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Abstract

Background: The similarity or distance measure used for clustering can generate intuitive and interpretable clusters
when it is tailored to the unique characteristics of the data. In time series datasets generated with high-throughput
biological assays, measurements such as gene expression levels or protein phosphorylation intensities are collected
sequentially over time, and the similarity score should capture this special temporal structure.

Results: We propose a clustering similarity measure called Lag Penalized Weighted Correlation (LPWC) to group pairs
of time series that exhibit closely-related behaviors over time, even if the timing is not perfectly synchronized. LPWC
aligns time series profiles to identify common temporal patterns. It down-weights aligned profiles based on the
length of the temporal lags that are introduced. We demonstrate the advantages of LPWC versus existing time series
and general clustering algorithms. In a simulated dataset based on the biologically-motivated impulse model, LPWC is
the only method to recover the true clusters for almost all simulated genes. LPWC also identifies clusters with distinct
temporal patterns in our yeast osmotic stress response and axolotl limb regeneration case studies.

Conclusions: LPWC achieves both of its time series clustering goals. It groups time series with correlated changes
over time, even if those patterns occur earlier or later in some of the time series. In addition, it refrains from
introducing large shifts in time when searching for temporal patterns by applying a lag penalty. The LPWC R package
is available at https://github.com/gitter-lab/LPWC and CRAN under a MIT license.
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Background
Time series data are collected extensively to study com-
plex and dynamic biological systems [1, 2]. Tracking the
levels of biological molecules such as genes and pro-
teins over time can reveal interactions among them [1]
and inform treatment decisions in various diseases [3].
Temporal or longitudinal data are important across mul-
tiple disciplines (for example, finance, engineering, and
medicine), but biological time series datasets are often
shorter than those in other domains. Typically, separate
experiments are required for each timepoint, which limits
the number of timepoints collected.
Similarity in gene expression patterns can correspond to

similarity in biological function, which helps direct future
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research [4]. Countless clustering algorithms group data
points with similar characteristics, but the meaning of
“similar” is inherently subjective and application-specific
[5]. In time series datasets, similarity must account for
the temporal structure. Unlike other data types, observa-
tions in time series datasets are dependent on the past.
General purpose clustering methods may be able to detect
synchronized temporal changes over time but cannot rec-
ognize that two entities have the same temporal profile
if one is delayed or lagged after the other. In addition, in
many cases the timepoints in a biological study are not
uniformly distributed over time, and the selection of time-
points is an important aspect of the experimental design
[6]. The spacing between timepoints in irregular time
series affects the similarity of temporal profiles, especially
when allowing lags among the clustered entities.
Many time series clustering algorithms have been intro-

duced to understand the dynamics of biological processes.
Some of these clustering approaches are hierarchical,
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iteratively merging small clusters or dividing large clus-
ters. Others partition entities into clusters, which often
requires specifying the number of clusters in advance.
Hierarchical clustering methods, such as clustering with

correlation or transformed Euclidean distance for similar-
ity, were a common choice before the proliferation of time
series-specific algorithms [4] and continue to be widely
used for temporal data [7]. Generic approaches ignore the
sequential nature of time series data and give the same
clusters even if the timepoints are shuffled, but many
temporal hierarchical clustering methods exist as well.
Dynamic Time Warping (DTW) aligns timepoints so that
the distance between the aligned samples is minimized [8,
9]. Aach et al. introduced a DTWvariant that allows align-
ing the timepoints of one time series to linear interpola-
tions in the other [9]. LEAP allows time delays when con-
structing co-expression networks [10]. Likewise, Alonso
and Peña compute similarity using cross correlation [11].
Short time series (STS) distance computes the rate of
change in intensity between adjacent timepoints, but it
does not consider lags [12]. Trendy performs segmented
regression to summarize temporal expression patterns
[13]. TSclust implements multiple clustering approaches
including a modified auto-regressive model, numerous
distance functions, and a modified wavelet function that
accounts for lags [14]. Vilar et al. use forecasting den-
sity adopted from auto-regressive models to compute
the dissimilarity between time series [15]. TimeClust
implements two clustering algorithms, Temporal Abstrac-
tion Clustering and Random Walk Models for Bayesian
Clustering, developed specifically for short time series
[16–18]. Neither of them accounts for lags.
Many partition-based clustering algorithms are avail-

able for biological time series data as well. The Short
Time-series Expression Miner (STEM) enumerates tem-
poral template profiles and matches genes to them, which
works best for short time series (3-8 timepoints) [19].
DynaMiteC [20] clusters genes by fitting them to pro-
totype impulse models [21], but impulses are only one
type of common temporal pattern [1]. DynOmics uses
the fast Fourier transform to model expression values
using mixtures of cyclic patterns [22]. This method also
realigns expression values to account for delays but does
not treat lagged and unlagged genes differently. Graphi-
cal Query Language clusters based on a hidden Markov
model [23]. Bar-Joseph et al. turn discrete time series
expression data into continuous data using splines [24].
Their clustering algorithm uses the continuous data and
expectation maximization to optimize alignment of the
temporal data. GEsture is an online graphical tool that
takes a hand-drawn curve as input and searches for sim-
ilar, dissimilar, or delayed gene expression patterns [25].
Other partitioning-based algorithms include a wavelet-
based density method using multi-level thresholding [26]

and Cluster Analysis of Gene ExpressionDynamics, which
uses auto-regressive equations [27].
Another category of time series clustering methods is

Bayesian models [28–30]. Several of these are built on
Dirichlet processes with mixture models that use the
temporal information [7, 31]. Dahl proposes a cluster-
ing algorithm where genes with similar Dirichlet process
mixture components are grouped together and the model
is fit using Markov Chain Monte Carlo [31]. McDowell
et al. use a Dirichlet process Gaussian process mixture
model that determines the number of clusters and models
temporal dependencies [7].
Despite the abundance of clustering algorithms, many

popular clustering methods do not have special support
for important temporal properties such as lags and irreg-
ular timepoints, which we demonstrate with a simple
example. Even the methods that do allow lags typically
do not treat irregular timepoints differently from regular
timepoints. Figure 1 shows how four artificial gene expres-
sion profiles are grouped by different clustering methods.
This contrived example illustrates desirable properties of a
time series clustering algorithm and is not intended to be a
formal evaluation. Hierarchical clustering with Euclidean
distance (heuc) ignores the timing of the spikes entirely.
Two existing time series clustering algorithms, STS and
DTW, also fail to group the early and late genes. We
introduce a time series clustering algorithm, Lag Penal-
ized Weighted Correlation (LPWC), which captures the
delayed responses and the similarity of the early and late
genes. LPWC has two modes with a high lag penalty
(hLPWC) and low lag penalty (lLPWC).
One of the main contributions of LPWC is a similar-

ity function that accounts for pairs of temporal profiles
that occur at slightly different times. This generates a
gene-gene similarity matrix that can be used as input for
standard similarity- or distance-based clustering meth-
ods such as hierarchical clustering. The LPWC similarity
score is derived from weighted correlation, but the cor-
relations of lagged temporal profiles are penalized using
a Gaussian kernel. The kernel is also used to account for
irregular time sampling. We demonstrate the advantages
of LPWC over existing general and time series clustering
algorithms on a simulated impulse model dataset and case
studies on the yeast osmotic stress response and axolotl
limb regeneration.

