: For each EC number of a
reaction, kcat values are collected from SABIO-RK
and BRENDA. Then, for every reaction, its substrates
and EC numbers are read out and standardized using
BIGG identifiers. For every reaction’s EC number, the
collected kcat values are determined. Additionally, for
every enzyme catalyzing the reaction, the optional
custom kcat values are retrieved, if available. Generally,
from all these kcat values, the ones measured with the re-
action’s substrate and with enzymes from the metabolic
model’s organism are preferred. If no value could be found
for the given substrate and organism, then the values from
the taxonomically nearest species are preferred. The
constraints for the taxonomic distance are also relaxed if

Fig. 2 General overview of the structure and workflow of the AutoPACMEN toolbox consisting of the model generator and model calibrator. The
red arrows show the optional model calibrator workflow. The blue boxes indicate AutoPACMEN programs, the grey boxes for input and output
files of AutoPACMEN, the orange boxes for external databases which are read out by the AutoPACMEN programs, and white boxes for optional
datasets which can be provided by the user

Bekiaris and Klamt BMC Bioinformatics           (2020) 21:19 Page 5 of 13



there are less than a minimum of 10 kcat values for the
given reaction. Finally, the mean value of all collected kcat
values is chosen. For all reactions for which no kcat value
could be found, a default kcat representing the median of
all found kcat values is set.
Furthermore, if enzyme concentration measurements

are given by the user, then AutoPACMEN includes
explicit enzyme (concentration) variables in the model
as explained in the Methods section.
The described AutoPACMEN model generator is

written in Python 3 and requires a Python version
> = 3.7. It can be used as console program or as
Python module. Aside of Python’s standard library,
the model generator also uses the modules biopython
[29], cobrapy [23], click, openpyxl, pebble, requests
and xlsxwriter.
The AutoPACMEN model calibrator consists of

Python and MATLAB scripts and uses flux data to fit
the enzyme pool variable P as well as the kcat values both
used in eq. (7) and (8). The objective function of these
optimizations reads as follows.

Minimize
P;kcat

X
growth scenarios j

X
measured fluxes vmij

wi; j

� max vmij =v
p
ij; v

p
ij=v

m
ij

� �
ð13Þ

where vmij is the measured flux of reaction i in scenario

j, vpij the corresponding predicted flux and wij a weighting

coefficient to optionally set preferences for certain mea-
surements. This objective function ensures that the rela-
tive error of predicted vs. measured fluxes is minimized.
The model calibrator makes use of MATLAB’s fmincon
function, requires MATLAB version 2017a or higher
and depends on the MATLAB metabolic modeling
package CellNetAnalyzer [24, 30] which is used to make
FBA predictions when calling fmincon. A separate
Python script, which has the same dependencies as the
AutoPACMEN model generator, is used for making a
preselection of (sensitive) kcat parameters for fitting (see
Results and Additional file 1).
AutoPACMEN is free and open source under the Apache

License. A GitHub repository has been created for
AutoPACMEN (including a detailed manual and all scripts
used to generate the sMOMENT-enhanced iJO1366*
model): https://github.com/ARB-Lab/autopacmen

Results
sMOMENT and AutoPACMEN
As described in detail in the Methods section, we developed
sMOMENT, a simplified formulation of the original MO-
MENT method for the integration of enzyme mass con-
straints in metabolic models. In contrast to MOMENT,

sMOMENT requires much fewer variables than MOMENT
and the enzyme constraints can be added as a minimal ex-
tension (one additional pseudo-metabolite and one add-
itional pseudo-reaction) to the model’s stoichiometric matrix
(Fig. 1). Thus, sMOMENT’s model representation not only
reduces computational demand but also allows the use of
standard software toolboxes for constraint-based modeling
to analyze the resulting models.
In order to facilitate the construction of sMOMENT

models, we developed AutoPACMEN (Automatic integra-
tion of Protein Allocation Constraints in Metabolic Net-
works). It consists of (1) the AutoPACMEN model generator
for automatic generation of an sMOMENT-enhanced ver-
sion of a stoichiometric metabolic model, and (2) the model
calibrator which helps adjusting parameters of the included
enzyme constraints based on measured data (Fig. 2).
The AutoPACMEN model generator can be used as con-

sole program or as Python module. The model calibrator can
be used as MATLAB script using CellNetAnalyzer [24]. As
primary input, the AutoPACMEN program reads the meta-
bolic model from an SBML file [26]. The model generator can
retrieve kinetic data from the proteomic databases SABIO-RK
[17] and BRENDA [18] and optionally from a user-defined
custom kcat database (for further details see Methods section,
Additional file 1 and AutoPACMEN’s user manual).

