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Abstract

small numbers.

experiments and some clinical trial studies.

Background: De novo drug discovery is a time-consuming and expensive process. Nowadays, drug repositioning is
utilized as a common strategy to discover a new drug indication for existing drugs. This strategy is mostly used in
cases with a limited number of candidate pairs of drugs and diseases. In other words, they are not scalable to a large
number of drugs and diseases. Most of the in-silico methods mainly focus on linear approaches while non-linear
models are still scarce for new indication predictions. Therefore, applying non-linear computational approaches can
offer an opportunity to predict possible drug repositioning candidates.

Results: In this study, we present a non-linear method for drug repositioning. We extract four drug features and two
disease features to find the semantic relations between drugs and diseases. We utilize deep learning to extract an
efficient representation for each feature. These representations reduce the dimension and heterogeneity of biological
data. Then, we assess the performance of different combinations of drug features to introduce a pipeline for drug
repositioning. In the available database, there are different numbers of known drug-disease associations corresponding
to each combination of drug features. Our assessment shows that as the numbers of drug features increase, the
numbers of available drugs decrease. Thus, the proposed method with large numbers of drug features is as accurate as

Conclusion: Our pipeline predicts new indications for existing drugs systematically, in a more cost-effective way and
shorter timeline. We assess the pipeline to discover the potential drug-disease associations based on cross-validation

Keywords: Drug indication prediction, Drug repurposing, Deep neural network

Background

De novo drug discovery procedure is time-consuming
and expensive. More than 90% of drugs fail during
the development stages due to inefficacy or high tox-
icity [1, 2]. To overcome these challenges, researchers
are interested in finding a method to discover new
drug-disease associations based on known drugs. The
process of identifying new indications for existing
drugs is known as drug repositioning (repurposing)
[3=5]. In the last decade, several efforts have been
made to find an efficient computational solution for
drug repositioning [2, 6].
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In biological experimental drug repositioning methods,
it is hard to find new drug indications based on a large
number of existing drugs due to low knowledge of bio-
logical mechanisms [7]. These methods are utilizable in
most cases with the limited number of existing drugs
and diseases pairs. In other words, they are not scalable
to a large number of drugs and diseases. While compu-
tational approaches use the high-level integration of
available drug and disease data to discover new drugs
for human diseases [8]. By optimizing these strategies
into efficient drug repositioning pipeline, repurposed
drugs can be found systematically, in a much more cost-
effective way and shorter timeline.

According to [2, 7, 9] there are five common categor-
ies for computational drug repositioning approaches
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named signature-based, network-based, text mining, se-
mantic and machine learning algorithms.

One signature-based approach called ‘signature rever-
sion’ [10, 11] looks for inverse drug-disease relationships
by comparing disease-gene expression profiles and drug-
gene expression profiles using CMAP [12], LINCS [13],
and GEO [14] datasets. Another approach is defined based
on ‘guilt-by-association’ principle which is applied to iden-
tify new targets for already approved drugs using DvD
[15], DAVID [16] and GSEA repositories [10, 17, 18].

Zhang et al. [19] proposed a network-based approach
using a unified framework for integrating multiple as-
pects of drug similarity and disease similarity. In this
regards, they integrated genome (e.g., drug target pro-
tein, disease gene), phenome (e.g., disease phenotype,
drug side effect), and drug chemical structure to extract
the drug similarity network and the disease similarity
network. Finally, a drug-disease network was con-
structed to explore novel drug indications. Yang et al.
[20] utilized a causal inference-probabilistic matrix
factorization approach to infer drug-disease associa-
tions. They integrated systematic multilevel relations to
construct causal networks connecting drug—target—
pathway—gene—disease. Lee et al. [21] constructed a di-
rected network using protein interaction and gene
regulation data obtained from various public databases
providing diverse biological pathways for obtaining as-
sociations between drug and disease genes. They have
employed interaction on the binary protein-protein
interaction network with consideration to the charac-
teristics of the interactions.

Extracting novel and valuable biological entity rela-
tions from the literature is challenging. Text mining
techniques are widely used to solve it and identify con-
nections between biological concepts or biological en-
tities [22].