Results
Lag PenalizedWeighted Correlation overview
The goal of LPWC is to group genes that have similar
shapes in their expression levels over time. These shapes
or temporal profiles refer to the patterns of increases and
decreases in expression. Two genes have similar tempo-
ral shapes if the timing of these increases and decreases
coincides even if the expression levels are not the same.
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Fig. 1 A simple artificial clustering task with four genes and timepoints at 0, 5, 15, 30, 45, 60, 75, and 90 min. Each of the genes has a sharp rise and
fall in expression, which occurs at a different timepoint. Genes 1 and 2 both have late spikes and intuitively should be clustered together. Genes 3
and 4 are both early. Several widely used clustering methods group the genes into two clusters, but only LPWC groups the early and late genes
correctly. The colored dots in the table represent the different genes

In order to identify similar temporal shapes that are not
perfectly synchronized, LPWC applies a lag operator to
re-align the timepoints when comparing two expression
profiles. The lag operator compares the timepoints of
one expression profile with later timepoints in the other
profile. Because the aligned time series can pair measure-
ments that are temporally far apart, LPWC weights the
pairs of timepoints to give stronger consideration to those
that are close in time.
To assess LPWC, we compared it to other popular clus-

tering algorithms on simulated time series datasets where
the true clusters are known and conducted two biological
case studies. The yeast osmotic stress response data con-
sist of NaCl-induced osmotic stress phosphorylation sam-
ples obtained from mass spectrometry [32]. The axolotl
blastema RNA-seq data are collected upon amputating
the right forelimb [33]. For the biological case studies, the
true clusters are not known, and it is harder to quantita-
tively evaluate clustering methods. Therefore, we assess
whether each clustering algorithm produces clusters with
discernible common temporal patterns and makes use of
the temporal structure in the data. To assess how the tem-
poral structure is used during clustering, we permute the
timepoints.

Clustering simulated time series data
In our primary simulation, each simulated time series
dataset contains 200 genes with 10 timepoints at 0, 2, 4,
6, 8, 18, 24, 32, 48, and 72 min. A simulated instance
is composed of four distinct temporal patterns with 50
genes per pattern.We repeat the sampling, clustering, and
evaluation procedure 100 times in both a low and high

variance setting, where the variance controls how simi-
lar the simulated genes are to the four reference patterns.
Figure 2 shows an example dataset simulated in the low
variance setting, and Additional file 1: Figure S1 shows
a high variance example. Because the true pattern used
to generate each temporal profile is known, the adjusted
Rand index (ARI) can be obtained by comparing the true
clusters to the cluster assignments produced by different
clustering algorithms. ARI of 1 indicates perfect agree-
ment between the true and computed clusters (“Cluster
evaluation” section).
We compare LPWC with Euclidean distance with hier-

archical clustering (heuc) and kmeans clustering (keuc),
Pearson correlation with hierarchical clustering (hcorr)
and kmeans clustering (kcorr), DTW with hierarchi-
cal clustering, and STS distance with hierarchical clus-
tering (Additional file 1: Section 3). These algorithms
include some of the most widely used general cluster-
ing approaches as well as two tailored for time series.
Instead of using the silhouette method (“Cluster evalua-
tion” section) to pick the number of clusters, all methods
return exactly four clusters, the correct number of clusters
from the simulation.
In the low variance simulation, the two versions of

LPWC, hLPWC and lLPWC, outperform all other meth-
ods (Fig. 3). The clusters from hLPWC (Additional file 1:
Figure S2) and lLPWC (Fig. 4) show that the simulated
genes are accurately clustered according to the known
assignments. The LPWC ARI scores are close to 1 in
almost all of the 100 simulations. The time series clus-
tering methods DTW and STS perform poorly on this
task, and hcorr and kcorr are the only other methods that
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Fig. 2 An example of the four patterns simulated using ImpulseDE [21] with low variance. Each model has different characteristics (expression
increases and decreases over time) and contains 50 simulated genes

perform reasonably well. This simulation acts as a posi-
tive control, demonstrating that LPWC correctly recovers
the four temporal expression patterns when we insert
moderate offsets in the timing and expression levels.
The high variance simulation is a more challenging clus-

tering task. All methods have median ARI scores less
than 0.75 (Additional file 1: Figure S3). LPWC has the
best median ARI, but it performs only slightly better
than hcorr and kcorr. The correlation-based algorithms
(LPWC, hcorr, and kcorr) are more successful than the
others because they are robust to the shifts in expression
along the y-axis.
LPWC can perform well with both regular and irregu-

lar time series data as long as there are sufficient time-
points to characterize the important temporal features.
To demonstrate LPWC’s ability to accommodate irregular
spacing between timepoints, we extend the simple exam-
ple from Fig. 1 using the ImpulseDE model. We simulate
artificial time series that contain 50 genes with an early
spike in expression and 50 with a late spike. In the early

group and the late group, half of the simulated genes spike
slightly later than the others. We first create a regular time
series, sampling the expression from 0 to 72 min every 6
min (Additional file 1: Figure S4). We also construct an
irregular time series, sampling at 0, 3, 7, 12, 22, 34, 46, 59,
and 75 min (Additional file 1: Figure S5). In both cases,
we select the timepoints so that there is a sample before
the spike, in the middle of the spike, and after the spike.
This enables LPWC to recognize the spike pattern, intro-
duce appropriate lags, and recover perfect clusters regard-
less of the timepoint spacing (Additional file 1: Figures
S6 and S7).

Yeast osmotic stress response
We used lLPWC to cluster the yeast phosphopeptides in
the osmotic stress response dataset into three clusters
(Fig. 5 and Additional file 2). Although cluster 3 con-
tains fewer phosphopeptides than the others, this number
of clusters was optimal based on our silhouette analy-
sis (Additional file 1: Figure S8). Clusters 1 and 2 were



Chandereng and Gitter BMC Bioinformatics           (2020) 21:21 Page 5 of 15

0.00

0.25

0.50

0.75

1.00

hLPWC lLPWC STS heuc DTW hcorr keuc kcorr
method

A
R

I

method

hLPWC

lLPWC

STS

heuc

DTW

hcorr

keuc

kcorr

Fig. 3 ARI scores with different clustering methods for the low variance simulated impulse data over 100 different simulations

comparable for both lLPWC and hLPWC, with only the
smaller cluster 3 showing a notable difference in the mean
temporal trend (Additional file 1: Figures S9 and S10 and
Additional file 3).
Among the 344 phosphopeptides, there are 33 nonzero

lags in lLPWC (Additional file 1: Table S1) and 26 nonzero
lags in hLPWC (Additional file 1: Table S2). Although
few lags are introduced, they are important in aligning
the temporal structure of some phosphopeptides with
other phosphopeptides. All clusters exhibit distinct tem-
poral patterns. For visualization purposes, we emphasize
these patterns by subtracting the value at 0s from all time-
points before applying the lags and plotting the cluster
members and the mean temporal trend (Fig. 5 and Addi-
tional file 1: Figure S10). In both lLPWC and hLPWC,
most of the phosphopeptides are assigned to clusters 1
and 2 (Additional file 1: Tables S3 and S4). Phosphopep-
tides in lLPWC cluster 1 demonstrate an overall increas-
ing trend over time. The cluster members are enriched
for many broad Gene Ontology (GO) terms related to
signal transduction, cellular response to osmotic stress,
and actin cytoskeleton organization, which was previously

reported to be an important component of this stress
response [32] (Additional file 2). Cluster 1 includes the
mitogen-activated protein kinase Hog1 and other impor-
tant proteins in the osmotic stress response pathway such
as kinases Pbs2 and Rck2 and transcription factors Msn4
and Sko1. Cluster 2 phosphopeptides show a decrease
in phosphorylation over time. The steady increase and
decrease trends in clusters 1 and 2 also reflect the major
patterns reported by Kanshin et al. [32]. Similar to clus-
ter 1, cluster 2 is also enriched for actin-related terms
and general signaling as well as salt and osmotic stress
response proteins. These include additional transcription
factors Cin5 and Msn2 as well as different phosphory-
lation sites on Msn4 and Pbs2. Cluster 3, though small,
contains a group of phosphopeptides with mostly small
changes in phosphorylation over time except for a dis-
tinct decrease and increase at 45s. This cluster contains
cytokinesis-related proteins.
After permuting the timepoints, the clusters identified

should change if the clustering algorithm has detected
patterns that depend on the timing. We use ARI to quan-
tify this change (“Cluster evaluation” section). Algorithms
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Fig. 4 Example lLPWC clusters for the low variance simulated impulse model. The red lines represent the mean intensity values

that are insensitive to timing will have ARI scores of 1.
When comparing the real and permuted data (Additional
file 1: Figure S11 and Table S5), nearly all of the hlPWC
and lLPWC ARI scores are greater than 0.75. In this
dataset, LPWC does not assign many non-zero lags.
Therefore, the clustering does not have a strong depen-
dence on the temporal order and is fairly similar with the
real and permuted timepoints.
As expected, the four general clustering algorithms