The genome-scale E. coli model iJO1366 extended with
sMOMENT
An exemplary run of AutoPACMEN was performed
with the genome-scale E. coli model iJO1366 [19]. The
SBML file of this model was provided as input. Since a
large database of apparent enzyme turnover numbers
(kapp) was available in [31] these data were used as add-
itional input to the kcat values obtained from SABIO-RK
and BRENDA resources. Note that kapp values reflect the
actual (effective) turnover numbers as calculated from
flux and proteomics data and may thus help to reduce
overestimations from maximal turnover numbers (kcat).
A detailed step-by-step description and explanation of

the AutoPACMEN run with iJO1366 can be found in
Additional file 1 and in AutoPACMEN’s documentation.
In the following, the sMOMENT-enhanced metabolic
model of iJO1366 delivered by AutoPACMEN is
denoted by iJO1366*. Compared to the parent model
iJO1366 (Table 1), iJO1366* increased its number of
reactions by 595 of which 594 simply arise due to the
necessary splitting of enzymatically catalyzed reversible
reactions into two irreversible (forward and backward)

Table 1 Model size of iJO1366 and iJO1366*

iJO1366 iJO1366*

Number of reactions 2583 3178

Number of metabolites 1805 1806

Bekiaris and Klamt BMC Bioinformatics           (2020) 21:19 Page 6 of 13

https://github.com/ARB-Lab/autopacmen


reactions representing the same metabolic capability.
The true change in the behavior of the model stems
from the integration of the protein pool pseudo-
metabolite and of the pseudo reaction for synthesis of
this metabolite with an upper limit determined by the
maximum protein pool (see eq. (8) and Fig. 1). In total,
AutoPACMEN could assign kcat values to 1155 reactions
of iJO1366, which goes far beyond the kcat para-
metrization in the original MOMENT study (513 kcat
values including split reversible reactions).

Fitting parameters of iJO1366*
Generally, enzyme-constrained models need model val-
idation, i.e. some fitting to experimental data to (a) de-
termine an appropriate upper limit for the protein pool
P and (b) to adjust the original kcat values to some extent
to improve the agreement of model predictions with ex-
perimental data. As input for the parameter fitting of
iJO1366* we used two sources, namely flux data (growth
rate, substrate uptake and product excretion rates) for
aerobic and anaerobic growth of E. coli K-12 MG1655
on glucose given in [32] as well as growth rates of E. coli
exhibited on 23 additional substrates [13]. The latter
dataset was also used in the original MOMENT paper
for parameter fitting [13].
In a first step, we calibrated the protein pool variable

P (needed as upper bound for vPool in eq. (8)) by fitting
the predicted maximal growth rate for aerobic and
anaerobic growth on glucose conditions against values
reported in [32] and obtained a value of 0.095 g/gDW
(for a detailed description of the calibration steps see
also section 2.5 in Additional file 1). With this value, the
iJO1366* predicts a maximal growth rate of 0.73 h− 1 for
aerobic growth on glucose which matches exactly the
value reported for E. coli K-12 MG1655 in [32]. It is
important to notice that fitting parameter P with given
flux data implicitly also accounts for averaged saturation
effects: the maximum turnover number kcat,i of a re-
action i is often not reached in the cell due to saturation
effects. The effective (or apparent) turnover number
kapp,i is therefore typically lower and can be written as a
saturation-corrected value of kcat,i: kapp,i = σi ∙ kcat,i with
0 ≤ σi ≤ 1. Equation (7) then reads

