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Random forest-based imputation
outperforms other methods for imputing
LC-MS metabolomics data: a comparative
study
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Abstract

Background: LC-MS technology makes it possible to measure the relative abundance of numerous molecular
features of a sample in single analysis. However, especially non-targeted metabolite profiling approaches generate
vast arrays of data that are prone to aberrations such as missing values. No matter the reason for the missing values
in the data, coherent and complete data matrix is always a pre-requisite for accurate and reliable statistical analysis.
Therefore, there is a need for proper imputation strategies that account for the missingness and reduce the bias in
the statistical analysis.

Results: Here we present our results after evaluating nine imputation methods in four different percentages of
missing values of different origin. The performance of each imputation method was analyzed by Normalized Root
Mean Squared Error (NRMSE). We demonstrated that random forest (RF) had the lowest NRMSE in the estimation of
missing values for Missing at Random (MAR) and Missing Completely at Random (MCAR). In case of absent values
due to Missing Not at Random (MNAR), the left truncated data was best imputed with minimum value imputation.
We also tested the different imputation methods for datasets containing missing data of various origin, and RF was
the most accurate method in all cases. The results were obtained by repeating the evaluation process 100 times
with the use of metabolomics datasets where the missing values were introduced to represent absent data of
different origin.

Conclusion: Type and rate of missingness affects the performance and suitability of imputation methods. RF-based
imputation method performs best in most of the tested scenarios, including combinations of different types and
rates of missingness. Therefore, we recommend using random forest-based imputation for imputing missing
metabolomics data, and especially in situations where the types of missingness are not known in advance.
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Background
Metabolomics studies involve investigation of small
molecules or molecular features, which are end results
of cellular metabolism in biological samples. The pri-
mary motivation behind the technology is to profile as
many molecular features as possible with the chosen
instrumental set-up and thereafter study e.g. alterations

in metabolism under different conditions. One of the
most commonly used technologies in metabolomics is
liquid chromatography combined to mass spectrometry
(LC-MS) which generates a vast amount of multivariate
data amenable for multiple biostatistical, bioinformatical
and any other computational data-analytical approaches
[1, 2].
A pre-requisite for reliable data-analysis in metabolo-

mics experiment is that the quality of the data is moni-
tored efficiently. One of the main drawbacks in LC-MS
metabolomics data is that it typically may contain a large
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proportion of missing values, even in the range of 30–
50% [3, 4]. The procedure of treating missing values is
called imputation, and it focuses on replacing the miss-
ing data with values using the information that is avail-
able from the existing data. So far, several methods have
been introduced for the imputation of metabolomics
data [3, 5–7].
The missingness of data is generally due to either true

absence of the compound in the measured sample, or
the molecular feature can be present in the sample at a
concentration below the detection limit of the mass
spectrometer. However, in many cases the missing data
value results from inappropriate transformation of the
measured MS signal to the numerical data format. The
raw data processing involves various steps including
peak detection, peak alignment, adduct/neutral loss detec-
tion, baseline correction and noise reduction. Therefore it
is one of the most challenging computational processes in
the metabolomics experiment and thus prone to errors
[8]. Thus, the related statistical analysis and the interpreta-
tion of metabolomics data will be biased, in case the miss-
ing values are not treated properly.
Given the magnitude of missing data and the ambigu-

ity that surrounds the statistical analysis of metabolo-
mics datasets, it is desirable first to investigate and then
consider the properties of missing data prior to applying
any imputation methods. Rubin and Little have estab-
lished the foundations of missing data theory [9, 10] and
according to them missing data can be classified into
three missing mechanisms based on the nature of the
absence of values from the data matrix: Missing Com-
pletely at Random (MCAR), Missing at Random (MAR)
and Missing Not at Random (MNAR). The first mechan-
ism, MCAR, describes the process that the missing
values cannot be attributed neither to the molecular fea-
tures that are present or to the molecular features that
are missing in the samples. This mechanism is charac-
terized by a randomness in the occurrence of missing
data, which could also be accounted as a zero correlation
between the missing and the observed part in the data.
In the MAR mechanism, we observe a systematic corre-
lation between the missing molecular features and the
observed data, but not with the missing data itself,
meaning that the probability of a molecular feature
being missing is determined by other observed molecu-
lar features. Lastly, MNAR is the most troublesome
mechanism, because it depends on the unobserved part
of the data, when missing values are neither MCAR nor
MAR. MNAR denotes the process that the value of the
molecular feature is causal for missingness and that is
why it is missing, and this type of missing data is usually
characterized in many metabolomics studies as left trun-
cated data (molecular features occur below the detection
limit) [11].