(heuc, hcorr, kcorr, and keuc) have ARI scores of 1 because
they do not use the temporal information. STS has a low
ARI but performs poorly on this dataset. It places all genes
into a single cluster, except for two genes that are each
assigned to their own singleton cluster (Additional file 1:
Figures S12 and S13 and Table S6). DTW does quite well
on the yeast data (Additional file 1: Figures S14 and S15).
Although three of its clusters are small (Additional file 1:
Table S7), the other five contain distinct temporal pat-
terns. The ARI score is also low, showing that DTW does
account for the temporal structure in the yeast osmotic
stress response data.

Axolotl blastema
Figure 6 plots the axolotl blastema gene expression clus-
ters from hLPWC. Three clusters were selected based on
the average silhouette width in Additional file 1: Figure
S16, and the number of lagged genes and cluster sizes are
reported in Additional file 1: Tables S8 and S9, respec-
tively. We added 1 to each expression value before taking
the log2 ratios with respect to time 0 days for visualization
purposes only. This dampens the extreme fold changes
that occur when the initial gene expression level is close to
0, which obscure the temporal trends in each cluster.
The major temporal trends in each cluster are simi-

lar for hLPWC (Fig. 6 and Additional file 4) and lLPWC
(Additional file 1: Figures S17 and S18, Tables S10 and
S11, and Additional file 5). In hLPWC cluster 1, gene
expression rapidly then gradually increases from 0 to 14
days, decreases until the 21 day timepoint, and stabilizes
afterward. This cluster is enriched for GO terms related
to the cell cycle, proliferation, blood vessel development,
and wound healing (Additional file 4). The mean cluster
2 trend exhibits down-regulation from 0.25 days until 14
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Fig. 5 Clusters for the yeast data using the lLPWC algorithm. The y-axis shows the log2 salt/control ratio after subtracting the 0s log2 ratio from all
values so all temporal profiles start at 0. The red lines represent the mean adjusted log2 ratios

days. The cluster is associated with GO and Kyoto Ency-
clopedia of Genes and Genomes (KEGG) terms involv-
ing ribosomes, RNA-related metabolism, muscle develop-
ment, and response to oxidative stress. In cluster 3, the
mean expression decreases immediately and then rises
until day 1, at which point it decreases again until day

10 and then increases for the remainder of the duration.
These genes are enriched for type I interferon signaling
and other immune processes.
Because hundreds of genes are assigned non-zero lags

in the axolotl case study, both hLPWC and lLPWC have
low ARI scores when comparing their clusters with the
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Fig. 6 Clusters for the axolotl data using the hLPWC algorithm. The log2 ratio is with respect to the 0 day timepoint. The red lines represent the
mean log2 ratios
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permuted data (Additional file 1: Figure S19 and Table
S12). The results are highly dependent on the timing of
the expression changes, as desired. As with the yeast case
study, the four general clusteringmethods have ARI scores
of 1 or close to 1. STS performs poorly once again. One
cluster contains 99% of the genes despite their different
temporal characteristics (Additional file 1: Figures S20
and S21 and Table S13). Although DTW is excellent on
the yeast dataset, it struggles with the axolotl data (Addi-
tional file 1: Figures S22 and S23 and Table S14). The ARI
scores are much higher than on yeast, and it places 98% of
genes in a single cluster.

Discussion
LPWC is a generalization of traditional hierarchical clus-
tering with correlation-based similarity. The impulse
model simulations illustrate scenarios in which the gen-
eralization is most advantageous. When genes are lagged
and have different amplitudes than the canonical expres-
sion patterns, LPWC still perfectly recovers the correct
clusters in almost all of the low variance runs. How-
ever, when the simulated genes deviate too much from
the canonical patterns, the gene-gene correlations are
weaker and LPWC mislabels some genes. When no lags
are detected, LPWC is identical to standard hierarchical
clustering.
In both the yeast and axolotl case studies, LPWC suc-

cessfully identifies clusters with unique temporal pat-
terns. LPWC introduces more lags in the axolotl dataset,
which may be due to the close timing of the initial time-
points, and the temporal permutation analysis reflects
the stronger temporal dependency when there are more
lags. The general kmeans and hierarchical clustering algo-
rithms disregard the timepoints by design. STS has per-
formed well in other applications but places nearly all
phosphopeptides or genes into a single cluster in both case
studies here. DTW, on the other hand, does very well on
the yeast application but creates a single dominant clus-
ter on the axolotl dataset. Only LPWC produces useful
clusters that depend on the timing for both datasets.
LPWC only considers the expression levels at the

observed timepoints and does not interpolate between
timepoints or rescale time as in DyNB [34]. Interpolation
with line segments [9] or splines [24, 35, 36] makes
assumptions about the unobserved behavior between
timepoints. Gaussian processes make much weaker
assumptions [7], but the kernel function still constrains
which types of temporal behaviors and smooth profiles
are most likely in between the observed times [37]. In
contrast, LPWC assumes that comparing observed values
collected at different times is meaningful. This assump-
tion is less likely to hold when the times are far apart,
which is why aligned distant timepoints are given a lower
weight. If some of the timepoints are very far apart, the

time series data could be interpolated with line segments,
splines, Gaussian processes, or other approaches before
clustering with LPWC.
The LPWC software provides two options to automat-

ically set the parameter C that controls the lag penalty.
On a new dataset, we recommend running both and
inspecting the clustering results to assess whether either
of the automatically-selected penalties was effective. If
there are no or few lags reported, it may be that the dataset
is highly correlated in a synchronous manner or that a
lower penalty is needed. The low penalty mode is slower
because it runs LPWC repeatedly for multiple values of
C. Users can also directly manipulate C by using the val-
ues selected by the high and low penalty modes as a guide.
Higher values of C impose less of a penalty on far apart
timepoints.
Because the main advantage of LPWC is its ability to

introduce lags to detect common but unsynchronized
temporal patterns, it works best when there are sufficient
timepoints to support multiple lags. At least four time-
points are required by LPWC in order to allow one lag.
However, if gene i and gene j are assigned lags of -1 and
1, only two timepoints remain to estimate the correla-
tion. Thus, it is advisable to use LPWC with five or more
timepoints. With very short time series we recommend
using the high penalty to help avoid spurious correlations.
STEM [19], which enumerates temporal patterns, may
be preferable for very short time series datasets without
delayed responses. DTW [8, 9] has been used extensively
in the financial industry for long time series datasets.
LPWC can also be applied to long time series, which have
sufficient timepoints available to compute reliable corre-
lations even when larger lags are applied. However, the
default lag penalties often prevent large lags from being
introduced, soCmay need to be increased beyond the low
penalty default. LPWC does not search for common short
temporal patterns in a pair of long time series. Rather, it
identifies shared trends between the entire prefix of one
time series and the entire suffix of another.
Euclidean distance-based or correlation-based similar-