X
vi∙

MWi

σ ikcat;i
≤P: ð14Þ

Since the σi are not known (and not fitted as inde-
pendent variables), fitting the protein pool P in eq. (14)
to reproduce given flux data then means that actually
the effective protein pool Peff ¼ σ̂ ∙P is determined (where
σ̂ is the averaged saturation level) which is then used to
bound vPool in eq. (8) (cf. also [11]). Only in the extreme

case where all enzymes operate at maximum turnover
(full saturation: σ̂ ¼ 1) we have Peff = P.
The (effective) protein pool variable was fixed to the

determined value of 0.095 g/gDW in all subsequent ana-
lyses. Next, in order to obtain realistic model behavior
also for anaerobic growth on glucose, we manually iden-
tified four kcat values of iJO1366* related to fermentation
pathways that apparently required changes (see Add-
itional file 1). For example, as found by AutoPACMEN,
the EC number 1.2.1.10 of the acetaldehyde dehydrogen-
ase (ACALD) for the direction with acetyl-CoA as educt
is associated with a kcat that is too low to achieve the
high ethanol production rates of E. coli under anaerobic
conditions (and there was no value in SABIO-RK with
this educt). With more biological data (e.g., if kapp mea-
surements were available for anaerobic conditions) this
manual adjustment could be replaced with the auto-
mated workflow described in the following paragraph.
In a subsequent step we finally further optimized the

kcat values to improve the predictions with respect to the
growth rates for 24 different substrates (glucose and the
23 other substrate-growth-rate pairs from [13]). Here we
used AutoPACMEN’s model calibrator routines for fitting
kcat values (see Methods). As a preliminary step, the model
calibrator identifies reactions whose kcat value can be opti-
mized for a growth rate prediction of one substrate with-
out changing the results for other substrates. As a result
of this selection process, only 96 out of the 1155 reactions
with kcat values were eventually selected for calibration.
The adjusted kcat values can be interpreted either as cor-
rection of the original kcat values or as an adaptation of
the kcat values to the apparent turnover numbers (kapp)
under saturation levels of the respective growth condi-
tions. The resulting model iJO1366* with the adapted kcat
values is provided in SBML format in Additional file 3 and
was used for all further analyses described below.

Growth-rate predictions of iJO1366*
Figure 3 shows the growth rate predictions of iJO1366*
for 25 growth scenarios for which measurements were
available ([13, 32]): 24 different substrates including
glucose under aerobic as well as anaerobic growth (these
scenarios were also used for the parameter fitting in the
previous section). Importantly, no explicit flux bounds
were set for the substrate uptake rates in these scenarios;
substrate uptake is instead limited by the enzyme
constraints.
The growth rate predictions of the fitted sMOMENT

model correlate very well with the in vivo data with a
Pearson correlation coefficient of 0.93 and a Spearman
correlation coefficient of 0.91. The MOMENT version of
iJO1366 applied to 24 of the 25 different growth rates
yielded 0.47 for the Pearson as well as for the Spearman
correlation coefficient [13].
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Prediction of exchange fluxes and of flux ranges
Going beyond maximal growth rate predictions shown
in the previous section, we next intended to compare
predicted vs. measured exchange fluxes (for substrate
and major fermentation products) for aerobic and an-
aerobic growth on glucose (Fig. 4). Here, we assumed
substrate-limited growth which limits the substrate
uptake rate. We simulated the model with different
glucose uptake rates ranging from the minimum (aerobic
growth: 0.14 mmol/(gDW*h), anaerobic growth: 1.26
mmol/(gDW*h); these fluxes are needed for producing a
minimum amount of ATP for maintenance metabolism)
up to the maximum (aerobic: 13.83 mmol/(gDW*h), an-
aerobic: 24.99 mmol/(gDW*h)) of all possible substrate
uptake rates in the model and determined for each up-
take rate the resulting exchange fluxes when the growth
rate is maximized. For aerobic conditions we found that
the optimized model iJO1366* displays fully respiratory
metabolism (without production of side products except
CO2) until a critical glucose uptake rate is reached be-
yond which acetate excretion takes place. Thus, unlike
iJO1366 and without adding further (e.g. oxygen uptake)
constraints, iJO1366* can explain this well-known over-
flow metabolism of E. coli [10] solely by the inclusion of
enzyme constraints. We also found a very good agree-
ment of predicted rates for growth and acetate excretion
with measured fluxes from [32] at a glucose uptake rate
of 9.53 mmol/gDW/h.
Afterwards, we performed the same simulations for