Furthermore, diagnosing what type of mechanisms of
missingness there are in a dataset is challenging, and
there is not yet a solid straightforward method to diag-
nose these mechanisms [12, 13]. Many studies have
compared imputation strategies such as different varia-
tions of K-nearest neighbors or used machine learning
techniques to replace missing values, and investigated
how they can alter the biological information within simu-
lated or real metabolomics datasets [2, 5, 6, 11, 14–18].
In order to obtain reliable metabolomics data, it is

necessary to find the most suitable method or approach
for treating the missing values of various origin. Hence,
we performed a detailed evaluation on the performance of
various imputation methods on sub-sets of data generated
from human plasma samples measured with LC-MS based
non-targeted metabolite profiling analysis. In this work,
missing data was simulated with the three main missing
mechanisms (MCAR, MAR, MNAR) and four additional
combined mechanisms (MCAR-MAR, MCAR-MNAR,
MAR-MNAR, MCAR-MAR-MNAR) which we created in
order to introduce a more realistic missing data structures.
The datasets containing missing values based on the above
seven different missing mechanisms were imputed with
nine commonly applied imputation methods in metabolo-
mics: ZERO, MEAN, minimum value (MIN), half mini-
mum (½ MIN), Singular Value Decomposition (SVD),
Probabilistic Principal Component Analysis (PPCA), Baye-
sian Principal Component Analysis (BPCA), Random
Forest (RF), and K-Nearest Neighbors (KNN).

Results
In order to test the performance of the nine different
imputation methods, we generated sub-datasets from 12
LC-MS metabolomics datasets (Fig. 1), and simulated
missing values to these according to seven different
missing mechanisms; MCAR, MAR, MNAR, MCAR-
MAR, MCAR-MNAR, MAR-MNAR, and MCAR-MAR-
MNAR, in four different proportions of missing values
(5, 10, 20 and 30%). The imputation process was
repeated 100 times as visualized in the workflow chart in
Fig. 2. Furthermore, in order to avoid potentially biased
comparisons, we have explored the performance of KNN
method by optimizing the parameter settings to reach
optimal performance. The number of neighbors K was
chosen to be equal with 10. In the RF, method there is
no need for tuning the parameters nor does it require
assumptions about distributional aspects of the data as
suggested [19] so we chose the default values of the mis-
sForest function; maximum iterations was set to 10 and
the number of trees was chosen to be 100.
The tested imputation methods were ZERO, MEAN,

MIN, ½ MIN, SVD, PPCA, BPCA, RF, and KNN. Results
from the performances of all the imputation methods
are illustrated in Fig. 3 as heatmaps. The heatmaps show
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the average Normalized Root Mean Square Error
(NRMSE), which calculates the difference in the estima-
tion between the imputed value and the original value
for every molecular feature that contains missing values,
after 100 permutations. Each heatmap reflects one miss-
ing mechanism and the different shades of blue are asso-
ciated with the different values of NRMSE that indicate

the performance of each imputation method in four dif-
ferent percentages of missing data.