ity measures can be used for clustering. These approaches
emphasize different types of temporal shapes. Correlation
reveals the trends in the data, whereas Euclidean distance
captures the difference in magnitude of expression lev-
els or fold changes. The preference for one over the other
is subjective. We prefer correlation for LPWC because
it can be applied directly to the original expression lev-
els without computing fold changes with respect to the
initial timepoint. Distance-based time series clustering
often requires computing these fold changes so that genes
are grouped based on their temporal patterns instead of
their average expression level, but this effectively drops
one of the timepoints because the variation at the initial
timepoint is ignored.
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Conclusions
LPWC is designed to capture temporal structure when
clustering biological datasets, capable of modeling
irregularly-sampled timepoints and detecting delayed
responses. It uses lags to align temporal gene expression
profiles and weighted correlation to account for irregu-
lar sampling. The similarity scores of lagged genes are
penalized in order to prefer synchronized temporal pat-
terns and correlations that are computed using a greater
fraction of the timepoints. The choice of lags is important
because the observations at the beginning and end of the
time series are dropped when comparing aligned lagged
genes. Therefore, the default parameters are conservative
in terms of how many lags are allowed, which is why only
a small fraction of phosphopeptides or genes are lagged
in our case studies.
Currently, LPWC only accepts a single dataset with one

common set of timepoints. In high-throughput biological
assays like mass spectrometry and RNA-seq, the time-
points sampled are homogeneous because all proteins or
genes are measured with a single experiment at each time-
point. One future direction would be to support clustering
multiple related biological datasets with different time-
points. There are also opportunities to better approximate
the NP-complete Lag Optimization problem (“Optimal
lag optimization” section) and estimate the default value
of C, which controls how many lags are introduced.

Methods
Lag PenalizedWeighted Correlation
The LPWC algorithm is composed of three steps: choos-
ing lags for each gene, computing the similarity matrix
for all gene pairs, and running standard hierarchical clus-
tering. The best lags are selected by maximizing the
sum of the similarities for each gene with respect to all
other genes. The maximum possible gene-gene similarity
decreases as the lag in the aligned timepoints increases
because we prefer to recover temporal behaviors that are
synchronized or close in time. In addition, we have less
confidence in the similarity of the temporal shapes when
they are computed with shorter temporal subsequences.
The final correlation-based similarity is computed once
the lags for all genes are fixed.
LPWC considers a specific type of local alignment

between two time series when assessing the best lag for
each gene. The prefix of the time series with the larger lag
is aligned with the suffix of the time series with the smaller
lag (Fig. 7). The timepoints that belong to the aligned pre-
fix and suffix follow a one-to-one mapping such that the
kth timepoint of the prefix of one time series is paired with
the kth timepoint of the suffix of the other time series.
The other timepoints are truncated and are not included
in the alignment. This alignment strategy differs from
the global alignment identified by approaches like DTW.

DTW computes a many-to-many mapping between two
time series that aligns each timepoint with a timepoint or
a linear interpolation in the other time series [9]. There-
fore, DTW supports not only time shifts but also time
stretches.
LPWC’s correlation-based similarity function for each

gene pair i, j is

corrLPWC
(
i, j,Xi,Xj

) = exp
(−w̄

C

)
∗ corrw

(
LXiYi, LXjYj , exp

(−w
C

))

where L is a lag operator, Xi is the lag for gene i, Yi is the
temporal expression levels of gene i, C is a parameter that
controls the lag penalty, w is a weight vector, and corrw is
a weighted correlation function. The lag Xi is an integer-
valued variable that represents the number of indices a
temporal profile is shifted forward or backward in time,
where positive values represent forward shifts (Fig. 7). The
lag operator L can be applied to a vector of temporal gene
expression levels (Yi) or a vector of timepoints, which we
denote as Ti for gene i. L reduces the effective length of
the lagged vector, introducing NA placeholder values. For
example, if Ti =[ 0, 5, 15] and Yi =[ 0.2, 1.4, 4.5], then for
Xi = 1 we have L1Ti =[NA, 0, 5] and L1Yi =[NA, 0.2, 1.4].
For Xi = −1 we obtain L−1Ti =[ 5, 15,NA] and L−1Yi =
[ 1.4, 4.5,NA].
Given this lag operator, we can define the weight vector

w for weighted correlation.

w = (
LXiTi − LXjTj

)2

The vector subtraction is performed after dropping
indices where either vector is NA. Similarly, in the
weighted correlation, defined here generically for input
vectors x and y and weight vector z,

corrw (x, y, z) =
∑

i zi(xi − x̄)(yi − ȳ)
√∑

i zi(xi − x̄)2
∑

i zi(yi − ȳ)2

we drop indices that are NA in either x or y (Fig. 7).
The overall penalty for aligning timepoints is derived

from the mean weight w̄:

w̄ =
∑|w|

r=1 wr
|w|

where r is an index for the elements of the weight vec-
tor and |w| is the vector length. When Xi = 0 and Xj =
0, w is the zeros vector and w̄ = 0. This makes the
weights for corrw the ones vector. Thus, the special case
corrLPWC(i, j, 0, 0) is the standard (unweighted) Pearson
correlation of Yi and Yj.
Because choosing the optimal lags Xi for all genes is

NP-complete (see “Optimal lag optimization” section for
a sketch of the proof), we use a heuristic approach. For
each gene i, we store the score and respective lag with
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Fig. 7 An example of the effects of applying different lags to genes 1 and 2. The three panels show aligned expression vectors Y1 and Y2 and
aligned timepoint vectors T1 and T2. The lagged timepoint vector indices involving NA values are dropped from the tables. Top: with no lags, X1 = 0
and X2 = 0, the temporal profiles of genes 1 and 2 are not aligned so the gene pair will have a low LPWC similarity score. Middle: with lags X1 = −1
and X2 = 0, the patterns are aligned, and the LPWC similarity score will be high. Bottom: with X1 = −1 and X2 = 1, the temporal shapes are once
again not aligned, and the LPWC similarity score will be even lower than in the top row because the penalty for introducing lags is applied

respect to all other genes j. The parameter m is the maxi-
mum lag allowed. It is important to control the maximum
lag because lags reduce the number of data points used to
calculate the weighted correlation. We compute

scorej = max
Xi∈{−m,...,m} corrLPWC(i, j,Xi, 0) ∀j �= i

lagj = argmax
Xi∈{−m,...,m}

corrLPWC(i, j,Xi, 0) ∀j �= i

Then, a best lag X̂i for gene i assigned by

X̂i = argmax
k∈{−m,...,m}

∑

j �=i
I(lagj = k) ∗ scorej

where I is an indicator function. This is repeated to select
a best lag for all genes.