Semantic-based approach has been applied to drug reposi-
tioning in three main steps as follows: extracting and inte-
grating public resources, constructing a semantic network
by integrating multisource data and mining semantic links
[7]. Mullen et al. [23] used a Bayesian statistics approach to
rank drug-disease relationships according to prior know-
ledge. Then, they integrated ranked relationships with other
biological entity associations to construct a semantical drug
discovery network. To infer drug-disease relationships, the
author applied an algorithm for detecting semantic sub-
graphs. Furthermore, Zhu et al. [24] proposed an automatic
reasoning approach for heterogeneous semantics networks.
Biological entities (such as drugs) are converted to labels in
a semantic network. Then, disease-drug relationships are
obtained from automatic reasoning techniques.

Predicting novel associations between drugs and dis-
eases using the assorted data resources manually may
not be efficient. Therefore, several machine learning
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methods have been proposed to solve this problem by
extracting various features. Napolitano et al. [25] used
drug-related features including drug chemical struc-
ture, drug molecular targets, and drug-induced gene
expression signatures. These features were used to
compute drug dissimilarity matrices merged into a
single dissimilarity matrix as a kernel for support vec-
tor machine classification. Wang et al. [26] introduced
an integrated model named ‘PreDR’ that trained an
SVM model by incorporating drug chemical structure,
side effect, and molecular activity.

In the first large-scale prediction of drug indications, Got-
tlieb et al. [5] utilized various disease-related and drug-
related features. They constructed disease-disease similarity
matrices by computing disease-disease similarity measures
based on disease-related features called genetic and pheno-
typic signatures [27]. Furthermore, they studied many drug-
related features like chemical structure, side effects, drug tar-
gets (sequence based), protein-protein interaction, and gene
ontology [28]. Then, drug-drug similarity matrices were
computed by the drug-drug similarity measures for each fea-
ture. Afterward, they trained a logistic regression classifier
using known drug-disease associations. Finally, this classifier
was used for new drug-disease association prediction [29].
Furthermore, Zhang et al. [30] proposed a similarity
constrained matrix factorization method based on the bio-
logical context of the drug-disease association prediction
(SCMFDD). In order to uncover latent features for drugs
and diseases, SCMFDD projects the drug-disease associa-
tions into two low-rank spaces. Moreover, drug feature-
based similarity and disease semantic similarity were intro-
duced as constraints for drugs and diseases in the low-rank
spaces. Xuan et al. [31] introduced a non-negative matrix
factorization model called DisDrugPred for integrating drug
similarity and disease similarity to predict drug—disease
associations.

Most of the in-silico methods such as SCMFDD [30]
and PREDICT [5] mainly focus on linear approaches
while non-linear approaches are still scarce for new indi-
cation predictions [32]. Therefore, applying non-linear
computational approaches can offer an opportunity to
predict the possible drug repositioning candidates. For
example, Donner et al. [33] trained a large data set of
cellular perturbations using deep embedding of gene ex-
pression profiles. In addition, Zhao et al. [4] applied vari-
ous state-of-the-art machine learning approaches for
prediction, including deep neural networks, support vec-
tor machines, elastic net, random forest and gradient
boosted machines for schizophrenia, depression and
anxiety disorders.

Furthermore, the amount of biomedical data in freely
available repositories is swiftly increasing. The nature of
this data is heterogeneous, high-dimensional and noisy
[34]. Consequently, designing an effective non-linear
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method like neural network for analyzing this data be-
comes more and more difficult [35, 36]. As a result,
there is an urgent need for a more efficient representa-
tion of this data for integrative analysis. According to
the key role of data representation, there is a large vol-
ume of studies describing the role of efficient represen-
tations for biological data [37]. We use some of these
efficient representations derived by non-linear methods
in order to reduce the dimension and heterogeneity of
our biological features for the downstream analysis.

In this study, we present a pipeline to assess efficient
representations of drug and disease features for drug in-
dication prediction. In this regards, we introduce two
similarity matrices to show the similarity between drug-
drug and disease-disease pairs. Afterward, we train a
classifier based on the similarity matrices to score each
drug-disease pair. To construct the similarity matrices
for the drug-drug and disease-disease pairs, we extract
some biological features including chemical structures,
protein sequences of drug target, drug-related enzyme
sequences, and gene expression profiles for drugs, and
also genotype and phenotype for diseases. To find an ap-
propriate and continuous representation for chemical
structures and sequences of proteins and enzymes, we
utilize deep neural networks designed by Gémez-Bom-
barelli et al. [38] and Asgari et al. [39], respectively. Also,
we design an auto-encoder to reduce the dimensionality
of the gene expression profiles for better representation.
We use principal component analysis (PCA) to reduce
the dimensions of disease features (phenotype and geno-
type) represented by one-hot-encoder.