Comparison of imputation methods based on heatmaps
In the MCAR case, RF and KNN performed the best by
having the smallest NRMSEs, while PPCA, BPCA and
MEAN, even though having similar performances with

Fig. 1 Description of the datasets. Datasets from two different studies were used; KIHD (Kuopio Ischaemic Heart Disease Risk Factor Study) and BS
(Berry Study).The data were analyzed with LC-MS technology and each analytical chromatographic mode is consider a separate dataset. In total
12 datasets were used a four datasets from the KIHD study and b eight datasets from the BS intervention study (four chromatographic modes
per time point)

Fig. 2 Imputation work flow. In every dataset from the dataset grid (12 datasets), which is randomly selected, the missing values are filtered out and
200 molecular features are randomly chosen. Then seven different missing mechanisms are simulated; Missing Completely At Random (MCAR), Missing
At Random (MAR), Missing Not At Random (MNAR), MCAR-MAR, MCAR-MNAR, MNAR-MAR, MNAR-MCAR-MAR, in four different percentages (5, 10, 20,
and 30%) of missing data. In every dataset that is chosen randomly, nine imputation are used in order to investigate the performance of the
imputation methods in estimating missing values. The evaluation of the methods is done using NRMSE. The whole processes are repeated 100 times

Kokla et al. BMC Bioinformatics          (2019) 20:492 Page 3 of 11



each other, could not outperform RF and KNN. SVD
was the method with the highest NRMSEs compared to
the other methods. ZERO imputation, ½ MIN and MIN
method had smaller NRMSEs compared to the SVD but
still higher than RF and KNN.
The MAR missing mechanism had relatively similar

results as the MCAR missing mechanism, with RF being
the method with significantly lower NRMSEs than the
others. The NRMSEs of the KNN were higher than the
ones coming from RF when 5% of the data were missing.
When 10% of the data were missing, KNN performs the
same as RF, however, for higher percentages of missing
values the error increased again. In the case of the other
imputation methods, the trend of the performances were
similar to the results obtained for the MCAR case.
In the MNAR missing mechanism, MIN was the best

performing method compared to the other ones. It is
interesting to note that when the number of missing

values increases and starts reaching 30%, the NRMSE of
the MIN also increases. RF and KNN had similar results
with each other and achieved their best smallest
NRMSEs between 10 to 30% proportion of the missing
values. ZERO and SVD were consistent in having high
errors for all the percentages of missing values compared
to the other methods. Furthermore, MIN was more
robust than ½ MIN with smaller NRMSEs for all the
percentages of missing values. PPCA, BPCA and MEAN
started with relative high NRMSEs when 5% of the data
were missing compared to the MIN imputation, but the
NRMSEs decreased, although not significantly, when the
range of missingness was between 10 to 20%. When the
missingness reached 30%, the NRMSE of BPCA and
MEAN continued to drop but for PPCA method it
increased again.
For the mixed missingness MCAR-MAR, RF and KNN

had the smallest NRMSE. RF’s NRMSE was constant for

Fig. 3 Heatmaps. Heat maps representing the average performance of nine imputation methods after 100 permutations; zero (ZERO), ½
-minimum (½ MIN), minimum (MIN), Random forest (RF), mean (MEAN), K-nearest neighbor (KNN), Bayesian Principal Component Analysis (BPCA),
Probabilistic Principal Component Analysis (PPCA), Singular Value Decomposition (SVD) in seven missing mechanisms (each box); MCAR, MAR,
MNAR, MCAR-MAR, MCAR-MNAR, MAR-MNAR, MCAR-MAR-MNAR. The darker blue color indicates that the error is small whereas, when the color
transforms to lighter shades, this is an indication that the error becomes higher by the corresponding imputation method
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all the percentages of missing values in comparison with
KNN, errors of which increased when the range of miss-
ing values reached 30%. BPCA, PPCA, and MEAN had
similar results for all the four percentages of missing
values. ZERO and SVD had similar performances with
high NRMSEs in all percentages. Between MIN and ½
MIN methods, MIN value had the smallest NRMSEs but
still higher than RF, KNN, BPCA, PPCA and MEAN.
With MAR-MNAR, RF performed the best in all the

missing percentages. KNN performed as good as RF,
with a small increase of the error when 5% of the data
were missing. MIN together with BPCA had similar per-
formances with KNN and RF, when the percentages of
missing values were between 20 and 30%, but for smaller
percentages of missing values (between 5 and 10%) they
had relatively high NRMSEs compared to RF. The rest
of the methods as an overall performance had higher
NRMSEs compare to RF.
By combining MCAR and MNAR mechanisms

together (MCAR-MNAR) we had similar performances
in the imputation methods as in the MAR-MNAR case.
Once again KNN and RF were the ones with the smal-
lest errors. The only difference was that at the 5% range
of missing values, KNN and BPCA had smaller NRMSEs
compared to the MAR-MNAR case.
Lastly, when we had three missing value mechanisms

mixed together (MCAR-MAR-MNAR) the results
looked similar as with the MAR-MNAR missing
mechanism. The best performing method was RF fol-
lowed by KNN.

