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Abstract

scenario that is unlikely but theoretically possible.

of the nearby ERBB2's ampilification.

Background: Previous cancer genomics studies focused on searching for novel oncogenes and tumor suppressor
genes whose abundance is positively or negatively correlated with end-point observation, such as survival or tumor
grade. This approach may potentially miss some truly functional genes if both its low and high modes have
associations with end-point observation. Such genes act as both oncogenes and tumor suppressor genes, a

Results: We invented an Expectation-Maximization (EM) algorithm to divide patients into low-, middle- and high-
expressing groups according to the expression level of a certain gene in both tumor and normal patients. We
found one gene, ORMDL3, whose low and high modes were both associated with worse survival and higher tumor
grade in breast cancer patients in multiple patient cohorts. We speculate that its tumor suppressor gene role may
be real, while its high expression correlating with worse end-point outcome is probably due to the passenger event

Conclusions: The proposed EM algorithm can effectively detect genes having tri-modal distributed expression in
patient groups compared to normal genes, thus rendering a new perspective on dissecting the association
between genomic features and end-point observations. Our analysis of breast cancer datasets suggest that the
gene ORMDL3 may have an unexploited tumor suppressive function.
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Background

Alterations in oncogenes or tumor suppressor genes
underlie the driving forces of carcinogenesis. An onco-
gene is a gene that causes cancer through activating mu-
tation or expression at high levels, while for a tumor
suppressor gene, it is the loss or reduction of function
that leads to cancer. Research in cancer biology has
identified hundreds of genes involved in different stages
of tumorigenesis [7, 17]. The alterations in these onco-
genes or tumor suppressor genes can come from a var-
iety of sources, such as single nucleotide polymorphisms
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(SNPs), copy number variations (CNV), chromosomal
regions, viral integration, gene fusions, etc. There is an-
other type of event called a passenger mutation, which
also commonly occurs in tumor tissues. However, such
passenger mutations have no effect on the growth of tu-
mors and they usually hitchhike on a near-by tumor
driver gene’s alteration. It is an important research ques-
tion to distinguish true tumor driver mutations from
artefact events such as passenger mutations in order to
better elucidate tumor oncogenesis and evolution. As
the names “oncogene” and “tumor suppressor gene” sug-
gest, previous systematic searches for tumor driver genes
have mostly adopted the paradigm that a positive associ-
ation between up-regulation and gain of function vs.
tumor proliferation and worse survival hints at a pos-
sible oncogene, while for tumor suppressor genes, a
negative association is expected. For example, Bric et al.
conducted an RNA interference (RNAi) screen for
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tumor suppressors through selecting for small hairpin
RNAs (shRNAs) capable of accelerating lymphomagene-
sis in a mouse model [4]. Koso et al. mobilized the
Sleeping Beauty transposon system in mice and profiled
insertions that promoted medulloblastoma formation in
the cerebellum [15]. Wrzeszczynski et al. carried out a
bioinformatics screen for candidate ovarian cancer onco-
genes or tumor suppressors by first looking for genes
with significant amplification or deletion across tumor
samples [31]. Regardless of the different specific designs,
there is one common feature shared by most such
screening studies. They all assume a monotone (either
positive or negative) relationship between the end-point
outcome and their genes of interest.