This paper demonstrates that the appropriate repre-
sentation derived by deep learning leads to reasonable
performance in drug repurposing. To assess the effi-
ciency of feature representation, we employ and com-
pare each subset of drug features (SDF) for drug
repositioning. To make the drug-drug similarity matrix
for each SDF, we extract a list of drugs from database
where all features in the SDF are available. In other
words, a small size of SDF leads to the selection of a
large number of drugs and vice versa. These matrices
are named drug-drug similarity intersection (DDSI)
matrices. The results show that each SDF can find se-
mantic relations between drugs and disease. Therefore,
the proposed method is dependent on drug features rep-
resentation and the number of drugs. Also, we construct
the disease-disease similarity (DiDiS) matrix based on
phenotype and genotype. Finally, drug-disease associ-
ation (DDA) matrices are constructed based on DDSI,
DiDiS matrices and known drug-disease associations set
which are already clinically approved by regulatory agen-
cies such as the US Food and Drug Administration.

A cross-validation scheme is used to find the best sub-
set of drug features for drug repositioning. Our method
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achieves an area under the ROC curve 0.944. In
addition, we assess each subset of drug features to find
out: which drugs are effective for a specific disease and
which diseases are treatable by a particular drug. Mean-
while, we compare our pipeline to Yang & Agarwal [40]
and Lee [21] models on some specific diseases. In the
following, we apply five-fold cross-validation to compare
our method to PREDICT [5], SCMFDD [30] and Dis-
DrugPred [31]. Finally, we suggest some new drug indi-
cations. We believe that our study is a step toward
understanding the effect of drug feature representation
on drug repositioning and inferring how each subset of
drug features influences on drug indication for a specific
disease.

Methods

In this section, we follow the five steps (see Fig. 1) to
find new indications for existing drugs (drug
repositioning):

1. Representing four drug features using deep neural
network.

2. Transforming two disease features represented by
one-hot-encoder using PCA.

3. Using drug features to construct the drug-drug
similarity matrices.

4. Using disease features to construct the disease-
disease similarity matrices.

5. Using drug-drug similarity and disease-disease simi-
larity to construct drug-disease association
matrices.

Representing four drug features using deep neural
network

In this subsection, we extract four drug features, chem-
ical structures, protein sequences of drug targets, drug-
related enzyme sequences and gene expression profiles.
Also, the appropriate representation of features, derived
by deep neural networks, is introduced.

Chemical structures

Numerous studies have attempted to explain the import-
ance of chemical structures [8]. For instance, SMILES
simplifies the chemical structure and encodes molecular
graphs compactly as a human-readable string and de-
scribes molecules with an alphabet of characters as a for-
mal grammar [41]. We download the SMILES strings
from the DrugBank [42] and PubChem [43] database
during the 2017-2018 academic year.

We use the variational auto-encoder (VAE) [38] to con-
vert the discrete representation of molecules (SMILES
string) into a continuous 192-dimensional vector. The
SMILES string of drug i is pre-processed by the following
steps to make appropriate inputs for VAE model:
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Fig. 1 The pipeline of our steps in our approach
.

e A subset of 35 different characters is used for
SMILES-based text encoding.

e The strings are encoded up to a maximum length of
120 characters. Some spaces are added to shorter
strings in order for all strings to be the same length.

Finally, the pre-processed SMILES string of drug i is
given as an input to VAE model and vector s’; is gener-
ated as an appropriate representation named SMILES
vector. The “Keras” [44] and “Theano” packages [45] are
utilized to apply this neural net.

Protein sequences of drug target

Each drug addresses one or multiple drug targets,
which is a molecule associated with a particular dis-
ease process, to produce a desired therapeutic effect
[46]. Drug targets are mostly proteins with active sites
which can be ducked to the drugs. Each drug has one
or multiple target proteins, and each protein can be
the potential target of multiple drugs.

We retrieve drug target protein sequences from Drug-
Bank during the 2017-2018 academic year [42]. We
download the drug target section that includes proteins
and genes. In this database, there is a list of drugs for
each protein. Thus, we list the sequences of the target
proteins for each drug.