Summary results
Figure 4 shows the summary results from six out of nine
imputation methods that we evaluated; MIN, MEAN,

BPCA, PPCA, KNN, and RF. This choice was based on
the performances of the methods illustrated in the heat-
maps in Fig. 3. For more details two summary tables
(Tables S1–S2) containing the mean, standard deviation
of the average NRMSEs of every imputation method for
all the four percentages of missing values have been
added in the Additional file 1. As suggested by these
results, the most troublesome missingness is the MNAR
with the MIN imputation is the best approach by having
the smallest NRMSE. The rest of the five methods
(MEAN, BPCA, PPCA, KNN, and RF) have high
NRMSEs and also standard deviations. A relatively high
error bar suggests that the method in question is not
stable when imputing missing values and for each per-
mutation provides different estimates. For the MCAR
and MAR mechanism the conclusions are the same as in
the heatmaps, with RF being the most appropriate
choice. Furthermore, for the remaining four kinds of
mixed missing mechanisms (MCAR-MAR, MCAR-
MNAR, MAR-MNAR, and MCAR-MAR-MNAR) the
performances are similar with MCAR and MAR cases,
with RF being the best imputation method followed by
KNN.

Discussion
Here we tested nine imputation methods on seven dif-
ferent missing mechanisms with twelve metabolomics
datasets. Our results indicated that RF was the most
effective means for imputing metabolomics datasets
based on the lowest NRMSE value and error bars in
nearly all the simulated datasets representing different
combinations of missing values. RF is a powerful
method, even though the whole imputation procedure
with RF has a computation expense due to the intensive

Fig. 4 Summary Results. Summary results for six imputation methods; MIN, MEAN, BPCA, PPCA, KNN and RF. The general trend of the methods is
being presented here with the y-axis being the average NRMSE for the four percentages of missing values (5, 10, 20 and 30%) together after 100
permutations. Each line shows one missing mechanisms (represented by a different color); MCAR, MAR, MNAR, MCAR-MAR, MCAR-MNAR, MAR-
MNAR, MCAR-MAR-MNAR, and each black dot represents the average NRMSE with the error bars being the standard deviations of the NRMSEs for
100 permutations. The error bars are useful here because they report the uncertainty of the estimation of the imputed value per method
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iterations (Additional file 1: Figure S7), it is well known
that it can handle both parametric and non-parametric
data sets of complex linear and non-linear problems and
there is no need to perform preprocessing at the data
beforehand. On the other hand SVD where is a popular
approach for data analysis and data processing (e.g.,
dimension reduction), PPCA which is basically PCA with
an expectation– maximization (EM) approach and
BPCA which is based on three processes, including prin-
cipal component (PC) regression, Bayesian estimation,
and an EM-like repetitive algorithm, they perform better
if the data are being transformed first before imputation
[2]. In our experimental setting we didn’t consider any
preprocessing methods, even when this is common in
other imputation studies, because in most metabolomics
studies, almost half of the molecular features do not fol-
low the normal distribution as their values are highly
positively or negatively skewed. When a molecular fea-
ture is Log-transformed in order to meet the normality
assumptions before imputing, we are not only changing
the distribution of that particular molecular feature but
also we disturb the relationships between that molecular
feature with the rest of the data, and therefore, this
approach can lead in imputing outliers or/and creating
more bias than just imputing the skewed molecular
feature.
One aspect of our results that was not aligned with the

findings from another study [20], was the very poor per-
formance of the SVD imputation method. SVD begins
the imputation procedure by replacing all missing values
with zero values and then iterates through singular value
decompositions until convergence. This procedure may
create effects on the data structure that can alter the fac-
torization of the data matrices. In theory that shouldn’t
happen because the errors in the prediction that are
being introduced in the initialization step should be can-
celled out by the matrix-factorization approach. On the
other hand, BPCA and PPCA also rely on dimension
reduction, performed better than SVD. This was because
they include a probabilistic model that minimize the
principal axes that are not relevant, and make these two
methods more robust to changes in the data structure
and in the cases of MCAR, MAR and MCAR -MAR.
We also observed that in the cases of MNAR, MCAR-