anaerobic growth with different glucose uptake rates.
Consistent with biological knowledge, iJO1366* predicts a
dominant excretion of ethanol, formate and acetate as
fermentation products for a wide range of substrate up-
take rates. The combined operation of these pathways

gives the maximum (anaerobic) yield of 2.5 ATP per mol-
ecule glucose. For a substrate uptake rate of 16.69mmol/
(gDW*h) the predicted exchange fluxes agree again very
well with measurements from [32]. Interestingly, iJO1366*
predicts increasing lactate production rates (and reduced
rates for all other fermentation products) for very high
glucose uptake rates, however, the net gain in growth rate
for this shift is only marginal and thus probably not rele-
vant in vivo. However, in [33] it was shown that under
conditions with large fluxes in the central metabolism, lac-
tate synthesis might become the preferred fermentation
pathway, possibly due to its reduced protein costs com-
pared to the combined action of the ethanol, acetate and
formate fermentation pathways.
As further step to compare the solution spaces of

the original iJO1366 and the sMOMENT-enhanced
iJO1366* model, we performed flux variability analysis
in both models for aerobic growth on glucose with a
maximal glucose uptake rate of 9.53 mmol/(gDW*h)
(corresponding to the measured value in [32]). In
both models, all reversible reactions were split into
two irreversible reactions and the exchange reactions
for all carbon metabolites were inactivated except for
the standard fermentation products acetate, ethanol,
formate, succinate, lactate, and CO2 (a full list of the
closed exchange reactions and of the flux variability
analysis results can be found in the Additional file 2).
As shown by the cumulative distribution in Fig. 5,
iJO1366* has significantly reduced flux variabilities
compared to iJO1366. Whereas 81 fluxes in iJO1366
are practically unbounded (reaching the artificial max-
imum bound of 1000) only 3 of those fluxes exist in
iJO1366*. Moreover, every reaction in iJO1366* has
either a reduced or identical flux range compared to
iJO1366. These results highlight that the introduced
enzyme constraints, consisting just of a single add-
itional reaction and metabolite, significantly narrow
down the flux space.

Influence of enzyme constraints on metabolic
engineering strategies
We used the minimal cut set (MCS) approach [7, 21, 34]
to compute and compare metabolic engineering strat-
egies in the E. coli genome-scale model with and without
enzyme constraints. As application example we calcu-
lated MCSs with up to 6 reaction knockouts for the
growth-coupled production of the commodity chemicals
ethanol and succinate as well as for the amino acids leu-
cine and valine in both iJO1366 (with split enzymatically
catalyzed reversible reactions) and iJO1366*. The MCS
were calculated for anaerobic conditions with the follow-
ing constraints: the maximal glucose uptake rate in
iJO1366 was set to 15 mmol/(gDW*h), while this rate
was not explicitly bounded in iJO1366*. In both models,

Fig. 3 Scatter plot of iJO1366*-predicted and of measured in vivo
growth rates for 25 different growth conditions. The in vivo data
were taken from [13, 32] as described in the main text; more
information can be obtained in Additional file 2. The black diagonal
represents the identity function f(x) = x
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as in the FVA study, the exchange reactions for all car-
bon metabolites were disabled except for the standard
fermentation products (acetate, ethanol, formate, succin-
ate, lactate, CO2) and the respective target product. For
each target product, a minimal growth rate of 0.1 h− 1

and a specific minimal product yield (1.4 mol/mol for
ethanol, 1.0 mol/mol for succinate, 0.2 mol/mol for
leucine and 0.3 mol/mol for valine) was demanded,
irrespective of the growth rate (strong coupling [35]).
The MATLAB script for enumerating the MCSs with