We apply a deep neural network model named Prot-
Vec [39] to convert the protein sequence into three

continuous 100-dimensional vectors. In other words,
each protein sequence is represented as three sequences
of 3-gram. In n-gram modelling of protein informatics,
usually, an overlapping window of 3 to 6 residues is
used. ProtVec [39], instead of taking overlapping win-
dows, generates three vectors of shifted non-overlapping
words. Each 3-gram is presented as a vector of size 100.

For each drug i, we perform the following steps to
generate a set of 300-dimensional vectors called P; to
represent the sequences of target proteins:

e The sequences of target proteins are listed as a set
named @, where |®,| shows the number of targeted
proteins by the drug i.

e Each protein sequence o € @, is given as an input

to ProtVec. Three 100-dimensional vectors named
o o (o2
1%, v’ and v3” are generated as outputs.

e For protein sequence o, the concatenation of these 3
. —_— e
vectors is computed as V7 = 11?.1,% .v37.
e Drug i is represented by the associated proteins of
set ©;as P; = {17]|oc®;}.

Drug-related enzyme sequences

Drug-related enzyme sequences include all the enzymes in-
volved in the activation and metabolism of a drug. We ex-
tract these sequence from DrugBank during the 2017-2018
academic year [42]. For each drug i, we execute the same
process explained in section "Protein sequences of drug
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target” for enzyme sequences to generate a continuous 300-
dimensional vectors based on drug-related enzymes called
E,.

Gene expression profiles

We obtain raw data of gene expression profiles (GEPs)
of CMAP dataset [12], and normalize them using R/Bio-
conductor “affy” package. These samples contain GEPs
of five cell lines, either untreated or treated with any of
1309 different drugs. Differential gene expression profile
(dGEP) of each cell line in presence vs. absence of a drug
is computed by subtracting log2-scaled GEPs after mer-
ging biological replicated samples via mean function. A
subset of 729 drugs are annotated and approved in Drug
Bank [42] and PubChem [43] databases.

We use a specific architecture of stacked auto-encoders
in a number of previous researches [47, 48]. It was shown,
this architecture can retrieve important biological features
of the data, such as gene co-expression patterns, pathways
and biological processes [47], and exploit them to reduce
the dimensionality of GEPs into a footprint sized vector
called cell identity code (CIC) that contains important fea-
tures of the data [48]. Importantly, CICs are resistant to
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noise and missing data [48] and can prevent overfitting by
reducing the number of parameters of a deep neural net-
work, when they are used as the input rather than the ori-
ginal GEPs.

For these reasons, we design a stacked auto-encoder of
five layers, after observing that increasing the number of
layers did not impact on decreasing the loss function. For
each layer, different options for the number of neurons
and the activation functions are listed, as potential values
for hyper-parameters. Then we use a Bayesian approach
for hyper-parameter optimization using “hyperopt” pack-
age [49]. Different options for activation function are rec-
tified linear unit (ReLU), Linear, SoftPlus, and ELU. The
optimal value for batch size is also selected through
hyper-parameter optimization. Different options for each
hyper-parameter are specified in Fig. 2. The learning rate
is 0.001. We use mean square error (MSE) as the regres-
sion loss-function. “nadam” algorithm is used for both
hyper-parameter optimization and final training.

We partition the data into training (60%), validation
(15%) and test (25%) datasets. The stacked auto-encoder
is trained and the appropriate weights and bias values
are found. The validation dataset is used for hyper-
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parameter optimization. The test dataset is utilized for
final evaluation of the model.

We perform 100 iterations of hyper-parameter
optimization. The final hyper-parameters that were se-
lected by the optimization process are highlighted in
Fig. 2. After performing 300 epochs iteration, the opti-
mal candidate network has the mean-squared error of
0.076.

Subsequently, the output of the bottleneck layer for
available differential expression profiles has been ex-
tracted with the mean-squared error of about 0.0047 as
loss and mean absolute error of around 0.0495. The out-
put of this auto-encoder is a 20-dimensional vector
representing dGEP (g_;.).