MAR-MNAR, MAR-MNAR, MCAR-MNAR the perfor-
mance of BPCA improved when the proportion of miss-
ing values increased and this phenomenon, which may
seem at first contradictory, could be due to the fact that
multivariate models perform better in a more uniformly
distributed missingness across datasets.
The treatment of missing data by single value replace-

ment, such as MIN, performs better when missing data
arise from censoring below the detection limit, while
other methods, such as RF, which is a method based on

local structures, performs better when randomness is
involved. KNN method performs slightly better than
MEAN imputation which was expected since it is con-
sidered as an advancement over the MEAN imputation
[17]. However, KNN showed instability in the prediction
of missing values especially in the MAR case and this
spurious performance is highlighting the fact that this
method probably is not the most suitable for imputing
such complex datasets.
In addition, it has been shown that certain methods

favor more specific mechanisms than others, but there is
no imputation method so far that works well for all
three types of mechanisms [20]. By closely investigating
the results presented in Figs. 3 and 4, it seems that RF is
estimating missing values with the lowest prediction
error. Its performance is consistent in the four percen-
tages of missing values and for the majority of the miss-
ing mechanisms. The exception is the left-truncated
MNAR, where the MIN performs better. These results
coincide with other studies as well, that tested the per-
formance of RF with other methods [2, 20].
However, in the case of the MNAR-MCAR-MAR,

BPCA and MIN had similar performances with RF and
KNN, especially for higher percentages of missing values
of 20 and 30%. This result could indicate that as the
number of missing values increases, the left truncation
of missingness starts to affect the data while other kinds
of missing mechanisms are also present. If the data are
left truncated then the preferable option will be the MIN
or any other imputation method, such as KNN-TN and
GSimp, that perform well for this type of missingness as
has been proposed also earlier [11, 20, 21].
In this work, the missing values were controlled and

removed using one of the three earlier characterized
missing mechanisms or the combination of those. How-
ever, most of the times in real life the reason for a value
to be absent is unknown. In many studies different
imputation strategies have been compared, or it has
been investigated that how different imputation methods
can alter the biological information within simulated or
real metabolomics datasets [2, 16, 18]. The detection of
the missing mechanism is not typically performed in
metabolomics field [22] but some efforts have been done
in other research areas focusing on simulated data only
[13]. If the missing mechanism can be detected with
high certainty, it could reduce the bias occurring from
the improper choice of an imputation method.
One limitation that our study has, is in the way the

current simulation process of missing values is carried
out. We cannot fully control the missing patterns simu-
lation as we indented. That means that even if intended
to remove the data with the MAR mechanism we may
create missing patterns by random chance that resemble
the MNAR mechanism especially when the percentage
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of the missing values starts to increase. In order to
reduce this effect, we use moderate sizes of missingness,
no higher than 30%. Higher percentages regardless the
missing mechanism tends to create MNAR missing
patterns.
In this study, also we did not include any information

about the different groupings inside the imputation
study. When selecting the subset of 200 molecular fea-
tures from the metabolomics data, we were focusing on
data that was present for all the measured samples, in
order to be able to simulate the missingness. We do
acknowledge that when addressing complete metabolo-
mics dataset, the grouping needs to be taken into
account to avoid bias, and even introducing error, and
therefore the imputation needs to be potentially per-
formed in a group-wise manner. However, this would
require further development to the utilized methods.

Conclusion
Type and rate of missingness affects the performance
and suitability of imputation methods. In conclusion,
RF-based imputation method performs best in most of
the tested scenarios, including combinations of different
types and rates of missingness. Therefore, we recom-
mend using RF-based imputation for imputing missing
metabolomics data, since typically the origin of missing-
ness is not known in advance. In addition, our approach
to evaluate the performance of imputation methods on
metabolomics datasets is applicable also to other high-
dimensional data that contain missing values.

