Perez-Gil et al. BMC Bioinformatics (2019) 20:159
https://doi.org/10.1186/s12859-019-2726-4

BMC Bioinformatics

SOFTWARE Open Access

PyCellBase, an efficient python package for
easy retrieval of biological data from

heterogeneous sources

Check for
updates

Daniel Perez-Gil', Francisco J. Lopez', Joaquin Dopazo®?, Pablo Marin-Garcia®”, Augusto Rendon'®

and Ignacio Medina’"

Abstract

Background: Biological databases and repositories are incrementing in diversity and complexity over the years. This
rapid expansion of current and new sources of biological knowledge raises serious problems of data accessibility and
integration. To handle the growing necessity of unification, CellBase was created as an integrative solution. CellBase
provides a centralized NoSQL database containing biological information from different and heterogeneous sources.
Access to this information is done through a RESTful web service API, which provides an efficient interface to the data.

Results: In this work we present PyCellBase, a Python package that provides programmatic access to the rich RESTful
web service API offered by CellBase. This package offers a fast and user-friendly access to biological information
without the need of installing any local database. In addition, a series of command-line tools are provided to perform
common bioinformatic tasks, such as variant annotation. CellBase data is always available by a high-availability cluster
and queries have been tuned to ensure a real-time performance.

Conclusion: PyCellBase is an open-source Python package that provides an efficient access to heterogeneous
biological information. It allows to perform tasks that require a comprehensive set of knowledge resources, as for
example variant annotation. Queries can be easily fine-tuned to retrieve the desired information of particular biological
features. PyCellBase offers the convenience of an object-oriented scripting language and provides the ability to
integrate the obtained results into other Python applications and pipelines.

Keywords: Annotation, Variant, CellBase, Database, Repository, RESTful, Python

Background

During the past years, the increase in scientific knowledge
due to the massive data production from high-throughput
technologies have caused an unprecedented growth in the
number and size of databases storing relevant biological
data [1]. However, these annotations are fragmented
among many resources that range greatly in terms of cap-
acity, scope and organization (e.g., Ensembl [2], UniProt
[3], and Reactome [4]). As size, diversity and complexity
of these biological repositories expands, serious function-
ality problems arise in terms of access through Internet
and storage in local disks [5]. In addition, most of relevant
data is stored in different repositories or databases and

* Correspondence: im411@cam.ac.uk
"HPC Service, UIS, University of Cambridge, Cambridge, UK
Full list of author information is available at the end of the article

K BMC

different standards and identifiers are used [6]. In particu-
lar, annotations of human genes and variants are broadly
used both in research and in clinical practice but highly
spread across many resources.

Tools for knowledge integration enable more efficient
analysis of genome-scale data sets and discovery of rela-
tionships between biological entities [7, 8]. CellBase
arose as a solution to the growing necessity of integra-
tion by easing the access to biological data [9]. CellBase
provides a centralized NoSQL database containing bio-
logical information and a RESTful web service API to
query these data. Users can access to multiple resources
for different features such as genes, transcripts, proteins,
variations or clinical data. CellBase has been used in ap-
plications for variant prioritization [10] and it is used for
variant annotation in the 100,000 Genomes Project [11].

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to

the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-019-2726-4&domain=pdf
http://orcid.org/0000-0003-0095-670X
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:im411@cam.ac.uk

Perez-Gil et al. BMC Bioinformatics (2019) 20:159

To query data from CellBase, users have to access its
RESTful web services. Therefore, they are required to
know how the URL queries are constructed and be cap-
able of managing the server responses. Such operations
can turn out to be tedious, repetitive and error-prone.

To address these issues, we have developed PyCell-
Base, an efficient Python package that provides program-
matic access to CellBase biological information. Python
was chosen as programming language because it is
open-source, runs on all major operating systems [12]
and has become very popular for scientific programming
[13]. PyCellBase consumes the RESTful web services to
acquire data from CellBase, providing a simple and fast
access to the database. A series of clients and methods
have been implemented to retrieve specific resources
from the main features stored in CellBase. PyCellBase
provides the advantages of an object-oriented scripting
language and allows the integration of queries to the
RESTful web service into Python scripts with no need to
know how the service works. In addition, several tools
are also provided to facilitate recurrent bioinformatics
tasks, such as variant annotation.

Implementation

REST client library

PyCellBase uses the comprehensive RESTful web service
API that has been implemented for the CellBase data-
base (Fig. 1) and it can access any of the several public
servers. Setting up this package is quick and simple,
without the need of any local database installation. Only
a minimal user configuration is required.