Upon obtaining the best lags X̂i for all genes, we com-
pute the similarity

corr
(
i, j

) = corrLPWC
(
i, j, X̂i, X̂j

)

= exp
(−w̄

C

)
∗ corrw

(
LX̂iYi, LX̂jYj, exp

(−w
C

))

The similarity measure corr(i, j) can be used directly by
a clustering algorithm that requires gene-gene similari-
ties as input. However, LPWCuses hierarchical clustering,
which requires a distance measure instead. We know that
−1 ≤ corr(i, j) ≤ 1. Thus, we transform the similarities
with dist(i, j) = 1 − corr(i, j) to obtain distances for hier-
archical clustering such that 0 ≤ dist(i, j) ≤ 2. We run
hierarchical clustering with complete linkage.
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Controlling the lag penalty
Because lags reduce the number of timepoints used for
the correlation calculation and biological time series data
are typically short already, there is a risk that two lagged
expression vectors will have a high correlation score by
chance. Lagged correlation clustering without modifica-
tion does not perform well [22]. Thus, a Gaussian kernel
exp

(−w̄
C

)
is used to scale and penalize the weighted cor-

relation based on the lags. The parameter C controls
the width of the Gaussian kernel function and the sever-
ity of the penalty. The appropriate C is subjective and
application-specific. Therefore, instead of choosing one
universal default penalty parameter C, LPWC implements
two data-dependent ways to set C: the high and low
penalty modes. The high penalty (hLPWC) penalizes lags
more, increasing the possibility of setting Xi = 0 com-
pared to the low penalty (lLPWC), which will set more
Xi �= 0. In addition to these two default options, the user
can also specifyC directly to introducemore or fewer lags.
The overall penalty that LPWC applies to the weighted

correlation corrw is exp
(−w̄

C

)
, which scales the correla-

tion by a factor between 0 and 1. For the high penalty, we
set the mean penalty over all valid positive lags to 0.5 and
solve for C

penalty(C) =

m∑

l=1
exp

(−w̄l

C

)

m
= 0.5

wherem is the maximum lag and w̄l is the mean of the ele-
ments in the weight vector wl = (LlTi − L0Ti)2 obtained
from comparing the timepoint vector Ti with a lagged
version of Ti.
For the low penalty, we compute the values of C for

which penalty(C) produces penalties between 0.5 and 0.95
with a step size of 0.05. For each of those C, we run
LPWC and obtain the gene-gene similarity matrix. We
choose the C for which the gene-gene similarity matrix is
the most stable with respect to the similarity matrix from
the previous C. Stability is computed by subtracting the
two gene-gene similarity matrices, squaring the elements,
and summing them. The lowest sum squared difference
is preferred. Because it sweeps over multiple values of C,
lLPWC is slower than hLPWC.

Optimal lag optimization
“Lag Penalized Weighted Correlation” section describes
a heuristic approach for selecting the best lag X̂i for
each gene. We now formally define the Lag Optimiza-
tion problem that the heuristic approximates and sketch
a proof that the decision version of Lag Optimization is
NP-complete. We define Lag Optimization as:

argmax
Xk
i ,X

k,l
i,j

N∑

i=2

i−1∑

j=1

∑

k∈M

∑

l∈M
Xk,l
i,j ∗ sk,li,j

subject to
∑

k∈M
Xk
i = 1 ∀ i ∈ {1, ...,N}

∑

k∈M

∑

l∈M
Xk,l
i,j = 1 ∀ i ∈ {2, ...,N}, j ∈ {1, ..., i − 1}

Xk,l
i,j ≤ Xk

i ∀ i ∈ {2, ...,N}, j ∈ {1, ..., i − 1}, k ∈ M, l ∈ M

Xk,l
i,j ≤ Xl

j ∀ i ∈ {2, ...,N}, j ∈ {1, ..., i − 1}, k ∈ M, l ∈ M

Xk
i ∈ {0, 1} ∀ i ∈ {1, ...,N}, k ∈ M

Xk,l
i,j ∈ {0, 1} ∀ i ∈ {2, ...,N}, j ∈ {1, ..., i − 1}, k ∈ M, l ∈ M

where N is the number of genes and M is the set of valid
lags. We set M = {−m, ...,m}, where m is the maximum
lag allowed. The Xk

i are binary variables that form a one
hot encoding of the integer-valued lag variables Xi from
“Lag Penalized Weighted Correlation” section. Xk

i = 1 if
Xi = k, andXk

i = 0 ifXi �= k . TheXk,l
i,j are binary variables

that are equal to 1 if and only if the lag of gene i is k and the
lag of gene j is l. That is,Xk,l

i,j = 1 ifXk
i = 1 andXl

j = 1, and
Xk,l
i,j = 0 otherwise. The Xk,l

i,j variables are defined only for
gene pairs i and j where i > j. sk,li,j is a precomputed simi-
larity score for genes i and j with lags k and l, respectively.
Here, sk,li,j = corrLPWC(i, j, k, l), the LPWC similarity score.
To outline the proof that the decision version of Lag

Optimization is NP-complete, we show that a solution can
be verified in polynomial time and that the NP-complete
Weighted Maximum Cut problem [38, 39] can be reduced
to Lag Optimization in polynomial time. A solution to Lag
Optimization consists of an assignment to all binary Xk

i
and Xk,l

i,j variables. The decision version of this problem
considers whether this solution satisfies the constraints
above and whether the objective function is greater than
or equal to some value c. Given an assignment to the Xk

i
and Xk,l

i,j variables, we can ensure that only one Xk
i = 1 for

each i in O(|M| ∗ N) time and that Xk,l
i,j = 1 if and only if

the corresponding Xk
i = 1 and Xl

j = 1 in O(|M|2 ∗ N2)
time. Finally, we can compute the objective function value
and assess whether it is ≥ c in O(|M|2 ∗ N2) time.
Next, we show that Weighted Maximum Cut reduces to

Lag Optimization in polynomial time. In Weighted Max-
imum Cut [38, 39], we are given a weighted graph G =
(V ,E) with nonnegative weights si,j for all ei,j ∈ E. The
objective is to assign the vertices into sets V1 and V2.
Edges with one vertex in V1 and the other in V2 are cut
edges. The decision version of Weighted Maximum Cut
assesses whether the sum of the weights si,j for the cut
edges is at least c.
To reduce Weighted Maximum Cut to Lag Optimiza-

tion, first define the set of possible lags M = {1, 2}. Then
create variables X1

i and X2
i for each vertex vi ∈ V . X1

i = 1



Chandereng and Gitter BMC Bioinformatics           (2020) 21:21 Page 12 of 15

corresponds to placing vi in vertex set V1, likewise for X2
i

and V2. Create X1,1
i,j , X

1,2
i,j , X

2,1
i,j , and X2,2

i,j variables for all
i > j. Set s1,2i,j and s2,1i,j to the edge weight si,j for all i > j.
Set s1,1i,j and s2,2i,j to 0 for all i > j. When Xk

i �= Xk
j in a

Lag Optimization solution, the pair contributes a weight
of si,j to the objective function. Otherwise, the pair con-
tributes a weight of 0. Because Xk

i �= Xk
j if and only if

the corresponding edge is cut, these pairs are the only
pairs that contribute a weight of si,j to theWeightedMaxi-
mum Cut objective function. Thus, the objective function
value of the constructed Lag Optimization instance equals
that of the original Weighted Maximum Cut instance,
and the Lag Optimization and Weighted Maximum Cut
decisions are identical. In addition, the transformation
from the Weighted Maximum Cut instance to the Lag
Optimization instance requires O(|M|2 ∗ N2) time.