However, there remains the possibility that a true
driver gene could actually exhibit a non-linear associ-
ation with end-point observations. That is to say, both
its up-regulation end and down-regulation can lead to
aggressive tumor growth or metastasis, or vice versa.
With a slight abuse of terms, “regulation” here includes
any type of copy number variation, mutation, or RNA
expression level change. Recently, Shen et al. explored
the existence of such genes, which can potentially per-
form both oncogenic and tumor suppressive functions,
through database searching and text mining [24]. They
identified 83 genes that have dual functional annotation
according to the literature. Most of these genes are tran-
scription factors. They can both positively and negatively
regulate transcription, which serves as the basis for their
potential dual role in cancer development. These genes
usually carry genomic mutation patterns similar to those
of oncogenes, and expression patterns resembling those
of tumor suppressor genes. TP53 is an example of one
whose tumor suppressive effect, as exerted by activating
DNA repair proteins, arresting the cell cycle and initiat-
ing apoptosis, is well known. On the other hand, more
than 80% of the somatic and germline TP53 alterations
found are missense mutations rather than nonsense or
frame-shift mutations, which usually lead to loss of func-
tion. The strong selection to maintain expression of
the full-length p53 mutant protein and its accumula-
tion in the nucleus is an implication of gain-of-func-
tion and oncogenic mutation [26]. An in vivo knock
in experiment has shown that many mutant p53 vari-
ants are essential for neoplastic transformation [29].
Another close example is Notch, which is an onco-
gene in cancer types like T cell acute lymphoblastic
leukemia (ALL), and a tumor suppressor gene in
other types like B cell ALL [18]. A more concrete ex-
ample would be c-Myc whose dual role in leukemia
was described by Uribesalgo et al. [30]. They showed
that the c-Myc/RARa complex could function either
as an activator or a repressor based on the c-Myc
phosphorylation status.
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Although to the extent of our knowledge at present,
there is no solid evidence of a gene that can perform
both oncogenic and tumor suppressive effects in one cell
line, the possibility cannot be ruled out. Such genes may
be overlooked by traditional approaches, as these assume
a linear association. Even if not a true bifunctional gene,
a gene bearing a true function and a passenger event
(e.g. a tumor suppressor gene coincidentally amplified
with a nearby oncogene) can easily confound analysis,
leading to its failure to be discovered as a hit. Therefore,
it is important and worthwhile to explore whether there
exists a non-linear association between genomic features
and end-point outcomes, what the abundance is, and
how it occurs if it does exist. As far as we know, no such
study has been proposed to answer these questions.

In this study, we carried out a large-scale bioinformatics
screen with the motivation to search for genes that have
tri-modal association with end-point observations. First,
we divided patients or cell lines into “lower than normal”
(“low”), “similar to normal” (“middle”) and “higher than
normal” (“high”) groups based on the expression levels of
each investigated gene in tumor samples with respect to
normal samples. To do this, we devised an algorithm
based on Expectation-Maximization (EM) [9] that takes
into consideration the expression levels of both normal
samples and tumor samples for each gene. Then we fo-
cused on a specific scenario where candidate targets
whose “low” and “high” groups of patients were both asso-
ciated with worse survival and higher tumor grade com-
pared to the “middle” group of patients. We termed this a
“tri-modal” association.

This study will mainly focus on breast cancer, which is
the most common type of invasive cancer in women.
Breast tumors can be graded with the Nottingham
Histologic Score system [25]. In this system, a grade of
1, 2 or 3 is given to a breast tumor, where 3 has the
poorest chance of prognostic survival. A number of
tumor driver genes have been previously identified in
breast cancers. For example, ERBB2, ESR1 and c-myc
are breast tumor oncogenes; p53, p27, Skp2, BRCA-1
and BRCA-2 are breast tumor suppressors [20, 32].
Breast cancer can be divided into 5 subtypes according
to the PAMS50 assay [21], which include luminal A, lu-
minal B, HER2-enriched, basal-like, and normal-like
subtypes. The basal-like breast tumor subtype largely
overlaps the triple negative type of breast cancer, which
lacks or shows a low level of ESR1 and PGR expressions,
and lacks ERBB2 amplification. Estrogen-receptor (ER)
negative breast cancer, which generally includes basal
and HER?2 subtypes, is characterized by aggressive clin-
ical behavior and resistance to hormone deprivation
therapy [28]. In our study, we replicated our analysis
across an array of breast tumor patient cohorts, includ-
ing the following: (1) the Metabric study [8], where a
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total of ~ 2000 patients are available and divided into a
discovery set and a validation set; (2) the Cancer Gen-
ome Atlas (TCGA) [5] breast cancer study, where ~
1000 patients are available; (3) the GSE18229 study [22],
where 337 breast cancer patients are available; (4) the
GSE20624 study [1], where 344 breast cancer patients
are available; (5) the GSE20685 study [14], where 327
breast cancer patients are available; and (6) the
GSE22133 study [12, 13], where 359 breast cancer pa-
tients are available.