Page 2 of 5

CellBase integrates different data types from different
sources and its RESTful web services are organised in dif-
ferent categories depending on the type of information.
To provide a clear way to obtain these data, PyCellBase
implements a main client (CellBaseClient) that creates dif-
ferent resource-specific clients for each category of bio-
logical data (Table 1) such as GeneClient to query genes
or VariantClient to annotate genomic variants.

Additional clients have been designed to provide meta-
data about the available biological information and the
RESTful web services. These additional clients can be
used for example to retrieve information about the avail-
able data categories, species or database versioning.

Every resource-specific client provides a set of
methods to fetch the desired information. Optional fil-
ters and extra options can be added to the query to nar-
row searches and reduce the amount of obtained
information. To help the user select the appropriate pa-
rameters, every client provides a help method to list all
the methods and filters that offers.

PyCellBase can retrieve information from all the 27
different species supported by CellBase, covering all
major groups (metazoa, fungi, plantae, protista, bacteria
and virus) with support for multiple genome assemblies.
For example, for Homo sapiens, both GRCh37 and
GRC38 are supported. In addition, most common ID
formats from many independent bioinformatics data-
bases are accepted when searching for biological data.

Configuration parameters such as the list of available
RESTful web services hosts, API version and species can
be customised. For this reason PyCellBase implements a
client that manages the configuration (ConfigClient). A

Y
o

Feature

g

G
e)

Regulatory

W

SERVER

rJ:

CLIENT

A

0
o

Functional
Annotation

CellBase

RESTful WS

LOAD
BALANCER

!

PyCellBase

[(HAProxy)

Y
e)

Variation

S

0
o

Network
W

JSON

Fig. 1 PyCellBase and CellBase architecture overview. Data from different biological databases and sources are integrated into CellBase, which
implements a set of RESTful web services that query a centralized database containing the most relevant biological data sources. These RESTful
web services are used by PyCellBase to query and fetch desired data in JSON format for further analysis and integration with other applications

Perez-Gil et al. BMC Bioinformatics (2019) 20:159

Page 3 of 5

Table 1 PyCellBase resource-specific clients and available data. The different clients that are currently implemented for each
biological data type are shown along with the main data that can be obtained from each one of them

Client Data

Gene Clinical data, protein-protein interactions, biotype, TFBSs, expression, transcripts, protein, variants

Transcript Sequence, function prediction, XREFs, biotype, genes, proteins, exons

Protein Amino acid sequence, substitution scores, organism, genes, protein features, evidence, bibliography

Variation Variants, biological impact, consequence types

Xref Associated IDs from multiple databases (ENSEMBL, UCSC, UniProt, RefSeq, GO, Reactome, PDB, OMIM, RNAcentral, miRBase...)

Genomic region
Variant

Genome sequence Cytobands
Clinical

TFBS

Sequence, clinical variants, conservation scores, regulatory elements, repeat sequences, genes, transcripts, variants

Consequence types, genes, transcripts, proteins, population frequencies, HGVS, clinical significance, functional score

ClinVar, COSMIC, inheritance, evidence, pathogenicity, diseases

Histones, open chromatin, polymerases, transcription factors

custom configuration can be stored in a file (JSON or
YAML) or Python dictionary.

This package makes use of multithreading to improve
performance when the number of queries exceed a spe-
cific limit. It also uses connection pooling and persists
certain parameters across all connections, resulting in a
significant performance increase.

PyCellBase returns results in Javascript Object Nota-
tion (JSON), which is a format that has been widely
adopted in RESTful APIs [14]. JSON is designed to be a
lightweight, language-independent data interchange for-
mat that is easy for humans to read and write, and for
computers to generate and parse. This output format al-
lows to seamlessly integrate results in other Python ap-
plications and pipelines.

Command-line tools

In addition to PyCellBase core functionality, a
command-line interface, called cbtools.py, has been im-
plemented with several tools to ease and speed up fre-
quently performed tasks in bioinformatics. These tools
make use of the REST client library and offer a further
output processing to facilitate its analysis.

ID converter

The heterogeneous and redundant nature of the differ-
ent types of biological identifiers limits data analysis
across different bioinformatics resources [7]. For this
reason, the conversion of identifiers is one of the initial
steps in many workflows related to genomic data ana-
lysis. To simplify this task, PyCellBase implements a
gene ID converter (chbtools.py xref). This tool annotates
genomic features with all their associated IDs, making
use of 74 different sources for human, including most
common databases such as Ensembl, NCBI, RefSeq,
Reactome, OMIM, PDB, miRBase or UniProt among
others. In addition, it supports heterogeneous input files
with IDs from different sources.