Transforming two disease features represented by one-
hot-encoder using PCA

In order to find disease-disease similarity, we employ
two sets of measures, namely the phenotypes (character-
istics of a disease) and genotypes (genes involved in a
disease). We download 10,881 human diseases with 8662
phenotypes and 7217 human diseases with 10,764 geno-
types from Monarch [50]. In their intersection, there are
5955 diseases with both phenotypes and genotypes. For
disease i, two one-hot-encoders, namely 8662-
dimensional and 10,764-dimensional vectors, are con-
structed for phenotype and genotype, respectively.

For disease i, a phenotype one-hot-encoder is a zero
vector with length 10,881. If a phenotype belongs to the
disease, then the corresponding component of the vector
is substituted 1. Also, we make genotype one-hot-
encoder similar to phenotype one-hot-encoder.

These two one-hot-encoders are too sparse, specific-
ally the one regarding genotype. To overcome this issue,

we generate two vectors called a; and E; for phenotype
and genotype using PCA, respectively. By test and trial,
we find out appropriate numbers of components for

PCA that identify the length of vectors a; and I with
30 and 20, respectively.

Using drug features to construct the drug-drug similarity
matrices
In this subsection, we generate a similarity matrix for
each drug feature. We assume that there are n drugs.
For each drug i, there are two vectors called s, g’ and
two sets named P, E; to show the representation of
chemical structures (s), gene expression profiles (g), pro-
tein sequences of drug target (p) and drug-related en-
zyme sequences (e), respectively.

We make a similarity matrix for each feature x € {s, g }
named A, the value of # shows the number of drugs,
as follows:
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M (i, j| = sim (%], %;),

where the feature x is available for drug i in the data-
base. The similarity between drugs i and j based on fea-
ture x is computed by sim function using Cosine
measures which is more compatible with our data [51].
In order to compute sim function, we use the “proxy”
package in R [52].

In addition, we make a similarity matrix ME = for
protein sequences of drug targets as follows:

1. P; and P; are made as it was mentioned in section
"Protein sequences of drug target".

If|7< | 5,

VF;EP’h RF" = Fq;ig] Slm( _i)v F;) Mp[iv J] = E‘ePiRﬁ: ‘
J

15> |51,

Vﬁ;e"@jv Rﬁ; = L)nai Sim( _i)v E;)vMP[iv J] = Z F'epiRﬁ; .
pisli

According to the set of drug-related enzyme se-
quences, the similarity matrix between drugs i and j,
M°[i, j], is constructed like the protein sequences of drug
targets.

In the following, drug-drug similarity intersection
(DDSI) matrix called £, is constructed on the subset
Ec{s,p,e,g. The number of drugs (n) shows that all
features of the set E is available in the database:

i ] = (ZM"[Z’, jl- min) /( max- min), izj

xeE
! , else
where
min = min Mx[ivj]—0.017
1<izj<n gy
and
_ o
max = 1!1"1?26” erM [17]] + 001

Using disease features to construct the disease-disease
similarity matrices
We assume that there are m diseases. For each disease i,

there are two vectors called a; and Z to show the rep-
resentation of phenotype (4) and genotype (d) respect-
ively. We display the length of these vectors below:

—

|ai| = 30, |d; | = 20.

We make a similarity matrix for each feature x € {a, d }

named M7, . as follows:
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M*[i, j) = sim (%, %}),

where sim function shows the similarity between dis-
eases i and j based on feature x using Cosine measure
[51]. In order to compute the sim function, we use the
“proxy” package in R [52]. Finally, the disease-disease
similarity (DiDiS) matrix called D,,, ,,, is constructed as
follows:

M”[i, j]- min max— min), izj
Dli.j| (x%:d} i, )/( ), i%j

! , else
where
min= min >, Mij-001,
xefad }
and
max = Mar, 2 ixefaa (M j] + 0.01.

Using drug-drug similarity and disease-disease similarity
to construct drug-disease association matrices

In this subsection, we define the drug-disease association
(DDA) matrix A% where E is a subset of drug features.
To do this, we apply DDSI matrix % , and DiDiS

matrix D,, . ,,, to generate Afxm as follows [29]:

IF[i, 7] x D[, /] (1)

AF[i, j] = Max (i’,/)e

iz, jzf
where each pair (i, j') is selected from the previously
known drug-disease associations set A.

To make the drug-disease association matrices (A%),
we assemble the known drug-disease associations (set A

) from repoDB [53] and Zhang et al. [30] Datasets.

Results

In this section, we find the best subset of drug features
for drug repositioning. Then our method is compared
with some computational methods.