Results

Grouping of patients into 3 modes by EM algorithm

We focused on the cases where the tumor patients can
be grouped into “low”, “middle” and “high” groups ac-
cording to expression of a certain gene. The “middle”
group should have expression levels similar to normal
patients, while both “low” and “high” groups should have
worse survival and higher tumor grades than “middle”
group patients. This scenario enables a natural explan-
ation that the “low” and “high” groups of patients suffer
from a cancerous condition that deviated from the “mid-
dle” and normal patients, and the expression of this gene
may be the cause for this cancerous condition. We de-
vised an EM algorithm for this task. To test that the EM
algorithm was working properly, we simulated the tumor
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population as a mixture of Gaussian (-4,1), Gaussian
(0,1) and Gaussian (3,1) with numbers of samples equal
to 100, 250 and 150. We also simulated the normal
population as Gaussian (0,1) with number of samples
equal to 50. The EM algorithm detected the mean vector
to be (-3.92, -0.076, 2.93), mixing proportion to be
(0.21, 0.59, 0.29) and the standard deviation to be 1.006,
which are very close to the true parameters (Fig. 1a). We
used the Metabric data as our primary dataset, where we
perform the EM algorithm on discovery set against the
normal set, and the validation set against the normal set,
respectively. For example, Fig. 1b shows the distribution
of the expression values for the gene ORMDLS3 in the
discovery set. The distribution of ORMDL3 in the valid-
ation set was very similar (Additional file 1: Figure S1).
This screen was conducted on all 25235 genes available
in the expression data and returned 6703 and 8706
genes with tri-modal distribution in the discovery set
and validation set, respectively. The degree of trimodality
varies greatly from weak to strong for these genes. In Fig.
1c, we showed the overlap between these two lists of
genes. We also performed the trimodality search on the
TCGA BRCA breast cancer patients. Figure 1c also shows
the overlap between the common trimodal genes found in
the Metabric dataset and the trimodal genes found in the
TCGA dataset, comparing only genes that were available

a Density plot of expression levels
simulated example

w
(=)
o
2 3
£ o
o
3
[a]
w
Q -
o
(=3
o_ -
4 T T T
5 0 5
c Expression level

P-val = 4.11*10-3515 14953

1576 5127 3579

Discovery set Validation set

b Density plot of expression levels
ORMDL3
©
o
Z <
c o
o
[a]
o
o
o |
o

Expression level

P-val=6.76%10313 9663

1880 2322 4941

Metabric data TCGA data

Fig. 1 Applied EM algorithm to discover trimodal genes. a A simulated example to verify the validity of the EM algorithm. b The distribution of
the expression values for the gene ORMDL3 in the Metabric discovery set. ¢ The common genes found to have trimodal distribution between
the Metabric discovery set vs. Metabric validation set, and between the Metabric data and TCGA data. Hypergeometric p is given to show the
significance of overlap of trimodality or non-trimodality across different cohorts of patients
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in both datasets. The hypergeometric p values show that
genes tended to consistently show trimodality or
non-trimodality across different cohorts of patients.

Identify genes with tri-modal association with prognostic
survival and tumor grade

Using each gene that had a trimodal distribution and
each mode whose proportion was at least 5% within
both the Metabric discovery set and Metabric validation
set, we tried to investigate whether both the “high” and
“low” mode correlated significantly (p < 0.05) with worse
prognostic survival and higher tumor grade than the
“middle” mode. No gene satisfies this criterion, but one
gene, ORMDL3, was very close (Fig. 2a and Table 1).
The EM algorithm detected 10.0 and 7.7% of all discov-
ery set patients to be in the “low” and “high” modes; and
10.0 and 9.9% of all validation set patients to be in the
“low” and “high” modes. To test if this observation was
robust, we tried to replicate the analysis in the TCGA
BRCA cohort and 4 smaller cohorts, including
GSE18229, GSE20624, GSE20685, and GSE22133. In
these four smaller cohorts, there were no normal pa-
tients to conduct the EM algorithm. Therefore, we took
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the average of the proportions found in the Metabric co-
horts and split each cohort into 10.0, 81.1 and 8.8% ac-
cording to the expression levels of ORMDL3. Figure 2b
shows the results of the survival analysis. It can be seen
that the trimodal association between ORMDL3 and prog-
nostic survival was significant (p12 < 0.05 and p23 < 0.05)
for GSE20624. This relationship was non-significant for
GSE18229, GSE20685 and GSE22133, but at least the tri-
modal trend was correct (p12 < 0.5 and p23 < 0.5). Table 1
shows the association between ORMDL3 expression and
tumor grade. It can be seen that patients whose ORMDL3
expression fell into the low mode always had a signifi-
cantly (p < 0.05) higher grade than those whose ORMDL3
expression fell into the middle mode. Patients whose
ORMDLS3 expression fell into the high mode didn’t always
have significantly (p <0.05) higher grades than those
whose ORMDL3 expression fell into the middle mode,
but the trend was still correct (p < 0.5) in most cases.