Simulated time series
To test LPWC, we simulated time series gene expres-
sion data using an impulse model called ImpulseDE [21].
Impulses are one common type of temporal pattern in
gene expression data [1]. An impulse can be represented
as a parameterized curve in which each gene has an initial
expression level, increases or decreases in response to a
stimulus, and then rises or falls to a new steady state level.
The impulse model parameters control each expression
level, the timing of the expression increases and decreases,
and the curvature of the expression changes (Table 1 and
Additional file 1: Table S15).
We used the ImpulseDE parameters to define four

canonical gene expression patterns (models) and sim-
ulated 50 genes from each pattern by adding random
variation to the model parameters. We ran the simulation
in a low variance (Table 1) and high variance (Additional
file 1: Table S15) setting to assess how the clusteringmeth-
ods perform as the simulated genes deviate more from the
canonical patterns. In the low variance setting, the simu-
lated genes resemble the reference patterns more closely
so the clustering problem is easier (Fig. 2). However, in
the high variance scenario, the simulated genes are more

distorted (Additional file 1: Figure S1), making it harder to
recover the correct cluster assignments.
To simulate a gene from a canonical pattern, we

randomly sampled an additive offset for each of the
six ImpulseDE model parameters using the parameter-
specific Uniform distributions in Table 1 and Additional
file 1: Table S15. These randomly adjust the expression
levels, timing, and curvature. Then, we sampled an addi-
tional expression level offset from Uniform(0, 20) and
added this to the previously sampled values of h0, h1,
and h2. This randomly shifts the entire simulated time
course along the y-axis. Given the sampled parameters,
we generated expression levels using the impulse model
at 10 timepoints: 0, 2, 4, 6, 8, 18, 24, 32, 48, and 72 min.
Finally, we added Gaussian-distributed noise to the sim-
ulated expression level at each timepoint, sampling from
N(0, 0.5) in the low variance setting and N(0, 1) in the
high variance setting. We repeated the overall simulation
procedure 100 times for both the low and high variance
settings to assess the clustering performance over many
simulated datasets.
In addition, we used ImpulseDE to study clustering with

regular or irregular timepoints and two simple canoni-
cal patterns: an early spike and a late spike. The early
spike and late spike patterns each had 50 genes, which
we divided so that 25 genes spiked slightly later than the
other 25 (Additional file 1: Table S16). We selected time-
points to include one timepoint in the middle of the spike
and the rest before or after the spike. The regular time
series sampled 13 timepoints from 0 to 72 min every 6
min (Additional file 1: Figure S4). The irregular time series
sampled 9 timepoints at 0, 3, 7, 12, 22, 34, 46, 59, and 75
min (Additional file 1: Figure S5).
We simulated genes from these two canonical patterns

using the ImpulseDE parameters in Additional file 1: Table
S16 as described above. We included an additional offset
from Uniform(0, 10) to the previously sampled values of
h0, h1, and h2 and added Gaussian noise sampled from
N(0, 0.5). However, unlike the previous simulations, we
added the same offset sampled from Uniform(0, 1) to t1
and t2 instead of having two independent offsets. This

Table 1 ImpulseDE parameters for the four models in the low variance setting

Parameters Model 1 Model 2 Model 3 Model 4 Parameter variation

β1 0.8 1.2 1.5 1.2 Uniform(0, 0.5)

h0 7 13 17 4 Uniform(-3, 3)

h1 20 6 10 12 Uniform(-3, 3)

h2 14 20 4 20 Uniform(-3, 3)

t1 5 8 20 6 Uniform(0, 3)

t2 40 23 40 44 Uniform(0, 3)

β1 controls the curvature in the model, h0, h1, h2 control the three different expression state levels, and t1 and t2 control the time of expression increase and decrease
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ensures that the duration of the spike is the same for all
simulated genes. We again ran the simulation and cluster-
ing process 100 times for both the regular and irregular
timepoints.

Cluster evaluation
Cluster evaluation is difficult because the true clusters
are not known for real data. The Rand index compares
two clustering results [40]. However, to control for ran-
domness and compare clustering scores from clusters of
different sizes, the ARI is a more suitable metric [40]. The
ARI is 1 for a perfect clustering that matches the true clus-
ter labels. On the other hand, a score close to 0 indicates a
poor clustering. We use the ARI to evaluate clusters of the
simulated data where the true cluster labels are known.
One way to evaluate time series clustering algorithms

without ground truth labels is by assessing how impor-
tant the temporal information is to the clustering results.
We obtain clusters using the original data and then per-
mute the data by randomly reordering the timepoints
(the gene expression observations do not change). The
permutations destroy the true temporal dependencies in
the data. If a clustering algorithm does not use the tempo-
ral information, the ARI score when comparing its clusters
on the original and permuted data will be close to 1,
which is undesirable. In the yeast and axolotl case studies,
we repeat the timepoint permutation 100 times for each
clustering algorithm and assess the distribution of ARI
scores.
Another challenge is choosing the number of clusters,

which can be addressed with the silhouette method [41].
This method assesses whether the clusters are cohesive
and distinct from one another. We select the number of
clusters that maximizes the average silhouette width.

Case studies
We applied LPWC in two case studies to demonstrate how
it can be used to obtain coherent temporal clusters and
derive biological insights into dynamic transcriptional and
signaling processes. The first captures the rapid phospho-
rylation response to osmotic stress in yeast [32]. Kanshin
et al. obtained mass spectrometry-based phosphoryla-
tion samples in NaCl-induced osmotic stress and control
conditions, uniformly sampling 0 to 60 seconds post-
stimulation every 5 seconds for a total of 13 timepoints.
They transformed these into log2 stress versus control fold
changes at each timepoint. We clustered the 344 singly
phosphorylated phosphopeptides that were reported to
have significant dynamic changes and were not missing
values at any timepoints.
The second dataset contains time course RNA-seq data

from the axolotl blastema after amputating the right
forelimb [33]. Stewart et al. studied the transcriptional
changes that take place during the transitions fromwound

healing to dedifferentiation to limb regeneration. They
sampled gene expression at 12 timepoints: 0, 3, 6, and
12 hr and 1, 3, 5, 7, 10, 14, 21, and 28 days post-
amputation. Unlike the osmotic stress application, there is
drastic irregularity between consecutive sampling times.
We converted all times to days. Because the axolotl
genome had not been sequenced at the time, Stewart et
al. mapped axolotl contigs to human transcripts. They
processed the data using edgeR [42], comparing each
timepoint to the 0 day measurement to obtain the up-
and down-regulated genes. A total of 1656 genes were
up- or down-regulated at least at one timepoint compared
to 0 day. We ran LPWC on their mapped human gene
expression data.

Gene enrichment analysis
We performed gene enrichment analysis of the LPWC
cluster members in DAVID 6.8 [43, 44] (Additional file 1:
Section 3.2). For the yeast and axolotl case studies, we
report GOTERM_BP_FAT [45] and KEGG_PATHWAY
[46] terms that are enriched using DAVID parameters
Counts = 2 and Ease = 0.05. The terms were further
filtered for false discovery rate ≤5%.

Availability and requirements
Project name: Lag Penalized Weighted Correlation
Project home page: https://gitter-lab.github.io/LPWC/
Operating system(s): Platform independent
Programming language: R (≥ version 3.0.2)
Other requirements: None
License:MIT
Any restrictions to use by non-academics: None

Supplementary information
Supplementary information accompanies this paper at
https://doi.org/10.1186/s12859-019-3324-1.

Additional file 1: Supplementary figures, tables, and methods.

Additional file 2: Cluster assignments and DAVID enrichment for yeast
lLPWC as tab-delimited text files. The cluster assignment files contain a
header row. The id is the phosphopeptide id from Kanshin et al. [32] and
Uniprot is the accession number.

Additional file 3: Cluster assignments and DAVID enrichment for yeast
hLPWC as tab-delimited text files. The cluster assignment files contain a
header row. The id is the phosphopeptide id from Kanshin et al. [32] and
Uniprot is the accession number. There are no enriched terms for cluster 3.

Additional file 4: Cluster assignments and DAVID enrichment for axolotl
hLPWC as tab-delimited text files. The cluster assignment files contain the
mapped human official gene symbols and do not have a header row.

Additional file 5: Cluster assignments and DAVID enrichment for axolotl
lLPWC as tab-delimited text files. The cluster assignment files contain the
mapped human official gene symbols and do not have a header row.