Table 1 illustrates the details of the data set where the
first and second columns show each subset of drug fea-
tures and the number of drugs which these features are
available in the database, respectively. The third column
indicates the number of drug-disease associations where
the features are available in the database and the fourth
one identifies the number of unknown drug-disease as-
sociations corresponding to each combination of drug
features.
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Drug features assessment

A cross-validation scheme called leave-one-out is used
to find the best subset of drug features for drug repo-
sitioning. We predict the association of drug i and
disease j based on known associations (see eq. 1). In
other words, we hide the known association of drug i
and disease j, then use the other known associations
to score this pair.

We compute the area under the curve (AUC) for the
following test data to evaluate our method. The positive
and negative sets of the test data are defined based on
10% of predicted known and unknown drug-disease as-
sociation pairs obtained from the matrix A%, respect-
ively. This process is repeated for twenty times to make
the test set. The average AUC is shown in the fifth col-
umn of Table 1.

To show that the size of the negative set has a neg-
ligible effect on the AUC score, we make a test set
from all predicted known and unknown drug-disease
association pairs obtained from the matrix AZ_ . The
number of positive and negative data of these test
sets can be seen in the third and fourth columns of
Table 1. The AUC value is in the sixth column, and
close to the fifth one. The results show that all drug
features are profitable for drug indication prediction
(see Table 1). The table shows that {s}, {p}, {e}, &
s}, {s,p} and {e, p} subsets are more informative than
the other subsets of drug features; however, we can-
not ignore the positive impact of the number of asso-
ciations related to each subset.

For further discussion, we assess each subset of drug
features to find out which drugs are effective for a spe-
cific disease and which diseases are treatable by a par-
ticular drug.

We extract 585 diseases which are in the known drug-
disease associations (set .A) related to 146 drugs, includ-
ing all features. For each subset of drug features, the
AUC value of each disease is calculated, and then the
average of AUCs is shown in the second column in
Table 2. The second column of Table 2 shows {s}, {g, s},
and {s, p} subsets are appropriate to find which drugs are
effective for a specific disease. Chemical structure (
SMILES) feature is common among these subsets. This
is why so many pharmaceutical companies [8] have been
using this feature to find new indications.

The intersection of known drug-disease association
(set A) with the list of drugs, including all features is
137 drugs. AUC value of each drug is calculated for
each subset of drug features and then the average of
AUCs is shown in the third column of Table 2. The
third column shows {e}, {p} and {e, p} subsets are
proper to identify which diseases are treatable with a
specific drug.
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Table 1 The first and second columns show each subset of drug features and the number of drugs which these features are
available in the database, respectively. The third column indicates the number of drug-disease associations where the features are
available in the database and the fourth one identifies the number of unknown drug-disease associations

Subset £ No. of Drugs No. of drug associations (A) No. of unknown drug-disease association Avg. of AUC AUC

{s} 4240 13916 25,235,284 0.942 0.944
{g} 729 6175 4,335,020 0.894 0.888
{e} 671 10,950 3,984,855 0.927 0.926
{p} 6233 16,846 37,100,669 0.942 0.943
{g.s} 729 6175 4,335,020 0.936 0.933
{est 471 8398 2,796,407 0.870 0.871
{s,p} 3226 13,159 19,197,671 0.941 0941
{e,g} 155 4065 918,960 0.856 0.844
{g.p} 337 5928 2,000,907 0.857 0.864
{e.p} 600 10,305 3,562,695 0.909 0.906
{e,g,st 155 4065 918,960 0.849 0.848
{g.pst 337 5928 2,000,907 0.876 0.877
{apel 146 3944 865,486 0.834 0.844
{e.p,st 440 8162 2,612,038 0.868 0.870
{s.eq.p} 146 3944 865,486 0.840 0.846

Drug-related enzyme sequences (e) are informative, in-
cluding all the enzymes involved in the activation and
metabolism of a drug. Metabolism of drugs in the body
is a complex process where drugs are structurally modi-
fied to different molecules (metabolites) by various me-
tabolizing enzymes. Studies on drug metabolism are key
processes to safety profiles of drug candidates in drug
discovery and development [54]. Meanwhile, protein

sequences of drug target (p) are known as an essential
feature for drug repositioning due to similar binding
sites may bind to similar drugs as an assumption [55].