The phenotype of ORMDL3 amplification may be artefact
of nearby ERBB2 expression

Overall, we conclude that both the up-regulation and
down-regulation of ORMDL3 were correlated with bad
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Table 1 Association of ORDML3 trimodal expression with tumor grade
Data set Patient number P-value
Expression Tumor grade “Low” vs. “Middle” “High” vs. “Middle”
low middle high Stage 1 Stage 2 Stage 3
Metabric discovery 100 820 77 72 415 510 90x 10”7 46x10°1°
Metabric validation 94 719 92 98 360 447 11x107° 29%10°°
GSE18229 10 186 27 24 74 125 27%107 39x107"
GSE20624 34 253 29 19 97 200 39% 1077 78%x 107"
GSE22133 25 187 20 26 100 106 17%107° 54x1072

Tailed p value is for the null hypothesis that “low” (“high”) group patients tend to have lower grade tumors when compared to “middle” group patients. GSE20685

does not have tumor grade data, so the p value is not calculated

prognosis and higher tumor grade in breast cancer pa-
tients, although this observation did not reach statistical
significance in some small validation datasets. We then
asked whether ORMDL3 was the driving factor for both
the up-regulation phenotype and down-regulation
phenotype. We noticed that ORMDLS3 is only about 200
kb away from ERBB2/HER2 (Fig. 3a), which is a

well-known tumor driver in multiple cancers, including
breast cancer [11]. 15-25% of breast tumors carry a
high-level amplification of ERBB2 [10], and ERBB2-over-
expressing in breast cancer leads to substantially lower
overall survival rates [27].

We hypothesized that the phenotype of up-regulation
of ORMDL3 is a passenger event of nearby ERBB2’s

ORMDL3
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Fig. 3 The phenotype of ORMDL3 amplification may be an artefact of nearby ERBB2 expression. a Genome Browser visualization of ORMDL3 and
ERBB2. b Copy Number Variations of ORMDL3 and ERBB2 for the Metabric discovery set patients (c—e) RNA expression levels of ORMDL3 and ERBB2 for
the Metabric discovery set, Metabric validation set, and TCGA BRCA dataset. Blue dots represent normal samples and red dots represent tumor samples

ORMDL3
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amplification. Indeed, when we plotted the Copy Num-
ber Variations of ORMDL3 and ERBB2 for the Metabric
discovery set patients in Fig. 3b, we could see that
ORMDL3 and ERBB2 were often amplified or deleted
together. When ORMDL3 was amplified, ERBB2 was al-
ways amplified, but not vice versa. This could be repli-
cated in the Metabric validation dataset and TCGA
BRCA dataset (Additional file 1: Figure S2). Consistent
with CNV data, the ORMDL3 and ERBB2 expression
levels were positively correlated for the tumor samples,
but with a significant portion of outliers in the
upper-left corner (Fig. 3c-e). Interestingly, in normal
samples, ORMDL3 and ERBB2 were negatively corre-
lated in all three datasets examined. In addition, tumor
and normal samples tended to occupy different regions
in the ORMDL3-by-ERBB2 graphs.

Moreover, we calculated the relationship between gene
essentiality vs. gene expression. For ORMDL3 (Additional
file 1: Figure S3a), expression has a slightly positive associ-
ation with gene essentiality. But for an oncogene, the
higher it is expressed, the more likely the tumor cell line is
reliant on this gene’s expression for survival. In turn, this
cell line is more sensitive to knockdown of the oncogene,
leading to a more negative gene essentiality score. Indeed,
the expression-by-essentiality plots show strong negative
associations for some oncogenes (Additional file 1: Figure
S3b-e), but not for tumor suppressors (Additional file 1:
Figure S3f-k) [6, 16]. Although inconclusive, this analysis
suggests that ORMDL3 has no oncogenic effect.

ORMDL3 may be a breast tumor suppressor

Based on the above-mentioned evidence, it is reasonable
to suspect that the up-regulation of ORMDL3 is merely a
passenger event of ERBB2 amplification. However, we hy-
pothesized that the association between down-regulation
of ORMDL3 and worse survival prognosis as well as
higher tumor grade is due to the possible tumor suppres-
sor effect of ORMDLS3. To investigate this hypothesis, we
conducted a multivariable analysis incorporating the 3
modes of ORMDL3 expression together with other vari-
ables for the Metabric discovery set survival data (Table 2).
These variables include the expression level of ERBB2 as
well as many other clinical variables. According to the
table, the association of the up-regulation of ORMDL3
with worse survival is no longer significant (p =0.72),
while the down-regulation of ORMDL3 with worse sur-
vival is still significant (p =0.002) after adjustment. We
also extended this analysis to the other datasets, though
not all of them fully captured these biological and clinical
variables. So in this analysis, we conducted multivariable
regression of the 3 modes of ORMDL3 expression only
with ERBB2 for both survival and tumor grade data
(Additional file 1: Table S1). We can see that the p values
representing the down-regulation of ORMDL3 did not
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Table 2 Multivariable survival analysis with ORMDL trimodal
expression and other variables