Abbreviations
ARI: Adjusted rand index; DTW: Dynamic time warping; GO: Gene ontology;
KEGG: Kyoto encyclopedia of genes and genomes; LPWC: Lag penalized
weighted correlation; STEM: Short time-series expression miner; STS: Short
time series

https://gitter-lab.github.io/LPWC/
https://doi.org/10.1186/s12859-019-3324-1


Chandereng and Gitter BMC Bioinformatics           (2020) 21:21 Page 14 of 15

Acknowledgements
We are grateful to Ron Stewart, James Dowell, Karl Broman, Wenzhi Cao, Jen
Birstler, John Steill, Ivan Leung, and all members of the Gitter lab for their
helpful feedback and discussions.

Authors’ contributions
TC and AG developed the methods, performed the analyses, tested the
software, and wrote the manuscript. TC implemented the LPWC R package.
Both authors read and approved the final manuscript.

Funding
This research was supported by NSF CAREER award DBI 1553206, the NIH
University of Wisconsin Carbone Cancer Center Support Grant P30 CA014520,
and the UW-Madison Center for High Throughput Computing in the
Department of Computer Sciences. The funders had no role in study design,
data collection and analysis, decision to publish, or preparation of the
manuscript.

Availability of data andmaterials
LPWC is implemented in R and released as open source software under the
MIT license. The LPWC package is available at https://github.com/gitter-lab/
LPWC and CRAN (https://cran.r-project.org/package=LPWC). Our GitHub
repository https://github.com/gitter-lab/LPWC-examples contains LPWC
examples that can be launched interactively and executed with Binder [47].
The yeast osmotic stress response dataset is available from [32], and the
axolotl blastema dataset is available from [33].

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1Department of Biostatistics and Medical Informatics, University of
Wisconsin-Madison, Madison, WI, USA. 2Morgridge Institute of Research,
Madison, WI, USA. 3Department of Statistics, University of Wisconsin-Madison,
Madison, WI, USA.

Received: 16 March 2019 Accepted: 16 December 2019

References
1. Bar-Joseph Z, Gitter A, Simon I. Studying and modelling dynamic

biological processes using time-series gene expression data. Nat Rev
Genet. 2012;13(8):552–64. https://doi.org/10.1038/nrg3244.

2. Spies D, Ciaudo C. Dynamics in Transcriptomics: Advancements in
RNA-seq Time Course and Downstream Analysis. Comput Struct
Biotechnol J. 2015;13:469–77. https://doi.org/10.1016/j.csbj.2015.08.004.

3. Liang Y, Kelemen A. Dynamic modeling and network approaches for
omics time course data: overview of computational approaches and
applications. Brief Bioinform. 2017. https://doi.org/10.1093/bib/bbx036.

4. Gibbons FD, Roth FP. Judging the quality of gene expression-based
clustering methods using gene annotation. Genome Res. 2002;12(10):
1574–81. https://doi.org/10.1101/gr.397002.

5. Jaskowiak PA, Campello RJ, Costa IG. On the selection of appropriate
distances for gene expression data clustering. BMC Bioinformatics.
2014;15(Suppl 2):2.

6. Kleyman M, Sefer E, Nicola T, Espinoza C, Chhabra D, Hagood JS,
Kaminski N, Ambalavanan N, Bar-Joseph Z. Selecting the most
appropriate time points to profile in high-throughput studies. eLife.
2017;6:18541. https://doi.org/10.7554/eLife.18541.

7. McDowell IC, Manandhar D, Vockley CM, Schmid AK, Reddy TE,
Engelhardt BE. Clustering gene expression time series data using an
infinite Gaussian process mixture model. PLoS Comput Biol. 2018;14(1):
1005896.

8. Giorgino T. Computing and visualizing dynamic time warping alignments
in R: the dtw package. J Stat Softw. 2009;31(7):1–24.

9. Aach J, Church GM. Aligning gene expression time series with time
warping algorithms. Bioinformatics. 2001;17(6):495–508.

10. Specht AT, Li J. LEAP: constructing gene co-expression networks for
single-cell rna-sequencing data using pseudotime ordering.
Bioinformatics. 2017;33(5):764–6.

11. Alonso AM, Peña D. Clustering time series by linear dependency. Stat
Comput. 2019;29(4):655–76.

12. Möller-Levet CS, Klawonn F, Cho K-H, Wolkenhauer O. Fuzzy Clustering
of Short Time-Series and Unevenly Distributed Sampling Points. In:
Advances in Intelligent Data Analysis V, Lecture Notes in Computer
Science. Springer; 2003. p. 330–40. https://doi.org/10.1007/978-3-540-
45231-7_31.

13. Bacher R, Leng N, Chu L-F, Ni Z, Thomson JA, Kendziorski C, Stewart R.
Trendy: segmented regression analysis of expression dynamics in
high-throughput ordered profiling experiments. BMC Bioinformatics.
2018;19(1):380.

14. Montero P, Vilar JA, et al. TSclust: An R package for time series clustering.
J Stat Softw. 2014;62(1):1–43.

15. Vilar JA, Alonso AM, Vilar JM. Non-linear time series clustering based on
non-parametric forecast densities. Comput Stat Data Anal. 2010;54(11):
2850–65.

16. Magni P, Ferrazzi F, Sacchi L, Bellazzi R. TimeClust: a clustering tool for
gene expression time series. Bioinformatics. 2007;24(3):430–2.

17. Ferrazzi F, Magni P, Bellazzi R. Random walk models for Bayesian
clustering of gene expression profiles. Appl Bioinforma. 2005;4(4):263–76.

18. Sacchi L, Bellazzi R, Larizza C, Magni P, Curk T, Petrovic U, Zupan B.
TA-clustering: Cluster analysis of gene expression profiles through
temporal abstractions. Int J Med Inform. 2005;74(7-8):505–17.

19. Ernst J, Bar-Joseph Z. STEM: a tool for the analysis of short time series
gene expression data. BMC Bioinformatics. 2006;7:191. https://doi.org/10.
1186/1471-2105-7-191.

20. Sivriver J, Habib N, Friedman N. An integrative clustering and modeling
algorithm for dynamical gene expression data. Bioinformatics.
2011;27(13):392–400. https://doi.org/10.1093/bioinformatics/btr250.

21. Sander J, Schultze JL, Yosef N. ImpulseDE: detection of differentially
expressed genes in time series data using impulse models. Bioinformatics
(Oxford, England). 2017;33(5):757–9. https://doi.org/10.1093/
bioinformatics/btw665.

22. Straube J, Huang BE, Lê Cao K-A. DynOmics to identify delays and
co-expression patterns across time course experiments. Sci Rep. 2017;7:
40131.

23. Costa IG, Schönhuth A, Schliep A. The Graphical Query Language: a tool
for analysis of gene expression time-courses. Bioinformatics (Oxford,
England). 2005;21(10):2544–5. https://doi.org/10.1093/bioinformatics/
bti311.

24. Bar-Joseph Z, Gerber GK, Gifford DK, Jaakkola TS, Simon I. Continuous
representations of time-series gene expression data. J Comput Biol.
2003;10(3-4):341–56.

25. Wang C, Xu Y, Wang X, Zhang L, Wei S, Ye Q, Zhu Y, Yin H, Nainwal M,
Tanon-Reyes L, Cheng F, Yin T, Ye N. GEsture: an online hand-drawing
tool for gene expression pattern search. PeerJ. 2018;6:4927. https://doi.
org/10.7717/peerj.4927.

26. Kordestani M, Alkhateeb A, Rezaeian I, Rueda L, Saif M. A new clustering
method using wavelet based probability density functions for identifying
patterns in time-series data. In: 2016 IEEE EMBS International Student
Conference (ISC); 2016. p. 1–4. https://doi.org/10.1109/EMBSISC.2016.
7508616.

27. Ramoni MF, Sebastiani P, Kohane IS. Cluster analysis of gene expression
dynamics. Proc Natl Acad Sci. 2002;99(14):9121–6.