Comparison with some computational methods
We compare our pipeline with three different state-of-
the-art methods using five-fold cross-validation [5, 30, 31].

Table 2 The second and third columns show the average and standard deviation of AUCs on 585 diseases and 137 drugs for each

subset of drug features, respectively

Subset £ Avg F STDV of AUC on 585 disease Avg F STDVof AUC on 137 drugs
{s} 0.909 ¥ 0.08 0.802F0.14
{a} 0.724F0.18 0.837¥0.10
{e} 0495F0.19 0.921 F0.09
{p} 0620 F0.22 0.939 ¥ 0.05
{g.s} 0911 F0.08 0.790F0.15
{e,s} 0821 F0.11 0.795F0.15
{s,p} 0.896 F0.09 0.807 F0.14
{e,g} 0.644 F0.20 0.839F0.11
{a.p} 0.713F0.19 0.836F0.11
{e.p} 0.570F0.20 0.920  0.06
{e,g,s} 0.797 ¥0.14 0.792%0.15
{g.pst 0.833F0.12 0.798 ¥0.14
{a.pe} 0.687 F0.19 0.832F0.12
{epst 0.822F0.11 0.797F0.14
{seq.p} 0.798 ¥0.14 0.792F0.15
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To further analysis, we extract some specific diseases to
comparison with two network-based methods [21, 40].

Comparison with two network-based approaches on
some specific diseases

We compared our pipeline with two network-based ap-
proaches [21, 40]. We extract 21 common diseases of
Yang & Agarwal [40] and Lee [21] to evaluate our pipe-
line. We perform our pipeline based on appropriate sub-
sets of drug features ({s}, {g, s}, and {s, p}) to find which
drugs are effective for a specific disease (see section
"Drug features assessment"). The third to sixth columns
of Table 3 show the AUC values of Yang & Agarwal
and Lee approaches. The last three columns represent
the AUC values of each disease obtained by our pipeline.
The average AUCs of Yang & Agarwal network, Ran-
dom forest, N-Net and three different versions of our
pipeline are 0.66, 0.76, 0.68, 0.89 and 0.87, respectively
in Table 3.

Comparison with some state-of-the-art methods

A five-fold cross-validation scheme is used to evaluate the
accuracy of our pipeline based on the chemical structure
of a drug. The AUC value of our model is 0.935 and it is
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comparable with PREDICT (AUC =0.902) [5], SCMFDD
(AUC =0.920) [30] and DisDrugPred (AUC = 0.922) [31].
The prediction part of our method acts like PRE-
DICT. Here, we describe the differences between
PREDICT and our pipeline. First, we use deep neural
networks to reduce the dimensionality of data [56]
for extracting drug features and PCA for disease fea-
tures to find an efficient representation. Second, we
collect broader drug-disease associations set than
PREDICT. Finally, this pipeline is scalable, and we
observe the semantic relations between drugs and
diseases, even using only one of the drug features.

Discussion

In this section, we investigate clinical trial studies for sev-
eral predicted drug-disease pairs showing high probabil-
ities among our prediction [57]. In other words, to
evaluate our efficiency and performance, we assess our re-
sults to discover the potential drug- disease associations
with some clinical trial studies that have been published
before by database records [57]. The top repositioning
candidates from our pipeline analysis are listed in Table 4.

Conclusions
In this article, we presented a pipeline for drug reposi-
tioning based on a non-linear computational approach.

Table 3 Comparison three different versions of our pipeline with Yang & Agarwal [40] and Lee [21] on 21 diseases