Variables coefficient p-value

ORMDL expression (“low" vs. “middle”) 0513 0.002

ORMDL expression (“high” vs. “middle”) -0.140 0.72
ERBB2 expression 0.182 0.001
ESRT expression -0.063 087
PGR expression -0.175 0.99
Pam50subtype — Her2 —0.206 0.78
Pam50subtype — LUumAB -0.273 0.81
Pam50subtype — Normal 0.077 040
Age at diagnosis 0.148 0.002
Stage 0.024 0.36
Lymph nodes positive 0.110 < 0.001

Analysis was done in Metabric discovery set

change too much from the univariate p values, while p
values representing the up-regulation of ORMDL3 are
mostly much less significant than the univariate p values.
These results again confirmed our speculation that
up-regulation of ORMDL3 is an artefact while ORMDL3
may be a new tumor suppressor.

Discussion

ORMDL3 is an endoplasmic reticulum-located trans-
membrane protein. It is mainly known as a negative
regulator of sphingolipid synthesis [3], and it is involved
in asthma as well as a series of autoimmune disorders
[23]. However, currently few research papers have dem-
onstrated whether it is involved in cancer. To validate its
hypothetic role as a tumor suppressor, further experi-
mental validation would need to be carried out. Similar
analysis can also be carried out in the future in other
cancer datasets to identify potential functional genes in
cancer that may be missed by traditional studies.

Conclusions

In this study, we proposed an EM model to detect genes
with trimodal expression in cancer patients to answer
our specific question of interest: can a gene be both an
oncogene and a tumor suppressor in a certain scenario?
Applying our EM algorithm to the Metabric breast can-
cer dataset, we identified the gene ORMDL3, whose low
and high expression are both associated with higher
tumor grade and worse survival outcome. Down-stream
analysis suggests the oncogenic effect of ORMDL3 may
be an artefact by its nearby oncogene ERBB2 amplifica-
tion, while its tumor suppressor role cannot be ruled
out. Current research into ORMDL3 is focused on
asthma and autoimmune diseases, so the functional
study of its role in cancer is still blank. Future bench
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work is needed to validate its tumor suppressive effect in
breast cancer. Taken together, this study provides a novel
angle to look for oncogenes and tumor suppressors, link-
ing trimodal gene abundance to endpoint observation.

Methods

Curation of breast cancer studies

The Metabric study datasets were downloaded from
EMBL-EBI with the study ID EGAS00000000083. Study
datasets were comprised of the discovery set and the valid-
ation set, as well as a third smaller group of normal control
samples. For the expression data of each set of samples,
probe-level data were aggregated to the gene level and each
sample was adjusted using quantile normalization. For the
copy number variation variant data, each gene’s CNV status
was found by calculating the mean of the values of the
probes covering that gene. The TCGA Breast invasive car-
cinoma (BRCA) study data were also downloaded and con-
tained mostly tumor samples and some normal samples.
The HiSeq expression data were log transformed and me-
dian centered. The BRCA CNV data were downloaded from
Firehose, and GISTIC gene-level output were used directly.
For the GSE18229 study and the GSE20624 study, expres-
sion data were downloaded from the UNC microarray data-
base, aggregated from the probe-level to the gene-level and
quantile normalized. For the GSE20685 study, the expres-
sion data were downloaded from the GEO database. For the
GSE22133 study, the expression data were aggregated from
the probe level to the gene level and quantile normalized.
For the CNV data, the values of the probes covering each
gene were averaged to become the CNV status of that gene.