Methods
Metabolomics data
The metabolomics datasets used in the current study
were obtained from two human based-nutritional studies
carried out at the University of Eastern Finland. The
Kuopio Ischaemic Heart Disease Risk Factor Study
(KIHD) is an epidemiological study focusing on the
effect of diet and lifestyle on cardiovascular disease risk
in middle-aged men from eastern Finland [23]. A subset
of 258 participants was randomly selected for a study
focusing on the metabolic impact of egg consumption
[24].
(https://www.uef.fi/web/nutritionepidemiologists/kuo-

pio-ischaemic-heart-disease-risk-factor-stud-kihd-1984-).
The other dataset used in the current work was

obtained from a human dietary intervention, namely the
Berry Study (BS) [25, 26]. BS was a controlled 16-week
interventional trial, where plasma was collected from 47
individuals in two time periods; at the baseline (start of
intervention) and at the 8-week follow up (end of inter-
vention). Twelve individuals served as a control group,
and the rest were divided into two experimental groups
consuming two different types of berries.

The samples from these two studies were analyzed by
UHPLC-qTOF-MS system (Agilent Technologies, Wald-
bronn, Karlsruhe, Germany) that consisted of a 1290 LC
system, a Jetstream electrospray ionization (ESI) source,
and a 6540 UHD accurate-mass qTOF spectrometer.
The samples were analyzed using two different chroma-
tographic modes, i.e. reversed phase (RP) and hydrophi-
lic interaction (hilic) chromatography and the data were
acquired in both positive (+) and negative (−) polarity.
Here we consider each of these four analytical modes as
separate datasets. The data pre-processing was carried
out as described earlier [25, 27].
From the KIHD study we created four datasets (four

analytical modes) and from the BS study, eight datasets
representing the two time points and four analytical
modes (Fig. 1). In order to create the datasets for the
evaluation of the imputation methods, we considered
molecular features that were present in all samples.
Table 1 provides information about how many molecu-
lar features we had in each datasets and the total num-
ber of missing values. During the simulation processes,
every time we repeated the simulation, we randomly
picked one dataset out of the 12, and randomly selected
200 molecular features from this particular dataset that
does not include any missing values, and this new sub-
dataset was used to simulate missing values and test the
imputation methods thereafter. Additional boxplots and
correlation plots show the new complete sub-datasets in
more detailed (Additional file 1: Figures S1-S6).

Missing mechanisms simulation
MCAR missingness was simulated by randomly remov-
ing values from the data set using the uniform distribu-
tion. Different rates of missingness were simulated by
removing different proportions of the values (5, 10, 20,
and 30%).
In the MAR missing mechanism, the missing values

depend on the observed part of the data. In our simula-
tion, we model a situation where a high abundance of a
molecular feature X1 will lead to missingness of a mole-
cular feature X2 in the same sample. The simulation pro-
cess begins by randomly choosing two different
molecular features; X1 and X2. We sort the values of X1

from minimum to maximum, and choose a cut-off per-
centage point randomly from chi-squared distribution,
divide it by 30 and limit to range 0..1. This approach will
limit the cut-off percentage between 0 to 100%, with
mean of 3.3% and standard deviation of 4.7% (empiri-
cally simulated with 1 million values). This selected cut-
off percentage will be used to set this proportion of
highest X2 values to missing, simulating MAR missing-
ness. After this, new X1 and X2 are randomly selected,
and the procedure is repeated until total desired
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proportion of total missingness (5, 10, 20%, or 30%) for
the whole data set is reached.
The MNAR missing mechanism is very similar to the

MAR simulation process. We chose randomly one mole-
cular feature, X1 and sort its values from minimum to
maximum. Then we repeat the same process as in the
MAR case with the only difference here being that the
missing values will be created on X1, and it will be below
the cut point if we choose left truncation or above the
cut point if we choose right truncation, which in this
workflow the right truncation wasn’t used. This process
is repeated until we reach the desirable proportion of
missing values (5, 10, 20, and 30%).
In the cases of the mixed missingness e.g. MCAR-