CellNetAnalyzer [30, 36] can be found in AutoPACMEN’s
distribution.
The complete results of the MCS computations can be

found in Additional file 2. Table 2 summarizes the re-
sults indicating very heterogeneous MCS distributions
between the two models. Interestingly, for ethanol as
target product we found that protein allocation con-
straints in iJO1366* cause a significantly higher number
of metabolic engineering strategies (58% more MCS in
iJO1366* compared to iJO1366). A closer look at the

Fig. 4 Predicted exchange fluxes of iJO1366* for the full range of all possible glucose uptake rates under (a) aerobic and (b) anaerobic conditions. Measured
in vivo rates taken from [32] are also shown, together with their standard deviations (note that the (yellow) data point for the ethanol flux in (b) lies directly
underneath the (red) data point of the acetate flux value; likewise the yellow line lies to a large extent directly underneath the red line). For a more detailed
data set of this analysis see Additional file 2. An FVA shows that the exchange fluxes are unique for optimal growth at the respective substrate uptake rates
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interrelationships of the MCSs reveals that approxi-
mately a quarter of the 7168 MCS in iJO1366* are
shared with iJO1366 while the largest fraction (~ 60%)
represents MCS with knockout strategies that do not
exist (also not as superset or subset of computed MCS)
in iJO1366. Especially interesting is the fact that there
are 231 MCS in iJO1366* that are (proper) subsets of
(1516) MCS in iJO1366. The reduced number of re-
quired interventions in these MCS indicate that ethanol
secretion is already enforced to a certain extent by the
enzyme constraints. On the other hand, a few of such
cases also exist in the other direction where (11) MCS of
iJO1366 are subsets of (101) MCS in iJO1366*. Similar re-
sults are obtained for succinate as target product, although
the fraction of identical MCS in both models is larger.

A different picture is seen for the amino acids leucine
and valine. First, not a single MCS is found for leucine
in iJO1366* while at least 196 could be computed for
iJO1366. Here it is to be expected that pathways for
leucine synthesis enforced by MCS in iJO1366 are not
valid in iJO1366* due to some limitation by the enzyme
costs. Using FBA we found that it is generally possible
to reach the given leucine yield in the iJO1366* under
the given minimal growth rate, however, coupling
cannot be enforced, at least not with up to 6 knockouts.
In the case of valine, the number of MCS (3712) in
iJO1366* is relatively high but markedly reduced com-
pared to iJO1366 (29290). Importantly, while 3664 MCS
are identical in both models, not a single MCS that
exists only in either model is a reduced version (subset)

Table 2 Comparative results of the minimal cut sets found for different target products in iJO1366 and iJO1366*. The given
rounded percentages of subset and superset categories refer to the respective total number of minimal cut sets. The complete
results can be found in Additional file 2

Product Ethanol Succinate Leucine Valine

Model iJO1366 iJO1366* iJO1366 iJO1366* iJO1366 iJO1366* iJO1366 iJO1366*

#MCS 4538 7168 7801 9619 196 0 29,290 3712

#MCS up to size 3 0 0 0 0 0 0 0 0

#MCS of size 4 87 189 135 215 24 0 240 0

#MCS of size 5 678 871 1918 2148 32 0 3100 48

#MCS of size 6 3773 6108 5748 7196 140 0 25,950 3664

#MCS being subset of the other
model’s MCS

11 (0.2%) 231 (3.2%) 21 (0.3%) 174 (1.8%) 0 0 0 0

#MCS being superset of the other
model’s MCS

1516 (33.4%) 101 (1.4%) 1218 (15.6%) 42 (0.4%) 0 0 0 0

#MCS shared by both models 1899 (41.8%) 1899 (26.5%) 6141 (78.7%) 6141 (63.9%) 0 0 3280 (11.2%) 3280 (88.4%)

#MCS neither identical, superset or
subset of the other model’s MCS

1112 (24.6%) 4937 (68.9%) 421 (5.4%) 3262 (33.9%) 196 (100%) 0 26,010 (88.8%) 432 (11.6%)

Fig. 5 Comparative cumulative distributions of the flux variabilities of iJO1366 and iJO1366* (both with split reversible reactions) for aerobic
growth with a maximum glucose uptake rate of 9.53 mmol/(gDW*h). For a detailed summary of the FVA results see Additional file 2. Reactions
with zero flux (blocked reactions) were excluded
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of the other indicating that also rather different strat-
egies arise in both models. The results of the MCS study
thus demonstrate that the application of sMOMENT
may lead to new biotechnological metabolic engineering
strategies which would not have been found without
enzyme allocation constraints.