HGVS calculator

The HGVS nomenclature recommendations for the de-
scription of sequence variants as originally proposed by
the Human Genome Variation Society has gradually
been accepted as the international standard for variant
description [15]. Due to the wide use of this nomencla-
ture for variants, mutations and polymorphisms in hu-
man health and diagnostics, the assignation of the
specific HGVS name to a sequence variant is essential
within research publications and clinical settings. For
this reason, PyCellBase implements a tool that annotates
variants with their associated HGVS names (cbtools.py
hgvs). Given a file with multiple variants (in the format
“chromosome:position:reference:alternate”), this tool
returns all the associated HGVS names for many differ-
ent types of reference sequence (non-coding, RNA,
mitochondrial, genomic, protein, cDNA).

VCF annotator

Comprehensive variant annotations provide context that
is crucial to variant interpretation for clinical diagnosis,
medical databases and personalized medicine. Integra-
tion of genome annotations is critical to the identifica-
tion of genetic variants that are relevant to studies of
disease or other traits. PyCellBase takes advantage of the
available integrated data that can access to implement a
fast and rich variant annotator (cbtools.py annotate).
This tool takes a VCF file as input and returns it with its
variants annotated with a broad range of information
such as consequence types, population frequencies, over-
lapping sequence repeats, cytobands, gene expression,
conservation scores, clinical significance (ClinVar, COS-
MIC, diseases and drugs), functional scores and more.
This VCF annotator is capable of annotating remotely an
average of more than 500 variants per second with all
the available data, using 1 processor in an ordinary lap-
top computer.

Perez-Gil et al. BMC Bioinformatics (2019) 20:159

Results
Minimal example
PyCellBase implementation is focused on providing an ef-
ficient interface between the user and the data. For that
reason it stands out for its simplicity and its ease of use.
For example, getting the annotation for a specific vari-
ant using the CellBase RESTful web service API requires
to know how the URL query is constructed. In addition,
configuration parameters have to be specified every time
a query is done, which makes this system error-prone
when the number of queries increase significantly:

https://bioinfo.hpc.cam.ac.uk/cellbase/webservices/rest/
v4/hsapiens/genomic/variant/
17%3A430457%3AG%3AA /annotation?assembly=
grch37

However, PyCellBase manages the configuration, the
URL construction and handles the response. Therefore,
the query above can be achieved in three simple steps:

1) Importing the PyCellBase module and initializing
the main client.
>>> from pycellbase.cbclient import
CellBaseClient >>> cbc = CellBaseClient()
2) Creating the resource-specific client (variant client)
for the query.
>>>var_client = cbc.get_variant_client()
3) Obtaining annotation for the variant
chr17:430457:G > A.
>>> var_annot =
var_client.get_annotation(‘17:430457:G:A’)

This manuscript is accompanied by a Jupyter Note-
book [16] that provides a more exhaustive example [see
Additional file 1].

Usage

PyCellBase is used in several projects. It is worth noting
its importance in the 100,000 Genomes Project (Genom-
ics England). The objective of this project is to sequence
100,000 genomes of rare diseases and common cancers
from the National Health System (NHS) patients and
their families. This task requires access to a reliable
source of information that could provide data in an effi-
cient and easy way. For this reason, PyCellBase has been
used as an annotation tool in variant prioritization and
variant curation pipelines. The use of PyCellBase in such
important large scale project proves the usefulness of
this package and its straightforward usability.

Development
PyCellBase development is synchronised with CellBase
to ensure that the latest data and web services are always

Page 4 of 5

available. PyCellBase follows the Semantic Versioning
rules [17]. Major and minor updates in the client are re-
leased along with CellBase updates, while fixes are re-
leased as necessary.

PyCellBase is a collaborative project that goes under
continuous improvements and updates. In the near future,
new features will be implemented, such as gRPC (gRPC,
Remote Procedure Calls) support, common bioinformatics
workflows and new resource-specific clients for new bio-
logical information such as biological networks.

Conclusion

The biomedical research community has seen a prolifer-
ation of databases and web services in the past years.
These services have become a primary source of infor-
mation in the bioinformatics area to share and obtain
data and analysis methods.