MAR-MNAR, the simulation process was done in three
steps. If for example we wanted to remove 30% of the
data using this mechanism, in the first step 10% of the
data will be removed using the MCAR method, then the
resulting output data will be passed to the MAR
mechanism to remove another 10% and in the end the
output data will be passed to the MNAR mechanism in
order to remove the last 10%. Always in the mixed miss-
ingness mechanisms the missing percentages are equally
distributed among MNAR, MAR and MCAR. The rea-
soning behind this choice was to automatize the whole
simulated procedure.
All the functions and code for the simulation process

are available on GitHub: (website: https://github.com/

mariekok/impute-metabolomics). Furthermore, the func-
tion that is used to simulate the three different missing
mechanisms is called simulate_missingness() and it can
also been found in the Additional file 1.
Figure 5 illustrates how missing values in seven differ-

ent missing mechanisms (MCAR, MAR, MNAR,
MCAR-MAR, MCAR-MNAR, MAR-MNAR, MCAR-
MAR-MNAR) affect the distribution of a molecular fea-
ture, as exemplified with the case of having 30% of miss-
ing values in the whole dataset.

Imputation methods
We compared nine imputation methods that have been
suggested earlier for metabolomics data-analysis. The
methods were divided into three main categories. The
first category is the imputation by a single value replace-
ment and includes the mean imputation (MEAN), the
minimum observed value, ½ minimum (½ MIN)
observed value and zero (ZERO) imputation. The second
category is the imputation methods based on local struc-
tures and that includes random forest (RF) [28, 29], and
k- Nearest Neighbors (KNN) [30–33].The last category
contains the imputation methods based on global struc-
tures like Singular Value Decomposition (SVD) [34],
Probabilistic Principal Component Analysis (PPCA)
[7, 13, 35, 36] and Bayesian Principal Component
Analysis (BPCA) [36–38]. The comparison of imputa-
tion methods was done by using Normalized Root

Table 1 Information about the total number of molecular features, number of missing values and total number of complete
molecular features in each dataset

Study LC-MS analytical
mode

Total number of molecular
features

Number of missing values per
dataset

Number of molecular features without missing
values

KIHD Hillic positive 2407 7519 204

Hillic negative 1228 64,256 299

RP positive 1228 24,451 509

RP negative 2407 95,079 498

BS

Start(T0)
Hillic positive 1290 7140 518

End
(T1)

Hillic positive 1290 7131 508

Start(T0)
Hillic negative 725 2701 383

End
(T1)

Hillic negative 725 2766 383

Start(T0)
RP positive 1177 11,679 1066

End
(T1)

RP positive 1177 11,526 1152

Start(T0)
RP negative 2286 4643 578

End
(T1)

RP negative 2286 5146 559
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Mean Square Error (NRMSE), which has been also
earlier suggested for similar purpose [20, 39]. NRMSE
calculates the difference in the estimation between
the imputed value and the original value.

NRMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

meanððXcomp−XimpÞ2Þ
varðXcompÞ

r

, where Xcomp is a dataset

without missing values and Ximp is the same dataset with
the missing values being imputed.

Imputation study workflow
We tested different imputation strategies in real datasets
from untargeted LC-MS studies. We simulated MNAR,
MCAR, MAR missingness and the different combina-
tions of missingness, namely MCAR-MAR, MCAR-
MNAR, MNAR-MAR, and MNAR-MCAR-MAR, for the
evaluation of nine imputation methods (ZERO, MEAN,
MIN, ½ MIN, SVD, PPCA, BPCA, RF, and KNN) in four
different proportions of missing values; 5, 10, 20, and
30%. The whole process was repeated 100 times. In each
permutation, one dataset out of the 12 was randomly
chosen and 200 new molecular features without any
missing values were randomly selected. To this sub-
dataset every one of the seven different missing mechan-
isms were simulated one at a time and with four differ-
ent percentages of missing values. The new datasets with
simulated missing values were used to evaluate the per-
formance of nine imputation methods. The performance
of these methods was estimated by calculating NRMSE
between the imputed new datasets and the “complete”
dataset. A detailed description of the workflow can be
seen in Fig. 2.
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