Discussion
In this work we presented three major developments. First,
we introduced the sMOMENT method for simplified in-
clusion of (enzymatic) protein allocation constraints in
metabolic models. We then developed the AutoPACMEN
toolbox allowing automatic construction and calibration of
sMOMENT models. Finally, we applied AutoPACMEN to
construct the enzyme-constrained version iJO1366* of
the genome-scale E. coli model iJO1366 and com-
pared these two models demonstrating how the added
enzyme allocation constraints affect major model
properties and predictions.
MOMENT [13], a further development of FBAwMC [12],

was one of the first constraint-based modeling approaches
accounting for enzyme mass constraints by integrating
enzyme-specific (kinetic and molecular weight) parameters.
sMOMENT introduced herein is based on the same ap-
proach but uses a simplified and standardized representation
of the constraints. There are three key differences to MO-
MENT: (i) sMOMENT does not require explicit variables
for enzyme concentrations. (ii) sMOMENT simplifies the
treatment of isozymes catalyzing the same reaction by con-
sidering the most conservative constraint (i.e., the enzyme
with the lowest costs in terms of required protein mass).
This does not change the results of simulations. (iii) The
enzyme constraints are integrated in a compact manner
(addition of just one pseudo metabolite and one pseudo
reaction) in the standard formulation of constraint-based
metabolic models which enables their analysis and simula-
tion with dedicated tools as well as their storage and
export as SBML model.
A related method to MOMENT and sMOMENT is

GECKO [11] where the metabolic enzymes as well as
their formation and usage are explicitly included in the
metabolic model as species and reactions, respectively,
together with the overall enzyme mass constraints. One
major motivation for this explicit representation in
GECKO was the possibility to directly integrate mea-
sured enzyme concentrations which can further con-
strain the model. However, this comes to the price that
the models can become very large. For example, the fully
expanded GECKO model for iJO1366 (generated with
AutoPACMEN where all enzymes were given some
(pseudo-)concentration measurements) contains 7728
reactions and 4166 metabolites, which is an enormous
increase compared to 3178 reactions and 1806

metabolites in the sMOMENT model iJO1366* (cf.
Table 1). Computationally expensive analyses (such as
the enumeration of minimal cut sets) become hard or
even impossible in such a huge network. We also com-
pared the flux predictions of the raw iJO1366* (before
adjusting the kcat values with the model calibrations)
with the respective GECKO version of the iJO1366
model (with the same maximal protein pool value of
0.095 g/gDW) and did not find any differences if no pro-
tein measurements are provided. Furthermore, although
not used herein, we described in the Methods section
how given enzyme concentration measurements can be
properly included during the automated construction of
an sMOMENT model while still keeping the model as
small as possible. As mentioned above and described in
the Methods section, a fully expanded GECKO model
can also be generated with AutoPACMEN if needed.
As for MOMENT and GECKO, sMOMENT models

focus on protein mass constraints and are therefore sim-
pler than the more advanced resource balance analysis
(RBA [14];) and Metabolism and Expression (ME)
models [16] where all steps of gene expression (e.g.,
transcription and translation) and other processes are
explicitly included. These models have increased predict-
ive capabilities but lead to very complex models with a
large number of additional parameters (e.g., transcrip-
tion efficiencies) which are often not known. Especially
for organisms with few experimental data, sMOMENT,
together with the AutoPACMEN toolbox, provides a
first and relatively simple step towards inclusion of
biosynthetic costs in constraint-based models.
The AutoPACMEN toolbox is, to our knowledge, the

first program suite providing a virtually fully automated
workflow for the integration and calibration of enzyme
constraints in a given stoichiometric metabolic model.
No such comprehensive toolbox was available for
MOMENT whereas a set of manually editable and partly
automated scripts were provided for generating GECKO
models [11]. This GECKO toolbox allows retrieval of
reaction-specific kcat data, but only from the BRENDA
database and it does not include the capability to automat-
ically calibrate kcat values. Furthermore, the Python scripts
seem not be compatible with current versions of Python 3.
Another related toolbox was recently published for