28. Cooke EJ, Savage RS, Kirk PD, Darkins R, Wild DL. Bayesian hierarchical
clustering for microarray time series data with replicates and outlier
measurements. BMC Bioinformatics. 2011;12(1):399.

29. Medvedovic M, Sivaganesan S. Bayesian infinite mixture model based
clustering of gene expression profiles. Bioinformatics. 2002;18(9):
1194–206.

30. Hennig C, Meila M, Murtagh F, Rocci R. Handbook of Cluster Analysis.
Florida: CRC Press; 2015.

31. Dahl DB. In: Do K-A, Vannucci M, Müller P, editors. Model-Based
Clustering for Expression Data via a Dirichlet Process Mixture Model.
Bayesian Inference for Gene Expression and Proteomics: Cambridge

https://github.com/gitter-lab/LPWC
https://github.com/gitter-lab/LPWC
https://cran.r-project.org/package=LPWC
https://github.com/gitter-lab/LPWC-examples
https://doi.org/10.1038/nrg3244
https://doi.org/10.1016/j.csbj.2015.08.004
https://doi.org/10.1093/bib/bbx036
https://doi.org/10.1101/gr.397002
https://doi.org/10.7554/eLife.18541
https://doi.org/10.1007/978-3-540-45231-7_31
https://doi.org/10.1007/978-3-540-45231-7_31
https://doi.org/10.1186/1471-2105-7-191
https://doi.org/10.1186/1471-2105-7-191
https://doi.org/10.1093/bioinformatics/btr250
https://doi.org/10.1093/bioinformatics/btw665
https://doi.org/10.1093/bioinformatics/btw665
https://doi.org/10.1093/bioinformatics/bti311
https://doi.org/10.1093/bioinformatics/bti311
https://doi.org/10.7717/peerj.4927
https://doi.org/10.7717/peerj.4927
https://doi.org/10.1109/EMBSISC.2016.7508616
https://doi.org/10.1109/EMBSISC.2016.7508616


Chandereng and Gitter BMC Bioinformatics           (2020) 21:21 Page 15 of 15

University Press; 2006, pp. 201–18. http://doi.org/10.1017/
CBO9780511584589.011.

32. Kanshin E, Bergeron-Sandoval L-P, Isik SS, Thibault P, Michnick SW. A
Cell-Signaling Network Temporally Resolves Specific versus Promiscuous
Phosphorylation. Cell Rep. 2015;10(7):1202–14. https://doi.org/10.1016/j.
celrep.2015.01.052.

33. Stewart R, Rascón CA, Tian S, Nie J, Barry C, Chu L-F, Ardalani H,
Wagner RJ, Probasco MD, Bolin JM, Leng N, Sengupta S, Volkmer M,
Habermann B, Tanaka EM, Thomson JA, Dewey CN. Comparative
RNA-seq Analysis in the Unsequenced Axolotl: The Oncogene Burst
Highlights Early Gene Expression in the Blastema. PLOS Comput Biol.
2013;9(3):1002936. https://doi.org/10.1371/journal.pcbi.1002936.

34. Äijö T, Butty V, Chen Z, Salo V, Tripathi S, Burge CB, Lahesmaa R,
Lähdesmäki H. Methods for time series analysis of RNA-seq data with
application to human Th17 cell differentiation. Bioinformatics.
2014;30(12):113–20. https://doi.org/10.1093/bioinformatics/btu274.

35. D’haeseleer P, Wen X, Fuhrman S, Somogyi R. Linear modeling of mRNA
expression levels during CNS development and injury. In:
Biocomputing’99. New Jersey: World Scientific; 1999. p. 41–52.

36. Bar-Joseph Z, Gerber G, Gifford DK, Jaakkola TS, Simon I. A new
approach to analyzing gene expression time series data. In: Proceedings
of the Sixth Annual International Conference on Computational Biology.
New York: ACM; 2002. p. 39–48.

37. Hensman J, Lawrence ND, Rattray M. Hierarchical Bayesian modelling of
gene expression time series across irregularly sampled replicates and
clusters. BMC Bioinformatics. 2013;14(1):1–12.

38. Crescenzi P, Silvestri R, Trevisan L. To weight or not to weight: where is
the question? In: Proceedings of the 4th IEEE Israel Symposium on Theory
of Computing And Systems, volume 96. California: IEEE Computer
Society; 1996. p. 68–77.

39. Kann V. Maximum Cut. 2000. http://www.nada.kth.se/~viggo/
wwwcompendium/node85.html. Accessed 26 Mar 2018.

40. Rand WM. Objective Criteria for the Evaluation of Clustering Methods. J
Am Stat Assoc. 1971;66(336):846–50. https://doi.org/10.2307/2284239.

41. Rousseeuw PJ. Silhouettes: A graphical aid to the interpretation and
validation of cluster analysis. J Comput Appl Math. 1987;20(Supplement
C):53–65. https://doi.org/10.1016/0377-0427(87)90125-7.

42. Robinson MD, Smyth GK. Small-sample estimation of negative binomial
dispersion, with applications to SAGE data. Biostatistics. 2007;9(2):321–32.

43. Huang DW, Sherman BT, Lempicki RA. Bioinformatics enrichment tools:
paths toward the comprehensive functional analysis of large gene lists.
Nucleic Acids Res. 2008;37(1):1–13.

44. Huang DW, Sherman BT, Lempicki RA. Systematic and integrative
analysis of large gene lists using DAVID bioinformatics resources. Nat
Protoc. 2008;4(1):44.

45. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis
AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L,
Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM,
Sherlock G. Gene Ontology: tool for the unification of biology. Nat Genet.
2000;25(1):25–9.

46. Kanehisa M, Goto S. Kegg: Kyoto encyclopedia of genes and genomes.
Nucleic Acids Res. 2000;28(1):27–30.

47. Project Jupyter, Bussonnier M, Forde J, Freeman J, Granger B, Head T,
Holdgraf C, Kelley K, Nalvarte G, Osheroff A, Pacer M, Panda Y, Perez F,
Ragan-Kelley B, Willing C. Binder 2.0 - Reproducible, interactive, sharable
environments for science at scale; 2018. p. 113–20. https://doi.org/10.
25080/Majora-4af1f417-011.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

http://doi.org/10.1017/CBO9780511584589.011
http://doi.org/10.1017/CBO9780511584589.011
https://doi.org/10.1016/j.celrep.2015.01.052
https://doi.org/10.1016/j.celrep.2015.01.052
https://doi.org/10.1371/journal.pcbi.1002936
https://doi.org/10.1093/bioinformatics/btu274
http://www.nada.kth.se/~viggo/wwwcompendium/node85.html
http://www.nada.kth.se/~viggo/wwwcompendium/node85.html
https://doi.org/10.2307/2284239
https://doi.org/10.1016/0377-0427(87)90125-7
https://doi.org/10.25080/Majora-4af1f417-011
https://doi.org/10.25080/Majora-4af1f417-011

	Abstract
	Background
	Results
	Conclusions
	Keywords

	Background
	Results
	Lag Penalized Weighted Correlation overview
	Clustering simulated time series data
	Yeast osmotic stress response
	Axolotl blastema

	Discussion
	Conclusions
	Methods
	Lag Penalized Weighted Correlation
	Controlling the lag penalty
	Optimal lag optimization
	Simulated time series
	Cluster evaluation
	Case studies
	Gene enrichment analysis

	Availability and requirements
	Supplementary informationSupplementary information accompanies this paper at https://doi.org/10.1186/s12859-019-3324-1.
	Additional file 1
	Additional file 2
	Additional file 3
	Additional file 4
	Additional file 5

	Abbreviations
	Acknowledgements
	Authors' contributions
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Author details
	References
	Publisher's Note