In this work, we present PyCellBase, a Python package
to retrieve information from CellBase through its REST-
ful web services, which enables quick and easy access to
heterogeneous biological information. No local database
is required, reducing setup, administration, and mainten-
ance costs. By implementing resource-specific clients
and methods to fetch data from CellBase, we provide
users with a straightforward way to access CellBase bio-
logical data with no need to know how its RESTful web
services are implemented. Also, PyCellBase allows the
integration of this information into custom Python
scripts and pipelines for further processing and analysis.

PyCellBase can be easily installed from the Python
Package Index (PyPI) (https://pypi.org/project/pycell-
base/). It is a collaborative open-source project and its
source code is conveniently distributed together with
CellBase at GitHub (https://github.com/opencb/cell-
base). Documentation and tutorials can be found at
http://docs.opencb.org/display/cellbase. PyCellBase is re-
leased under Apache Software License, Version 2.0 and
it is compatible with both Python 2 and 3.

Availability and requirements
Project name: PyCellBase.
Project home page: https://pypi.org/project/pycellbase
Operating system(s): any supporting Python>=2.7
(tested on Linux).
Programming language: Python.
Other requirements: requests> = 2.9.1, pyYAML> = 3.11.
License: Apache Software License, Version 2.0.
Any restrictions to use by non-academics: none.

Additional file

Additional file 1: PyCellBase use case. Example of usage of the
PyCellBase REST client library. (IPYNB 15 kb)

http://cellbase.gel.zone/cellbase/webservices/rest/v4/hsapiens/genomic/variant/17%3A430457%3AG%3AA/annotation?assembly=grch37
http://cellbase.gel.zone/cellbase/webservices/rest/v4/hsapiens/genomic/variant/17%3A430457%3AG%3AA/annotation?assembly=grch37
http://cellbase.gel.zone/cellbase/webservices/rest/v4/hsapiens/genomic/variant/17%3A430457%3AG%3AA/annotation?assembly=grch37
http://cellbase.gel.zone/cellbase/webservices/rest/v4/hsapiens/genomic/variant/17%3A430457%3AG%3AA/annotation?assembly=grch37
https://pypi.org/project/pycellbase/
https://pypi.org/project/pycellbase/
https://github.com/opencb/cellbase
https://github.com/opencb/cellbase
http://docs.opencb.org/display/cellbase
https://pypi.org/project/pycellbase
https://doi.org/10.1186/s12859-019-2726-4

Perez-Gil et al. BMC Bioinformatics (2019) 20:159

Abbreviations

API: Application Programming Interface; gRPC: gRPC Remote Procedure Calls;
HGVS: Human Genome Variation Society; JSON: JavaScript Object Notation;
NHS: National Health System; PyPi: Python Package Index; REST: Representational
State Transfer; TFBS: Transcription factor binding site; URL: Uniform Resource
Locator; XREF: eXternal REFerence

Acknowledgements
Not applicable.

Funding

This work was supported by grants SAF2017-88908-R and DTS16/00139 from
the Spanish Ministry of Economy and Competitiveness (MINECO) to JD. The
funding body did not play any role in the design of the study or in the
collection, analysis and interpretation of data or in writing the manuscript.

Availability of data and materials

PyCellBase source code is available in the Python Package Index (PyPl)
repository, https://pypi.org/project/pycellbase. It can also be found together
with CellBase at the GitHub repository, https://github.com/opencb/cellbase.
Documentation and tutorials can be found at the OpenCB webpage, http://
docs.opencb.org/display/cellbase.

Authors’ contributions

IM, FJL and DPG designed the application structure. DPG implemented the
code. FJL and PMG tested the application and performed validation checks.
DPG and IM wrote the manuscript. DPG, FIL, JD, PMG, AR and IM reviewed
the manuscript and provided critical revision. All authors read and approved
the final manuscript.

Ethics approval and consent to participate
Not applicable

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Author details

'Genomics England, London, UK. 2Clinical Bioinformatics Area, Fundacion
Progreso y Salud, Seville, Spain. *Functional Genomics Node, INB-ELIXIR-es,
FPS, Hospital Virgen del Rocio, Seville, Spain. 4Department of Bioinformatics,
Universidad Catdlica de Valencia, Valencia, Spain. *Department of
Bioinformatics, Institute for Integrative Systems Biology, Valencia, Spain.
®Department of Haematology, University of Cambridge, Cambridge, UK. "HPC
Service, UIS, University of Cambridge, Cambridge, UK.