(semi-)automated construction of RBA models (RBApy
[37]). As explained above, RBA needs a considerable
amount of additional parameters. However, while para-
meter estimation via experimental data is supported by
RBApy, automatic retrieval of many parameters (such as
kapp values) from external databases is not possible.
Since the model generator of AutoPACMEN can be used

either as console program or as Python modules, it can be
easily integrated with other metabolic modeling programs.
As the program suite depends on cobrapy [23], it can be
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already seen as an extension for it. The applicability of
AutoPACMEN was demonstrated by the generation of the
iJO1366* model, however, AutoPACMEN is ready to be
used with any other constraint-based metabolic model
(with standardized name space and gene-enzyme-reaction
associations), regardless of the species they represent.
The calibrated enzyme-constrained genome-scale model

for E. coli, iJO1366*, constructed herein with AutoPACMEN,
is provided in SBML format in Additional file 3 and holds
significant potential for diverse applications. iJO1366* is, to
the best of our knowledge, the E. coli genome-scale model
based on (simple) enzyme constraints with the widest cover-
age of kcat values. If enzyme concentration measurements
are available, AutoPACMEN can be used to integrate them,
with minimal model extensions, in iJO1366*. Furthermore,
by relaxing the protein pool variable P to a very high value,
iJO1366* behaves as the original model iJO1366 thus
allowing simultaneous simulation of E. coli’s metabolism
with and without enzyme constraints.
The basic analyses conducted herein with iJO1366*

already revealed interesting properties and several key dif-
ferences to the original model iJO1366. The explanation
and predictions of phenomena such as overflow metabol-
ism with enzyme constraints is not new [10, 11, 38], how-
ever, it demonstrated the validity of iJO1366* under the
given conditions. Moreover, the phenomenon of increased
lactate synthesis under anaerobic conditions with high
substrate uptake rates could be predicted. Furthermore,
the conducted analysis of intervention strategies for differ-
ent target products is the most comprehensive done so
far for enzyme-constraint models and revealed import-
ant insights. In particular, while some strategies might
be valid in both models, a significantly altered spectrum
of minimal cut sets may result when enzyme con-
straints are included and enforcement of growth-
coupled product synthesis may become easier (less
interventions required) or harder (more interventions
required). It thus seems worth to rigorously include
enzyme constraints for computational strain design in
metabolic engineering.
While enzyme-constrained models may exhibit a higher

predictive and explanatory power than classical
constraint-based models, they require as additional input
three different types of enzyme parameters (protein pool
P, kcat values and the molecular weight of the enzymes).
While the molecular weights can often be determined ac-
curately, the kcat values retrieved from the databases usu-
ally have a much higher uncertainty. They are difficult to
measure (often only in vitro and not in vivo) and reported
measurements sometimes differ by orders of magnitudes.
Moreover, specific kcat values are often not available for
the organism under study and must then be taken from
related species. Calibration of the original kcat values and
estimating the protein pool P from available flux

measurements is thus essential to obtain meaningful pre-
dictions of enzyme-constrained models and is supported
by AutoPACMEN. Moreover, AutoPACMEN also pro-
vides options to use different modes of kcat value assign-
ment (e.g., selection of a random or of the median or
mean value from the relevant kcat values found in the
databases) which can then be used to test the effect of
different kcat distributions on the model predictions.

Conclusion
The methodological and tool developments presented
herein pave the way for a simplified and routine construc-
tion and analysis of enzyme-constrained metabolic
models. Moreover, the generated iJO1366* model allows
exploration of the genome-scale metabolism of E. coli
under enzyme mass constraints. First analyses of iJO1366*
revealed several interesting properties and differences
compared to the iJO1366 model emphasizing the import-
ance of consideration of enzyme constraints in metabolic
models.
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