MONDO Disease name Yang & Agarwal Lee (Random forest) Lee (N-Net) Ours {s} Ours {g, s} Ours {s, p}
0000190 ventricular fibrillation 0.74 0.85 0.78 0.81 0.82 0.79
0001627 dementia 062 0.89 0.79 0.83 0.89 081
0002049 thrombocytopenia 0.50 0.67 0.72 0.95 0.95 0.94
0002243 hemorrhagic disease 0.59 0.69 0.67 0.97 1.00 0.96
0003620 peripheral nervous system disease 0.91 0.64 0.69 0.92 0.93 091
0004975 alzheimer disease 0.68 0.62 0.61 0.86 0.89 0.84
0004976 amyotrophic lateral sclerosis 0.58 0.73 0.59 0.96 098 0.95
0004979 asthma 053 0.73 0.68 0.73 0.85 0.69
0004981 atrial fibrillation 0.50 0.80 0.79 0.87 092 0.85
0004985 bipolar disorder 0.69 0.84 0.82 0.87 0.90 0.86
0005015 diabetes mellitus 0.66 0.79 0.71 092 0.89 091
0005027 epilepsy 0.62 0.75 0.70 0.81 087 0.79
0005041 glaucoma 0.60 0.85 0.58 0.90 093 0.89
0005059 leukemia 0.69 0.79 0.55 097 097 097
0005062 lymphoma 0.72 0.85 0.55 0.97 0.94 097
0005068 myocardial infarction 0.64 0.70 0.68 092 091 091
0005180 parkinson disease 0.70 0.74 0.69 081 0.86 0.78
0005275 lung disease 0.70 0.78 0.68 0.94 0.90 0.93
0005578 arthritis 0.67 0.73 052 091 092 0.90
0008114 obsessive-compulsive disorder 0.95 0.79 0.76 0.97 0.95 097
0011122 obesity 0.64 0.72 0.66 0.67 044 0.71




Moridi et al. BMC Bioinformatics

(2019) 20:577

Page 10 of 11

Table 4 New drug-disease associations score obtained by our pipeline

Drug name Disease name MONDO Drug-Bank ID Score Reference

Asthma Budesonide 0004979 DB01222 0.962 https://ClinicalTrials.gov/show/NCT03034005
Addison Disease Dexamethasone 0009410 DB01234 0.938 https://ClinicalTrials.gov/show/NCT03210545
Lupus Nephritis Mycophenolate Mofetil 0005556 DB00688 0936 https://ClinicalTrials.gov/show/NCT03920059
Cancer Dexamethasone 0004992 DB01234 0.931 https://ClinicalTrials.gov/show/NCT02815319
Hypothyroidism Levothyroxine 0005420 DB00451 0913 https://ClinicalTrials.gov/show/NCT02577367
Paroxysmal Nocturnal sirolimus 0018641 DB00877 0.876 https://ClinicalTrials.gov/show/NCT03866681
Hemoglobinuria

Multiple Sclerosis Fingolimod 0005301 DB08868 0.843 https://ClinicalTrials.gov/show/NCT0223206 1
Peripheral Arterial Disease Ramipril 0005386 DB00178 0.843 https://ClinicalTrials.gov/show/NCT02842424
Chronic Hepatitis b Tenofovir Alafenamide 0005366 DB09299 0.827 https://ClinicalTrials.gov/show/NCT03753074
Kidney Disease Dexmedetomidine 0005240 DB00633 0.825 https://ClinicalTrials.gov/show/NCT02707809
Multiple Sclerosis Cladribine 0005301 DB00242 0.821 https://ClinicalTrials.gov/show/NCT03961204
Asthma N-acetylcysteine 0004979 DB06151 0.809 https://ClinicalTrials.gov/show/NCT03581084
Peutz-Jeghers Syndrome Rapamycin 0008280 DB00877 0.807 https://ClinicalTrials.gov/show/NCT03781050
Malaria primaquine 0005136 DB01087 0.799 https://ClinicalTrials.gov/show/NCT03916003
Alopecia Areata Tofacitinib 0005340 DB08895 0.777 https://ClinicalTrials.gov/show/NCT03800979
Multiple Sclerosis Fampridine 0005301 DB06637 0.766 https://ClinicalTrials.gov/show/NCT02849782

We consider four different drug features named the
chemical structure of drugs, protein sequences of drug
target, drug-related enzyme sequences, and gene expres-
sion profiles. In addition, two features, called phenotype
and genotype, are considered for diseases. Efficient rep-
resentation of data enables integrative analysis and re-
duces the dimension and heterogeneity of drug and
disease features. To find appropriate representation, we
use deep learning model to generate some continuous
vectors for drug and disease features. Based on these
vectors, we make a drug-disease similarity matrix to pre-
dict new drug indications. The result showed that our
method predicts new drug-disease associations systemat-
ically in a more cost-effective way and shorter timeline.

This pipeline can see the semantic relations between
drugs and diseases using only one drug feature, which
means every single one of drug features is informative.
This pipeline is scalable and acts as a viable strategy for
merely identifying and developing new therapeutic uses
for existing or abandoned pharmacotherapies.
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