EM algorithm

We devised an EM algorithm to separate the whole tumor
patient population into 3 groups, “higher than normal”,
“similar to normal” and “lower than normal”. To do this, we
assumed that the expression values of a certain gene in the
tumor patient population were a mixture of 3 Gaussian dis-
tributions (3 modes), corresponding to each of the 3 groups
mentioned above. We assumed those of the normal patient
corresponded only to the middle component. To avoid as-
signment of a patient to an unreasonable mode, we assumed
these 3 Gaussian distribution shared the same variance.
Then the log likelihood function could be written as:

- — s
LL(XIumorv X normal; 7T 5 Y sg)

H#tumor 3
= Z IOg Zf(xtumor.ﬁ/'t/’v G) X T
i=1 =1
#normal

+ Z log (f (Xnormal,i; U, 0) )

i=1

MESTIEN . )
f(xsu,0) = ﬁe 22 is the density function of nor-

mal distribution. ¥ ;0r and X ,omma are the vectors of
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expression levels of a certain gene in the tumor patient popu-
lation and normal patient population. 77 is a 3-element vec-
tor specifying the proportion of patients that belong to each
of the 3 modes. 7 is a 3-element vector specifying the mean
of the 3 Gaussian distributions, subject to p1 <y, po < 3.
is the standard deviation of the 3 Gaussian distributions.

For each round, the EM algorithm was started by up-
dating the responsibilities 7", which is a vector with

#tumor elements: y, , = 22wt S moriit0)

Zf(xtumor.ﬁ 1278 o‘)

. Then 7 is up-

k=1
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Vij .
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The EM iterations were stopped when the log likelihood
reached convergence. When p; < p, pp < pt3, and 71; > 0.01,
i=1, 2, 3 were all satisfied, this gene was said to exhibit
trimodality distribution. Then two cutoff values were cal-
wi-p3-20 log(71)

culated by  cutoff, = —; =) and  cutoff 55
1
22 262 log(Z2
= M;(ﬂi_”)g(’“) . Sometimes cutoffy, >y, or cutoffis <
2 3

could occur. When that happened, an ad hoc rule applied
to set cutoffi, at the 10% quantile of the expression values
of the tumor samples. Similarly, cutoff;; was set at the
90% quantile when cutoffos > 3 or cutoffas < p. Finally the
true membership of each tumor sample to the three
modes was decided by comparing their expression values
to cutoffi» and cutoffys. An empirical = was calculated by
the proportion of tumor patients belonging to each mode.

Gene essentiality analysis

The gene essentiality screening data were downloaded
from the 2012 Cancer Discovery study [19]. In this study,
a continuous GARP score was defined for each gene in
every cell line. A lower score for a gene meant that the cell
line was more reliant on the expression of this gene for
survival. We used the expression data downloaded from
the Cancer Cell Encyclopedia (CCLE) website [2]. The
whole CCLE dataset contained the expression data of 58
breast cancer cell lines. 29 of these cell lines were also
used in the gene essentiality screening study.

Statistical tests

Survival analysis performed in this study was done using
functions from the R survival package. To test the
tri-modal association of each gene’s expression level with
overall survival, the “low”, “middle”, and “high” categor-
ical variables were input into the Cox proportional haz-
ard model, with or without adjusting for other variables.
The P value for the “low” group was assigned by testing
the null hypothesis that “low” group patients had no
worse overall survival than “middle” group patients, and
the same applied for “high” group p values. All survival
analysis was censored at 20 years.

To test the proportional trend of two groups of patients
in tumor graded 1, 2 and 3, a modified version of prop.-
trend.test function from the stats R package was used.
The p value generated by prop.trend.test was from a
two-tailed test, while a one-tailed p value was calculated
from it by examining the sign of the coefficient. The
one-tailed p value was for the null hypothesis that “low”
(“high”) group patients tended to have lower grade tumors
when compared to “middle” group patients. To compare
“low” vs. “middle” groups for example, the test in essence
generated a smaller p value when more advanced grade
tumors were more likely to be “low” group patients rather
than “middle” group patients.
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Additional file

Additional file 1: Figure S1. The distribution of the expression values
for the gene ORMDL3 in the Metabric validation set. Figure S2. The
distribution of the expression values for the gene ORMDL3 in the
Metabric validation set and TCGA BRCA patients. Figure S3. Scatterplots
of gene expression levels vs. gene essentiality scores (GARP scores).
Yellow dots are the breast cancer cells that exists in both CCLE and the
SshRNA screening data. The expression values and GARP scores are all
adjusted by breast cancer subtypes. The purple curve is fitted by linear
regression. (a) ORMDL3 (b-e) breast cancer oncogenes (f-k) breast tumor
suppressors. Table S1. Multivariable survival analysis with ORMDL
trimodal expression and ERBB2 expression. (DOCX 483 kb)
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