Received: 9 August 2018 Accepted: 13 March 2019
Published online: 28 March 2019

References

1. Luo J, Wu M, Gopukumar D, Zhao Y. Big data application in biomedical
research and health care: a literature review. Biomed Inform Insights. 2016;8:
1-10.

2. Zerbino DR, Achuthan P, Akanni W, Amode MR, Barrell D, Bhai J, et al.
Ensembl 2018 Nucleic Acids Res. 2018;46(D1):D754-61.

3. UniProt Consortium T. The UniProt Consortium. UniProt: the universal
protein knowledgebase. Nucleic Acids Res. 2018;46(5):2699.

4. Fabregat A, Jupe S, Matthews L, Sidiropoulos K, Gillespie M, Garapati P, et al.
The Reactome pathway knowledgebase. Nucleic Acids Res. 2018 Jan 4;
46(D1):D649-55.

5. National Research Council (US) Board on Biology. In: Pool R, Esnayra J,
editors. Bioinformatics: Converting Data to Knowledge: Workshop Summary.
Washington (DQ): National Academies Press (US); 2010.

Page 5 of 5

Lapatas V, Stefanidakis M, Jimenez RC, Via A, Schneider MV. Data integration
in biological research: an overview. J Biol Res Thessaloniki 2015;22(1).
Available from: https://doi.org/10.1186/540709-015-0032-5

Chavan SS, Shaughnessy JD Jr, Edmondson RD. Overview of biological
database mapping services for interoperation between different “omics”
datasets. Hum Genomics. 2011;5(6):703-8.

Al-Shahrour F, Minguez P, Tarraga J, Montaner D, Alloza E, Vaquerizas JM, et
al. BABELOMICS: a systems biology perspective in the functional annotation
of genome-scale experiments. Nucleic Acids Res. 2006;34(Web Server):
W472-6.

Bleda M, Tarraga J, de Maria A, Salavert F, Garcia-Alonso L, Celma M, et al.
CellBase, a comprehensive collection of RESTful web services for retrieving
relevant biological information from heterogeneous sources. Nucleic Acids
Res. 2012;40(Web Server issue):W609-14.

Aleman A, Garcia-Garcia F, Salavert F, Medina |, Dopazo J. A web-based
interactive framework to assist in the prioritization of disease candidate
genes in whole-exome sequencing studies. Nucleic Acids Res. 2014;42(Web
Server issue):W88-93.

The 100 000 Genomes Project: bringing whole genome sequencing to the
NHS. BMJ. 2018;361:k1952. https://www.bmj.com/content/361/bm;jk1687.
long.

van Rossum G. Python Development Team. In: The Python language
reference: release 3.64; 2018. p. 168.

Oliphant TE. Python for scientific computing. Comput Sci Eng. 2007,9(3):10-20.
Barbaglia G, Murzilli S, Cudini S. Definition of REST web services with JSON
schema. Softw Pract Exp. 2016;47(6):907-20.

den Dunnen JT, Dalgleish R, Maglott DR, Hart RK, Greenblatt MS, McGowan-
Jordan J, et al. HGVS recommendations for the description of sequence
variants: 2016 update. Hum Mutat. 2016 Jun;37(6):564-9.

Perez F, Granger BE. IPython: a system for interactive scientific computing.
Comput Sci Eng. 2007,9(3):21-9.

Preston-Werner T. Semantic Versioning 2.0.0 [Internet]. Semantic Versioning.
[cited 2018 Oct 13]. Available from: https://semver.org/.

Ready to submit your research? Choose BMC and benefit from:

e fast, convenient online submission

o thorough peer review by experienced researchers in your field

 rapid publication on acceptance

o support for research data, including large and complex data types

e gold Open Access which fosters wider collaboration and increased citations
e maximum visibility for your research: over 100M website views per year

K BMC

At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

https://pypi.org/project/pycellbase/
https://github.com/opencb/cellbase
http://docs.opencb.org/display/cellbase
http://docs.opencb.org/display/cellbase
https://doi.org/10.1186/s40709-015-0032-5
https://www.bmj.com/content/361/bmj.k1687.long
https://www.bmj.com/content/361/bmj.k1687.long
https://semver.org/

	Abstract
	Background
	Results
	Conclusion

	Background
	Implementation
	REST client library
	Command-line tools
	ID converter
	HGVS calculator
	VCF annotator

	Results
	Minimal example
	Usage
	Development

	Conclusion
	Availability and requirements
	Additional file
	Abbreviations
	Acknowledgements
	Funding
	Availability of data and materials
	Authors’ contributions
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Publisher’s Note
	Author details
	References

